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Local topology of irreducible plane curves

Let h0 : (C2, 0)→ (C, 0) be an irreducible germ of
holomorphic function.

Let h : X → ∆ be a “good” representative of h0 giving the
Milnor fibration h : U = X − D → ∆∗, D = f −1(0). The
“Milnor fiber” is F = f −1(t0), t0 ∈ ∆∗.

1→ L = π1(F , x0)→ G = π1(U, x0)→ π1(∆∗, t0)→ 1.

L is a free group of rank µ = µ(h), π1(∆∗, t0) is infinite cyclic
with “positive” generator δ.

The bord F ∂ of F is a circle and F ∂ = π1(F ∂ , x0) is infinite
cyclic with “positive” generator γ.

∃ π1(∆∗, t0) ↪→ G and G = L n π1(C∗, 1).

intδ : α ∈ L 7→ δαδ−1 ∈ L corresponds to the geometric
monodromy of the Milnor fibration (δγδ−1 = γ).
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An example

h0 = x2 − y 3 : (C2, 0)→ (C, 0), µ = 2.

h = x2 − y 3 : X = C2 → C is good, D = {h = 0},
U = C2 − U and F = h−1(1).

L = π1(F , x0) = 〈a, b〉, γ = aba−1b−1,
δaδ−1 = b−1, δbδ−1 = ba.

G = π1(U, x0) = 〈a, b, δ; δaδ−1 = b−1, δbδ−1 = ba〉.
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Perverse sheaves with respect to plane curves

h : X → ∆ a good representative of h0 : (C2, 0)→ (C, 0),
D = h−1(0), j : U = X − D ↪→ X .

(MacPherson-Vilonen, Deligne, Verdier; 1982-83) A perverse
sheaf K on X stratified by {0},D − {0},U is determined by

(L,F, u : RψhL→ F, v : F→ RψhL)

with L = j∗K a local system on U, F = φhK a perverse sheaf
on D (stratified w.r.t. {0},D − {0}) and u, v maps of
perverse sheaves such that Id + v ◦u = TL.

But (D, 0) ' (C, 0) and perverse sheaves are well known. . .
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Explicit description (N-M, 1984)

Each of the data (L,F, u : RψhL→ F, v : F→ RψhL) can be
explicitly described.

L is given by a complex representation G = π1(U)→ GL(E ).

F is given by a diagram of vector spaces
(C1,C2; p : C1 → C2, q : C2 → C1) with Id + q ◦p is '.

(N-M) (RψhL,TL) is given by:

(E ,HomC[L](I (L),E ),U,V ) y (t1, t2) with

U : E → HomC[L](I (L),E ), U(e)(g) = ge,

V : HomC[L](I (L),E )→ E ), V (ϕ) = ϕ(γ − 1),

and t1(e) = δ−1e, t2(ϕ)(g) = δ−1ϕ(δgδ−1).



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Explicit description (N-M, 1984)

Each of the data (L,F, u : RψhL→ F, v : F→ RψhL) can be
explicitly described.

L is given by a complex representation G = π1(U)→ GL(E ).

F is given by a diagram of vector spaces
(C1,C2; p : C1 → C2, q : C2 → C1) with Id + q ◦p is '.

(N-M) (RψhL,TL) is given by:

(E ,HomC[L](I (L),E ),U,V ) y (t1, t2) with

U : E → HomC[L](I (L),E ), U(e)(g) = ge,

V : HomC[L](I (L),E )→ E ), V (ϕ) = ϕ(γ − 1),

and t1(e) = δ−1e, t2(ϕ)(g) = δ−1ϕ(δgδ−1).



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Explicit description (N-M, 1984)

Each of the data (L,F, u : RψhL→ F, v : F→ RψhL) can be
explicitly described.

L is given by a complex representation G = π1(U)→ GL(E ).

F is given by a diagram of vector spaces
(C1,C2; p : C1 → C2, q : C2 → C1) with Id + q ◦p is '.

(N-M) (RψhL,TL) is given by:

(E ,HomC[L](I (L),E ),U,V ) y (t1, t2) with

U : E → HomC[L](I (L),E ), U(e)(g) = ge,

V : HomC[L](I (L),E )→ E ), V (ϕ) = ϕ(γ − 1),

and t1(e) = δ−1e, t2(ϕ)(g) = δ−1ϕ(δgδ−1).



