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In this talk we will consider the regularity for the obstacle problem without sign restriction.
That is, we assume that u ∈ W 2,2(B1(0)) and that ∆u(x) = f(x)χ{u6=0} where χA is the
indicator function for the set A and f(x) is a given, say Lipschitz, function.

Since ∆u is bounded it follows, from classical theory, that u ∈ C1,α for every α < 1.
But for the obstacle problem it has been known since the 60ies that the solution is actually
in C1,1 if f is smooth and u ≥ 0. In 2000 L.A. Caffarelli, L. Karp and H. Shahgholian
(Ann. Math. 2000) showed that u ∈ C1,1 even when u changes sign. This is an important
condition needed to investigate the regularity of the set {n 6= 0}. Their proof was easily
extendable to f being Lipschitz.

This is an important result but it is unpleasing in certain ways that will be explained
during the seminar. We will also sketch an elementary proof for a stronger result: that
u ∈ C1,1 even if f is (just slightly better than) continuous as well as explain why this result
is optimal. In describing the proof we will to touch upon some issues in singular integral
operators at a basic level.


