Seminários de Lógica Matemática
28 de Maio 2009, 18h00
Minimal stable types over Banach spaces
Complexo Interdisciplinar, Sala B3-01
ALEXANDER USVYATSOV (CMAF - Universidade de Lisboa)
Abstract:
I will describe the main steps of the recent proof of Henson's Conjecture by Saharon Shelah and myself. The proof involves a "Baldwin-Lachlan" analysis of models of categorical classes of Banach spaces, which was unavailable until now.
Specifically, we introduce a new geometric object into model theory of Banach spaces, which we call "wide types" and analyze minimal such types under the assumption of stability. In the talk I will concentrate on two aspects of this work: existence of wide types and the proof that minimal ones "generically" generate a Hilbert space.
| back
|