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Explicit description (N-M, 1984)

Each of the data (L,F, u : RψhL→ F, v : F→ RψhL) can be
explicitly described.

L is given by a complex representation G = π1(U)→ GL(E ).

F is given by a diagram of vector spaces
(C1,C2; p : C1 → C2, q : C2 → C1) with Id + q ◦p is '.

(N-M) (RψhL,TL) is given by:

(E ,HomC[L](I (L),E ),U,V ) y (t1, t2) with

U : E → HomC[L](I (L),E ), U(e)(g) = ge,

V : HomC[L](I (L),E )→ E ), V (ϕ) = ϕ(γ − 1),

and t1(e) = δ−1e, t2(ϕ)(g) = δ−1ϕ(δgδ−1).



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Explicit description (N-M, 1984)

Each of the data (L,F, u : RψhL→ F, v : F→ RψhL) can be
explicitly described.

L is given by a complex representation G = π1(U)→ GL(E ).

F is given by a diagram of vector spaces
(C1,C2; p : C1 → C2, q : C2 → C1) with Id + q ◦p is '.

(N-M) (RψhL,TL) is given by:

(E ,HomC[L](I (L),E ),U,V ) y (t1, t2) with

U : E → HomC[L](I (L),E ), U(e)(g) = ge,

V : HomC[L](I (L),E )→ E ), V (ϕ) = ϕ(γ − 1),

and t1(e) = δ−1e, t2(ϕ)(g) = δ−1ϕ(δgδ−1).



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

A formula for the characteristic cycle

If our perverse sheaf K on X is given by G → GL(E ),
(C1,C2; p : C1 → C2, q : C2 → C1) and
u1 : E → C1, v1 : C1 → E ,
u2 : HomC[L](I (L),E )→ C2, v2 : C2 → HomC[L](I (L),E ) with
the corresponding commutativiy conditions and
Id + v1 ◦u1 = t1, Id + v2 ◦u2 = t2, then:

CC(K) = m2T ∗X (X ) + m1T ∗Dreg (X ) + m0T ∗0 (X ),

m2 = dim E , m1 = dim C1,
m0 = µ dim E + (1− e) dim C1 + dim C2.
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The case of a cusp

L ↔ ρ : G = 〈a, b, δ; δaδ−1 = b−1, δbδ−1 = ba〉 → GL(E ):

ρ(a) = A, ρ(b) = B, ρ(δ) = ∆.

RψhL is the perverse sheaf on D given by:

(E ,E 2,

(
A− I
B − I

)
, (B − BAB−1A−1, I − BAB−1))

and TL is given by:

t1 = ∆−1, t2 =

(
0 −∆−1B−1

∆−1B−1 ∆−1

)
.
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Description of intersection complexes

Let L be a local system on U = X − D.

The intersection complex j!∗L is the perverse sheaf given by

(L, Im(TL − 1),TL − 1, inclusion).

If L is associated with the representation G → GL(E ), then

CC(j!∗L) = m2T ∗X (X ) + m1T ∗Dreg (X ) + m0T ∗0 (X ),

m2 = dim E , m1 = rank(t1 − 1),
m0 = rank(t2 − 1)− µm2 + (mult0(D)− 1)m1.
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Local systems of rank 1 on the complement of the cusp

For z ∈ C∗, let Lz be the local system on U of rank 1 given
by %z : G → GL(1,C) = C∗, %z(δ) = z , %z(a) = %z(b) = 1.

t1 = z−1, t2 =

(
0 −z−1

z−1 z−1

)
CC(j!∗Lz) = T ∗X (X ) + m1T ∗Dreg (X ) + m0T ∗0 (X ).

If z = 1 then Lz = CU and j!∗Lz = CX , m1 = m0 = 0.

If z 6= 1 then m1 = 1 and{
if z2 − z + 1 = 0 then m0 = 0
if z2 − z + 1 6= 0 then m0 = 1.

z2 − z + 1 = 0 ↔ z = e
2πi

6 .
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Some examples of local systems of rank 2 on the
complement of the cusp

For s, t ∈ C∗ let Ls,t be ↔ %s,t : G → GL(2,C):

%s,t(δ) =

(
θ 0
0 θ2

)
, %s,t(a) = %s,t(b) =

(
0 s
t 0

)
, θ = e

2πi
3 .

The Ls,t are irreducible.

