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Introduction

Normal flatness was introduced as a simplification of Hironaka’s
original argument on desingularization.

Geometry of singularities in characteristic zero: Hironaka
(1974); Aroca, Hironaka, and Vicente (1975, 1977); Bennett
(1970); all in the seventies.

Technical study of normal flatness: Herrmann and Orbanz
(1982); Orbanz and Robbiano (1984); Robbiano (1979, 1983)

Effective approach without normal flatness: Bierstone and
Milman (1997, 1989); Bravo, Encinas, and Villamayor (2005);
Encinas and Hauser (2002); Encinas and Villamayor (1998,
2003) (just a few).

We try to show that normal flatness is “easy to compute.”
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Previous Work

1 Other versions of the Weierstraß-Hironaka division theorem:
Aroca, Hironaka, and Vicente (1975); Galligo (1979); Herrmann,
Ikeda, and Orbanz (1988).

2 The Fundamental Theorem of normal flatness: Idà and
Manaresi (1983); Lejeune-Jalabert and Teissier (1971).

3 Hilbert functions and normal flatness: Bennett (1970); Orbanz
and Robbiano (1984).
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So, Just what is new here?

1 Normal flatness can be read in an easy way from combinatorics
attached to a singular analytic space.

2 Using combinatorics to prove the Fundamental Theorem and
relationship to the Hilbert function as a by-product.

We need a very specific statement of the Weierstraß-Hironaka
theorem.
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The setup I

In plain words: we look (locally) at singular embedded analytic
spaces containing a smooth subspace.

R = C{z,w}
z = {z1, ..., zc}, w = {w1, ...,wd}
p = (z), m = (z,w)

I ⊂ (z)R = p

W the analytic space defined in a neighbourhood of the origin of
Cc+d by p, and, likewise, X defined by I.

This is not completely uncommon. . . Think Whitney’s Umbrella.
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The setup II

Figure: Whitney’s Umbrella: z2
1 = z2

2w1
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The setup III
For a series f ∈ R, we write

f =
∑

A∈Zc
0

fA(w) zA, fA(w) ∈ C{w} for all A ∈ Zc
0

=
∑

(A,B)∈Zc+d
0

f(A,B) zA wB, f(A,B) ∈ C for all (A, B) ∈ Zc+d
0

and we define the supports

Ez(f ) = {A ∈ Zc
0 such that fA 6= 0}

Ez,w(f ) =
{

(A, B) ∈ Zc+d
0 such that f(A,B) 6= 0

}
and “initial” forms

uz(f ) = {A ∈ Zc
0 such that |A| = νp(f ) and fA(0) 6= 0}

uz,w(f ) =
{

(A, B) ∈ Zc+d
0 such that |(A, B)| = νm(f ) and f(A,B) 6= 0

}
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The setup IV

This gives us

uz(f ) = suplex uz(f )

uz,w(f ) = suplex uz,w(f )

Finally,

uz(I) = {uz(f ) | f ∈ I, f 6= 0} ⊂ Zc
0

uz,w(I) = {uz,w(f ) | f ∈ I, f 6= 0} ⊂ Zc+d
0 .
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Weierstraß-Hironaka Division—Reminder

Theorem (Weierstraß-Hironaka Theorem)

Let {fi}1≤i≤k and {Ai}i≤i≤k , fi ∈ C{z,w} = R, Ai ∈ Zc
0, be two families

such that SL
(
{fi,Ai}

)
6= ∅. Then, for every g ∈ R, there exists an

uniquely determined family {hi}0≤i≤k of elements hi ∈ R such that

1 g = h0 +
k∑

i=1

hifi.

2 Ez(hizAi ) ⊂ ∆i, 0 ≤ i ≤ k.
3 For all ∆L ∈ SL

(
{fi,Ai}

)
,

νL(hi) ≥ νL(g)− νL(fi), 1 ≤ i ≤ k.

If f1, . . . , fk , g converge in a neighbourhood of Dρ, then h0, . . . , hk

converge also in the same neighbourhood.

See Aroca, Hironaka, and Vicente (1975).
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Weierstraß-Hironaka Division–Reminder

A1

∆1

A2

∆2

A3

∆3

g = gA0 (w) zB0 + gB1 (w)zB1 + · · ·
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Weierstraß-Hironaka Division—The Division Lemmas

Lemma (WHD 1)

Suppose that

uz(I) =
r⋃

i=1

(Ai + Zc
0)

and let {g1, . . . , gr} be a family such that uz(gi) = Ai. Then,
{g1, . . . , gr} is a division basis, i.e., it verifies the hypothesis of WH
Division Theorem. Moreover, W-H division

g = h0 +
r∑

i=1

higi

verifies
νz(hi) ≥ νz(g)− |Ai|.
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Weierstraß-Hironaka Division—The Division Lemmas

Proof.

The trick is choosing a very special linear form for WH division. Set

Lc (x1, ..., xc) =
c∑

i=1

(
1− 1

10i(m+t)

)
xi

Lc,d (x1, ..., xc; y1, ..., yd) = Lc (x1, ..., xc) +
1

10m

d∑
j=1

yj.

Then,

νc,d(gi) = Lc(Ai) and νc,d
(

gi − zAi
)
> Lc (Ai) .

The rest of the proof is induction.
(Hint: the condensed form of the induction is 4 pages long.)
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Weierstraß-Hironaka Division—The Division Lemmas

Lemma (WHD 2)

For every A ∈ uz(I) there exists a series hA,0 verifying the following
properties:

Ez (hA,0) ⊂ ∆0, zA − hA,0 ∈ I, νz (hA,0) ≥ |A|.

Moreover, all series hA,0 have a common convergence disk,
independently of A.

Proof.

Choose {g1, . . . , gr} as per WHD 1, and apply division to zA, to get

zA = hA,0 +
r∑

i=1

hA,igi.
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Weierstraß-Hironaka Division—The Division Lemmas

Definition

We will call the family zA − hA,0, with A ∈ Zc
0 given by WHD 2 a

specially prepared family. The finite subset

{zA1 − hA1,0, . . . , z
Ar − hAr ,0, Ai a vertex of u(I)},

will be called a specially prepared set.

These series will play a central role in everything that follows.
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Normal flatness I

We introduce some notations: the global graded ring w.r.t. p,

grp(R) =
⊕
i≥0

pi/pi+1 = C{w}[̃z], z̃j = zj + p2

and
f̃ = uz(f ) + p2 ∈ grp(R).

Note that f̃ can be identified with the homogeneous part of f
having degree νz(f ) and hence we will also call it the initial form of f
w.r.t. z, or the z–initial form. We will also write, given the ideal I ⊂ R,

Inp(I) =
{

f̃ | f ∈ I
}
⊂ grp(R),

called the initial ideal of I w.r.t. p.

We will use analogous notations and definitions for:
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Normal flatness II

the graded ring w.r.t. m (noted grm(R)),

the ordinary initial form of f or the {z,w}–initial form (noted f ),
and

the initial ideal of I w.r.t. m (noted Inm(I)).

The most interesting graded ring by far, is the local graded ring
w.r.t. the situation I ⊂ p,

gr(p/ I)(R/ I) = C{w}[̃z]/ Inp(I) = C{w}[z∗],

where z∗j = z̃j + Inp(I), for 1 ≤ j ≤ c.

Finally, define

Γ =
{

(z∗)A such that A /∈ uz(I)
}
.
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Normal flatness III

Proposition

The set Γ is a minimal generating system for gr(p/ I)(R/ I) as an
(R/p)-module.

Definition

If f ∈ R is a non zero, non unit, we will say that f is p-equimultiple (or
simply equimultiple) if νz(f ) = νz,w(f ).

A basis {g1, . . . , gs} of I will be called equimultiple if every gi is
equimultiple. A basis of I will be called standard if the ordinary
inital forms {ḡ1, . . . , ḡs} generate the initial ideal Inm(I).

We say that X is normally flat along W at the origin if gr(p/ I)(R/ I) is
a free (equivalently flat) (R/p)–module.
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Combinatorial Characterization Theorem

Theorem (Characterisation of Normal Flatness)

With the notations we used throughout previous sections, the
following conditions are equivalent:

1 X is normally flat along W at 0.

2 I has an equimultiple standard basis.

Proof.