CC(j!∗Ls,t) = 2T ∗X (X ) + m1T ∗Dreg (X ) + m0T ∗0 (X ).

m1 =

{
2 if st 6= 1
1 if st = 1

, m0 =

{
2 if st 6= 1
0 if st = 1

j!∗Ls,1/s are simple perverse sheaves with

Ch(j!∗Ls,1/s) = T ∗X (X ) ∪ T ∗Dreg (X ).
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Can we systematically find explicit systems of

linear partial differential equations in C2 giving
rise to simple (germs at 0 of) regular holonomic
D-modules stratified with respect (for instance)
to a cusp with characteristic variety
T ∗X (X ) ∪ T ∗Dreg (X )?

Or still, can we find explicit systems of linear

partial differential equations in C2 (or Cd )
corresponding through the Riemann-Hilbert
correspondence to “intersection complexes” as
j!∗L?
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Logarithmic vector fields

From now on: X = a connected complex analytic manifold and
D ⊂ X a divisor (= hypersurface), d = dim X , U = X − D.

Der(log D) = the OX -module of logarithmic vector fields
along D. It is a submodule and a Lie subalgebra of Der(OX ).

If h ∈ OX ,p is a reduced local equation of D at p, then a germ
of vector field δ ∈ Der(OX ,p) is logarithmic along D if and
only if δ(h) ∈ OX ,p · h.

If x1, . . . , xd is a system of local coordinates at p and
δ =

∑
aj

∂
∂xj

, then δ is logarithmic along D if and only if∑
j ajh

′
xj

= a0h, and so the stalk at p of Der(log D) can be

identified with the syzygies of h, h′x1
, . . . , h′xd .

Der(log D) it is a coherent OX -module.

Der(log D) is reflexive and its dual is ΩX (log D).
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Free divisors

Definition (Saito)

We say that D is a free divisor if Der(log D) (or ΩX (log D)) is a
locally free OX -module (necessarily of rank d).

Example

The following classes of divisors are free:

Normal crossing divisors. Plane curves.

Discriminants (Arnold, Zakalyukin, Saito, Terao) and
bifurcation sets (Bruce) of versal unfoldings of germs of
holomorphic functions with an isolated critical point (and
some generalizations by Buchweitz, Ebeling, Graf von
Bothmer, Looijenga, Damon,..).

Linear free divisors (Buchweitz, Mond, Granger, Nieto,
Schulze, Damon, Pike).

New examples by adding “adjoint divisors” (Mond, Schulze).
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Examples

X = C2, h = x2 − y 3, D = {h = 0}.
D is a free divisor: a basis of Der(log D) is {χ, δ} with
χ = 3x∂x + 2y∂y , δ = 3y 2∂x + 2x∂y .

χ(h) = 6h, δ(h) = 0, [χ, δ] = δ.
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Integrable logarithmic connections

D ⊂ X a free divisor: DX (log D) := OX [Der(log D)] ⊂ DX .

An integrable logarithmic connection (ILC) (with respect to
D) is a left DX (log D)-module which is locally free∗∗ of finite
rank over OX .

OX (kD), k ∈ Z, are ILC.Locally it is given by the action of a
local basis of Der(log D) on a local basis of E with some
integrability conditions.

E,E′ ILC ⇒ E⊗OX
E′, HomOX

(E,E′) (in particular E∗) ILC.

E(kD) := E⊗OX
OX (kD).

Any ILC determines a local system on U: its horizontal
sections. It does not change by the twistings E(kD).
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Examples of ILC with respect to the cusp

X = C2, h = x2 − y 3, D = {h = 0}.
A basis of Der(log D) is: χ = 3x∂x + 2y∂y , δ = 3y 2∂x + 2x∂y .

For α ∈ C, OXhα is a ILC with: χhα = 6αhα, δhα = 0.

OXhα ' DX (log D)/DX (log D)(χ− 6α, δ).

Any ILC of rank 1 with respect to D is isomorphic to OXhα fo
some α ∈ C. For instance, OX (kD) ' OXh−k , k ∈ Z.

For λ, e ∈ C, Eλ,e = O2
X with:

χ

(
e1

e2

)
=

(
λ 0
0 λ+ 1

)(
e1

e2

)
, δ

(
e1

e2

)
=

(
0 1

ey 0

)(
e1

e2

)
.