1=⇒2: Take a specially prepared set {f1, . . . , fr} given by

fi = zAi − hAi ,0,

and, using that Γ is a basis of gr(p/ I)(R/ I), show that {f1, . . . , fr} is
actually a basis of I, then check equimultiplicity.
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Combinatorial Characterization Theorem

For the other implication, we need:

Lemma (Min-lex)

Let {g1, . . . , gs} be an equimultiple standard basis of I. For every non
zero f ∈ I, if A = minlex(Ez(f̄ )), then A ∈ uz(I) and there exists g ∈ I
equimultiple such that uz(g) = A.

Then, we can easly show that for every degree n,

Γn =
{

(z∗)A such that A /∈ uz(I), |A| = n
}

is linearly independent over C{w}.
Sketch of the proof: any non-trivial linear combination∑

A∈Γn

αA(w)(z∗)A = 0
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Combinatorial Characterization Theorem

“lifts” to some initial form

f̃ =
∑
A∈Γn

αA(w)z̃A, f ∈ I.

But this is a contradiction with the Min-lex Lemma.

Corollary

Whenever I has an equimultiple standard basis, the specially prepared
family is also a standard basis. In other words,

X is normally flat along W at 0 ⇐⇒
the specially prepared set is an equimultiple standard basis.
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Fundamental Theorem

If normal flatness does not hold, we cannot assert that the specially
prepared set {f1, . . . , fr} is even a basis of I.

However, there exists a basis I = (f1, . . . , fr , g1, . . . , gs) and an open
polydisk K ⊂ Cc × Cd where fi, gj and zA − hA,0 are all convergent,
for every A ∈ uz(I). Let K ′ be the projection of K onto Cd.

For every α ∈ K ′ write I′ = (f ′1, . . . , f
′
r , g
′
1, . . . , g

′
s) where

f ′i = fi(z,w′ + α), g′j = gj(z,w′ + α).

I′ is an ideal in the ring R′ = C{z,w′}.
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Fundamental Theorem

If we set p = (z) · R′ and denote with tilde the initial forms of
elements in

grp(R′) =
⊕
n≥0

pn/pn+1,

then Inp(I′) is an ideal of grp(R′). We will denote with stars the
classes of elements modulo I′.

Beware

These notations are actually the same as for R and I, but there is no
danger of confusion. If α = 0 we will of course put w′ = w.
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Fundamental Theorem

Definition

For every integer n ≥ 0, consider the C{w′}–module of finite type

Mn = gr(p/ I′)(R′/ I′)n,

and the function Tα : Z0 → Z0 given by

Tα(n) = dimC

(
Mn/(w′) ·Mn

)
= minimal number of generators of Mn/(w′)Mn (Nakayama)
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Fundamental Theorem

Theorem (Fundamental Theorem of normal flatness)

Let X be normally flat along W at 0. Then,

1 For every α ∈ K ′, X is normally flat along W at α.

2 The function Tα is constant in K.

Conversely, if there exists a polydisk K ′′ ⊂ K ′ such that Tα is constant
over K ′′, then X is normally flat along W at 0.

To prove the first part, even without normal flatness, we have

zA − hA,0(z,w′ + α) =
r∑

i=1

hA,i(z,w′ + α)fi(z,w′ + α), ∀A ∈ u(I),

which gives

(z∗)A − h̃A,0(z∗,w′ + α) = 0 in gr(p/ I′)(R′/ I′).

Soto-Tornero (soto@us.es, tornero@us.es) Combinatorial Remarks on Normal Flatness in Analytic Spaces



Fundamental Theorem

This proves that Γ is a homogeneus generating system of
gr(p/ I′)(R′/ I′).

To see that it is free, any non trivial linear combination∑
A∈∆0, |A|=n

φ′A(w′)(z∗)A = 0,

gives, by lifting, truncating and change of variables, a non trivial
combination ∑

A∈∆0, |A|=n

φA(w − α)(z∗)A,

This proves 1 and 2.

To prove the converse, it is enough to show again that Γ is free: We
know it is a minimal system of generators of gr(p/ I)(R/ I), so

Tα(n) = card(Γn).

We also know it is a minimal system of generators of gr(p/ I′)(R′/ I′). It
remains to prove that it is C{w}-free.
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Fundamental Theorem

Suppose a non trivial relation∑
A∈∆0, |A|=n

φA(w)(z∗)A = 0.