Eλ,e = DX (log D)e1 = DX (log D)/DX (log D)(χ−λ, δ2− ey).
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Logarithmic and meromorphic de Rham complexes

Any ILC E has a logarithmic de Rham complex Ω•X (log D)(E).

We also have the meromorphic de Rham complex Ω•X (E[?D]).

The meromorphic connection E[?D] is regular and
Ω•X (E[?D])

∼→ Rj∗L, where L is the local system of horizontal
sections of E on U = X − D.

(LCP): Is the inclusion Ω•X (log D)(E) ↪→ Ω•X (E[?D]) a
quasi-isomorphism?

In other words, is the canonical map Ω•X (log D)(E)→ Rj∗L
an isomorphism in the derived category?
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The logarithmic comparison theorem (LCT)

When D is a NCD and E = OX , the (LCT) is true (easy).

(Deligne) When D is a NCD,
Ω•X (log D)(E(kD)) ' Ω•X (E[?D]) for k >> 0.

(Castro-Jiménez, Mond, N-M; 1994): If D is a locally
quasi-homogeneous (LQH) free divisor and E = OX , then the
(LCT) is true.

Question: is (LCT) true for any free divisor and any ILC?

Can we understand the LCT with D-module Theory?
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D-module theory enters the scene

Esnault-Viehweg (1986), for NCD: they used the sheaf of
rings DX (log D) to express logarithmic de Rham complexes
and to prove a duality formula.

Calderón-Moreno (1996-97), for arbitrary free divisors and

arbitrary ILC: V D
0 (DX ) = DX (log D),

Ω•X (log D)(E) = R HomV0(OX ,E),

and he introduced∗ the notion of Koszul free divisor and
proved that: Koszul free ⇒ Ω•X (log D) is perverse.

Definition: A free divisor D is Koszul at p if the symbols of
any (or some) local basis {δ1, . . . , δd} of Der(log D)p form a
regular sequence in grDX ,p = OX ,p[ξ1, . . . , ξd ]. We say that
D is Koszul if it is so at any point p ∈ D.
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What we need to “compute” j!∗L?

j!∗L = image of j!L→ Rj∗L in the category of perverse
sheaves.

j!L = (Rj∗L
∨)∨.

If L is the local system of horizontal sections of an ILC E,
then L∨ is the local system of horizontal sections of the dual
ILC E∗.

So, what we need is to understand:

E  Rj∗L and ( )∨ .

.
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Understanding duality

Theorem. [Calderón-Moreno, N-M, 2004] Let D ⊂ X be a free
divisor and E a ILC w.r.t. D. There is a canonical isomorphism in
the derived category

D
(
DX

L
⊗DX (log D) E

)
' DX

L
⊗DX (log D) E

∗(D)

where D stands for the duality in D-module theory and ∗ for the
duality of ILC.The “Spencer” case and E = OX : Castro, Ucha.

Corollary. Under the above hypotheses, we have a canonical
isomorphism in the derived category

Ω•X (log D)(E) = DR

(
DX

L
⊗DX (log D) E(D)

)
.
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Understanding Rj∗L ≡ (LCP)

Theorem. [Calderón-Moreno, N-M, 2006] Let D ⊂ X be a free
divisor of linear Jacobian type and E a ILC w.r.t. D. Then, for
k >> 0 the canonical map Ω•X (log D)(E(kD))→ Rj∗L is an
isomorphism in the derived category.

Corollary. Under the above hypotheses, for k >> 0 the
canonical map j!L→ Ω•X (log D)(E(kD)) is an isomorphism in the
derived category.

Corollary. Under the above hypotheses,

j!∗L = DR

(
Im

(
DX

(L)
⊗DX (log D) E(−kD)→ DX

(L)
⊗DX (log D) E(kD)

))
for k >> 0.
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Examples

X = C2, h = x2 − y 3, D = {h = 0}.
(OXhα)∗ ' OXh−α.

Eλ,e ⊗OX
(OXhα) ' Eλ+6α,e , α, λ, e ∈ C.

Eλ,e(kD) ' Eλ−6k,e , k ∈ Z.

(Eλ,e)∗ = HomOX
(Eλ,e ,OX ) ' E−λ−1,e .
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Examples of ILC of rank 1 w.r.t. the cusp

For z ∈ C∗: Lz ↔ %z : G → GL(1,C) = C∗,
%z(δ) = z , %z(a) = %z(b) = 1.
For α ∈ C:
Mα := DC2 ⊗DC2 (log D) (OC2hα) = DC2/DC2(χ− 6α, δ).

If z 6= 1, e±
2πi

6 : DR (Mα) ' Rj∗Lz ' j!Lz ' j!∗Lz for
any α ∈ C with e2πiα = z .

If z = 1: DR (M−k) ' Rj∗CU for any integer k ≥ 1,
DR(Mk) ' j!CU for any integer k ≥ 0 and
DR(OX ) = CX ' j!∗CU .

If z = e±
2πi

6 : DR
(
M± 1

6
−k

)
' Rj∗Lz for any integer

k ≥ 1, DR(M± 1
6

+k) ' j!Lz for any integer k ≥ 0 and

DR
(
DXh±1/6

)
' j!∗Lz .

−1,−5
6 ,−

7
6 are the roots of the Bernstein

polynomial of h.



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Examples of ILC of rank 1 w.r.t. the cusp

For z ∈ C∗: Lz ↔ %z : G → GL(1,C) = C∗,
%z(δ) = z , %z(a) = %z(b) = 1.

For α ∈ C:
Mα := DC2 ⊗DC2 (log D) (OC2hα) = DC2/DC2(χ− 6α, δ).

If z 6= 1, e±
2πi

6 : DR (Mα) ' Rj∗Lz ' j!Lz ' j!∗Lz for
any α ∈ C with e2πiα = z .

If z = 1: DR (M−k) ' Rj∗CU for any integer k ≥ 1,
DR(Mk) ' j!CU for any integer k ≥ 0 and
DR(OX ) = CX ' j!∗CU .

If z = e±
2πi

6 : DR
(
M± 1

6
−k

)
' Rj∗Lz for any integer

k ≥ 1, DR(M± 1
6

+k) ' j!Lz for any integer k ≥ 0 and

DR
(
DXh±1/6

)
' j!∗Lz .

−1,−5
6 ,−

7
6 are the roots of the Bernstein

polynomial of h.



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Examples of ILC of rank 1 w.r.t. the cusp

For z ∈ C∗: Lz ↔ %z : G → GL(1,C) = C∗,
%z(δ) = z , %z(a) = %z(b) = 1.
For α ∈ C:
Mα := DC2 ⊗DC2 (log D) (OC2hα) = DC2/DC2(χ− 6α, δ).

If z 6= 1, e±
2πi

6 : DR (Mα) ' Rj∗Lz ' j!Lz ' j!∗Lz for
any α ∈ C with e2πiα = z .

If z = 1: DR (M−k) ' Rj∗CU for any integer k ≥ 1,
DR(Mk) ' j!CU for any integer k ≥ 0 and
DR(OX ) = CX ' j!∗CU .

If z = e±
2πi

6 : DR
(
M± 1

6
−k

)
' Rj∗Lz for any integer

k ≥ 1, DR(M± 1
6

+k) ' j!Lz for any integer k ≥ 0 and

DR
(
DXh±1/6

)
' j!∗Lz .

−1,−5
6 ,−

7
6 are the roots of the Bernstein

polynomial of h.



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Examples of ILC of rank 1 w.r.t. the cusp

For z ∈ C∗: Lz ↔ %z : G → GL(1,C) = C∗,
%z(δ) = z , %z(a) = %z(b) = 1.
For α ∈ C:
Mα := DC2 ⊗DC2 (log D) (OC2hα) = DC2/DC2(χ− 6α, δ).

If z 6= 1, e±
2πi

6 : DR (Mα) ' Rj∗Lz ' j!Lz ' j!∗Lz for
any α ∈ C with e2πiα = z .

If z = 1: DR (M−k) ' Rj∗CU for any integer k ≥ 1,
DR(Mk) ' j!CU for any integer k ≥ 0 and
DR(OX ) = CX ' j!∗CU .

If z = e±
2πi

6 : DR
(
M± 1

6
−k

)
' Rj∗Lz for any integer

k ≥ 1, DR(M± 1
6

+k) ' j!Lz for any integer k ≥ 0 and

DR
(
DXh±1/6

)
' j!∗Lz .

−1,−5
6 ,−

7
6 are the roots of the Bernstein

polynomial of h.