Γ minimal over gr(p/ I)(R/ I) means φA(0) = 0 for A ∈ ∆0. Pick an
index B in the sum such that φB(w) 6= 0 and α near 0 such that
φB(α) 6= 0. Then ∑

A∈∆0, |A|=n

φA(w′ + α)(z∗)A = 0

gives (z∗)B as a linear combination of the other exponents, hence

Tα(n) < card(Γn).
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Relationship to Hilbert functions

Definition

Recall that if OX is the structure sheaf of X , OX ,x is the stalk at x and
mX ,x is the maximal ideal of OX ,x , the Hilbert function

H
(0)
X ,x : Z0 → Z0

is defined by

H
(0)
X ,x(n) = dimC

(
mn

X ,x/m
n+1
X ,x

)
.

Also,

H
(1)
X ,x(n) =

n∑
i=0

H
(0)
X ,x(i) =

n∑
i=0

dimC

(
mi

X ,x/m
i+1
X ,x

)
= dimC

(
OX ,x/mn+1

X ,x

)
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Relationship to Hilbert functions

Theorem (Normal flatness and Hilbert functions)

Suppose W is locally positive dimensional at x. The following
conditions are equivalent:

1 X is normally flat along W at x.

2 uz,w(I) = uz(I)× Zd
0 .

3 H
(0)
X ,x is constant over W ∩∆, where∆ is a polydisk in Cc+d centered

at x such that every series in a certain basis of I are convergent.

4 H
(1)
X ,x is constant over W ∩∆, where∆ is a polydisk in Cc+d centered

at x such that every series in a certain basis of I are convergent.

3⇐⇒ 4 goes for free.

1⇐⇒ the specially prepared set is an equimultiple standard basis
(Remember Corollary? ) ⇐⇒ 2.
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Relationship to Hilbert functions

2 =⇒ 3:

H
(0)
X ,x(n) = card

{
C ∈ Zc+d

0 such that |C| = n, C /∈ uz,w(I)
}

=
n∑

m=0

[ ∑
A /∈uz(I), |A|=m

(
n−m− d − 1

n−m

)]

=
n∑

m=0

Tx(n)

(
n− |A| − d − 1

n−m

)
.

3 =⇒ 1: More involved, but it is some form of Gaussian elimination.
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Cheater’s example I

Consider the projective variety H : z2
1w5

1 + z3
2w4

2 = 0 ∈ P3.

1 In the chart A1 : w1 6= 0, the
equation of H is

f1 : z2
1 + z3

2w4
2 = 0,

which is normally flat along
W ∩ A1 at (0, 0, 0) =
[0 : 0 : 1 : 0] = P1.
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Cheater’s example II

2 In the chart A2 : w2 6= 0, the
equation of H is

f2 : z2
1w5

1 + z3
2 = 0

which is not normally flat
along W ∩ A2 at (0, 0, 0) =
[0 : 0 : 0 : 1] = P2.

The reason for this behaviour is that Sing(H) = r1 ∪ r2 ∪ r3, with
r1 ∩ r2 = P1, and r1 ∩ r3 = P2, but there’s extra tangency at P2 /∈ A1.
(See pictures.)
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Example

Consider the germ of analytic function around the origin given by
its parametric Puiseux series{

z1 = w9/5z6/5
3

z2 = w6/5z4/5
3

or X given by the ideal

I = (z5
1 − w9z4

3 , z
5
2 − w6z4

3 , z
2
1 − z3

2).

After some computations, we get an equimultiple standard basis
(also a specially prepared set)

I = (−z2
1 + z3

2 ,w
3z2

3z4
1 − z2z5

1 ,−z5
1 + w3z2

3z2
2z2

1 ,w
6z4

3 − z2
2z2

1).

Hence, X is normally flat along W at the origin.
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CAVEAT EMPTOR

Combinatorial is not (yet) effective!!!

But there’s some useful work: Beck (2009).
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Open problems. . .

Many things about normal flatness, specially as for its behaviour in
the resolution process is concerned are still unknown.

Some interesting questions:

What is a sufficient condition for normal flatness to hold after a
blowing up?

What happens when normal flatness does not hold after a
blowing up?

How do the Newton diagrams and Hilbert functions evolve
after blowing ups?

An interesing project: glue computation of series and
combinatorics.
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