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Examples of ILC of rank 1 w.r.t. the cusp

For z ∈ C∗: Lz ↔ %z : G → GL(1,C) = C∗,
%z(δ) = z , %z(a) = %z(b) = 1.
For α ∈ C:
Mα := DC2 ⊗DC2 (log D) (OC2hα) = DC2/DC2(χ− 6α, δ).

If z 6= 1, e±
2πi

6 : DR (Mα) ' Rj∗Lz ' j!Lz ' j!∗Lz for
any α ∈ C with e2πiα = z .

If z = 1: DR (M−k) ' Rj∗CU for any integer k ≥ 1,
DR(Mk) ' j!CU for any integer k ≥ 0 and
DR(OX ) = CX ' j!∗CU .

If z = e±
2πi

6 : DR
(
M± 1

6
−k

)
' Rj∗Lz for any integer

k ≥ 1, DR(M± 1
6

+k) ' j!Lz for any integer k ≥ 0 and

DR
(
DXh±1/6

)
' j!∗Lz .

−1,−5
6 ,−

7
6 are the roots of the Bernstein

polynomial of h.



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Examples of ILC of rank 1 w.r.t. the cusp

For z ∈ C∗: Lz ↔ %z : G → GL(1,C) = C∗,
%z(δ) = z , %z(a) = %z(b) = 1.
For α ∈ C:
Mα := DC2 ⊗DC2 (log D) (OC2hα) = DC2/DC2(χ− 6α, δ).

If z 6= 1, e±
2πi

6 : DR (Mα) ' Rj∗Lz ' j!Lz ' j!∗Lz for
any α ∈ C with e2πiα = z .

If z = 1: DR (M−k) ' Rj∗CU for any integer k ≥ 1,
DR(Mk) ' j!CU for any integer k ≥ 0 and
DR(OX ) = CX ' j!∗CU .

If z = e±
2πi

6 : DR
(
M± 1

6
−k

)
' Rj∗Lz for any integer

k ≥ 1, DR(M± 1
6

+k) ' j!Lz for any integer k ≥ 0 and

DR
(
DXh±1/6

)
' j!∗Lz .

−1,−5
6 ,−

7
6 are the roots of the Bernstein

polynomial of h.



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Examples of ILC of rank 1 w.r.t. the cusp

For z ∈ C∗: Lz ↔ %z : G → GL(1,C) = C∗,
%z(δ) = z , %z(a) = %z(b) = 1.
For α ∈ C:
Mα := DC2 ⊗DC2 (log D) (OC2hα) = DC2/DC2(χ− 6α, δ).

If z 6= 1, e±
2πi

6 : DR (Mα) ' Rj∗Lz ' j!Lz ' j!∗Lz for
any α ∈ C with e2πiα = z .

If z = 1: DR (M−k) ' Rj∗CU for any integer k ≥ 1,
DR(Mk) ' j!CU for any integer k ≥ 0 and
DR(OX ) = CX ' j!∗CU .

If z = e±
2πi

6 : DR
(
M± 1

6
−k

)
' Rj∗Lz for any integer

k ≥ 1, DR(M± 1
6

+k) ' j!Lz for any integer k ≥ 0 and

DR
(
DXh±1/6

)
' j!∗Lz .

−1,−5
6 ,−

7
6 are the roots of the Bernstein

polynomial of h.



Outline A topological motivation Free divisors and logarithmic D-modules Explicit computations

Examples of ILC of rank 2 w.r.t. the cusp

For λ, e ∈ C: Eλ,e = DC2(log D)/DC2(log D)(χ− λ, δ2 − ey).
Mλ,e := DC2 ⊗DC2 (log D) Eλ,e . Lλ,e the local system of horizontal
sections of Eλ,e on U.

For λ = −2, e = 2, E−2,2(D) = E−8,2 and
M−8,2 = M−8,2[?D], DM−2,2 = (DM−2,2) [?D].

j!∗L−2+6Z,2 = DR (Im (M−2,2 →M−8,2)).

We can compute the above image:

j!∗L−2+6Z,2 = DR
(
DC2/DC2(χ+ 2, 9y∂2

x − 4∂2
y )
)
.

Ch(j!∗L−2+6Z,2) = T ∗C2(C2) ∪ T ∗Dreg (C2).

It remains to see whether Lλ,e is irreducible or not. . .
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Astérisque, 30 (1985), 210–217.


	Outline
	A topological motivation
	Free divisors and logarithmic D-modules
	Explicit computations

