Combinatorial Remarks on Normal Flatness in Analytic Spaces

M. J. Soto J. M. Tornero

Departamento de Álgebra
Universidad de Sevilla

Iberian Meeting on Algebraic Analysis and Geometry Lisbon, Portugal

Introduction

Normal flatness was introduced as a simplification of Hironaka's original argument on desingularization.

- Geometry of singularities in characteristic zero: Hironaka (1974); Aroca, Hironaka, and Vicente (1975, 1977); Bennett (1970); all in the seventies.
- Technical study of normal flatness: Herrmann and Orbanz (1982); Orbanz and Robbiano (1984); Robbiano $(1979,1983)$
- Effective approach without normal flatness: Bierstone and Milman (1997, 1989); Bravo, Encinas, and Villamayor (2005); Encinas and Hauser (2002); Encinas and Villamayor (1998, 2003) (just a few).

We try to show that normal flatness is "easy to compute."

Previous Work

(0) Other versions of the Weierstraß-Hironaka division theorem: Aroca, Hironaka, and Vicente (1975); Galligo (1979); Herrmann, Ikeda, and Orbanz (1988).
(2) The Fundamental Theorem of normal flatness: Idà and Manaresi (1983); Lejeune-Jalabert and Teissier (1971).
(3) Hilbert functions and normal flatness: Bennett (1970); Orbanz and Robbiano (1984).

So, Just what is new here?

(1) Normal flatness can be read in an easy way from combinatorics attached to a singular analytic space.
(2) Using combinatorics to prove the Fundamental Theorem and relationship to the Hilbert function as a by-product.

We need a very specific statement of the Weierstraß-Hironaka theorem.

The setup I

In plain words: we look (locally) at singular embedded analytic spaces containing a smooth subspace.
$R=\mathbb{C}\{\boldsymbol{z}, \boldsymbol{w}\}$
$\boldsymbol{z}=\left\{z_{1}, \ldots, z_{c}\right\}, \quad \boldsymbol{w}=\left\{w_{1}, \ldots, w_{d}\right\}$
$\mathfrak{p}=(\mathbf{z}), \quad \mathfrak{m}=(\mathbf{z}, \boldsymbol{w})$
$I \subset(\mathbf{z}) R=\mathfrak{p}$
W the analytic space defined in a neighbourhood of the origin of \mathbb{C}^{c+d} by \mathfrak{p}, and, likewise, X defined by I.

This is not completely uncommon... Think Whitney's Umbrella.

The setup II

Whitney's Umbrella: $z_{1}^{2}=z_{2}^{2} w_{1}$

The setup III

For a series $f \in R$, we write

$$
\begin{aligned}
f & =\sum_{A \in \mathbb{Z}_{0}^{c}} f_{A}(\boldsymbol{w}) \boldsymbol{z}^{A}, \quad f_{A}(\boldsymbol{w}) \in \mathbb{C}\{\boldsymbol{w}\} \text { for all } A \in \mathbb{Z}_{0}^{c} \\
& =\sum_{(A, B) \in \mathbb{Z}_{0}^{c+d}} f_{(A, B)} \boldsymbol{z}^{A} \boldsymbol{w}^{B}, \quad f_{(A, B)} \in \mathbb{C} \text { for all }(A, B) \in \mathbb{Z}_{0}^{c+d}
\end{aligned}
$$

and we define the supports

$$
\begin{aligned}
\mathscr{C}_{\mathbf{Z}}(f) & =\left\{A \in \mathbb{Z}_{0}^{\mathcal{C}} \text { such that } f_{A} \neq 0\right\} \\
\mathscr{C}_{\boldsymbol{Z}, \mathbf{w}}(f) & =\left\{(A, B) \in \mathbb{Z}_{0}^{c+d} \text { such that } f_{(A, B)} \neq 0\right\}
\end{aligned}
$$

and "initial" forms

$$
\begin{aligned}
\bar{u}_{\mathbf{z}}(f) & =\left\{A \in \mathbb{Z}_{0}^{c} \text { such that }|A|=v_{p}(f) \text { and } f_{A}(\mathbf{0}) \neq 0\right\} \\
\bar{u}_{\mathbf{z}, \mathbf{w}}(f) & =\left\{(A, B) \in \mathbb{Z}_{0}^{c+d} \text { such that }|(A, B)|=v_{\mathfrak{m}}(f) \text { and } f_{(A, B)} \neq 0\right\} \mathbf{L} \mathbf{u}^{\text {un }}
\end{aligned}
$$

The setup IV

This gives us

$$
\begin{aligned}
u_{\boldsymbol{z}}(f) & =\sup _{\mathrm{lex}} \bar{u}_{\boldsymbol{z}}(f) \\
u_{\boldsymbol{z}, \boldsymbol{w}}(f) & =\sup _{\mathrm{lex}} \bar{u}_{\boldsymbol{z}, \boldsymbol{w}}(f)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
u_{\mathbf{z}}(I) & =\left\{u_{\mathbf{z}}(f) \mid f \in I, f \neq 0\right\} \subset \mathbb{Z}_{0}^{c} \\
u_{\mathbf{z}, \mathbf{w}}(I) & =\left\{u_{\mathbf{z}, \mathbf{w}}(f) \mid f \in I, f \neq 0\right\} \subset \mathbb{Z}_{0}^{c+d} .
\end{aligned}
$$

Weierstraß-Hironaka Division—Reminder

Theorem (Weierstraß-Hironaka Theorem)

Let $\left\{f_{i}\right\}_{1 \leq i \leq k}$ and $\left\{A_{i}\right\}_{i \leq i \leq k}, f_{i} \in \mathbb{C}\{\mathbf{z}, \boldsymbol{w}\}=R, A_{i} \in \mathbb{Z}_{0}^{\mathcal{C}}$, be two families such that $S_{L}\left(\left\{f_{i}, A_{i}\right\}\right) \neq \emptyset$. Then, for every $g \in R$, there exists an uniquely determined family $\left\{h_{i}\right\}_{0 \leq i \leq k}$ of elements $h_{i} \in R$ such that
(c) $g=h_{0}+\sum_{i=1}^{k} h_{i} f_{i}$.
(2) $\mathscr{C}_{\mathbf{Z}}\left(h_{i} \mathbf{Z}^{A_{i}}\right) \subset \Delta_{i}, 0 \leq i \leq k$.
(3) Forall $\Delta_{L} \in S_{L}\left(\left\{f_{i}, A_{i}\right\}\right)$,

$$
v_{L}\left(h_{i}\right) \geq v_{L}(g)-v_{L}\left(f_{i}\right), \quad 1 \leq i \leq k
$$

If f_{1}, \ldots, f_{k}, g converge in a neighbourhood of \bar{D}_{ρ}, then h_{0}, \ldots, h_{k} converge also in the same neighbourhood.

See Aroca, Hironaka, and Vicente (1975).

Weierstraß-Hironaka Division-Reminder

Weierstraß-Hironaka Division-The Division Lemmas

Lemma (WHD 1)

Suppose that

$$
u_{\mathbf{z}}(I)=\bigcup_{i=1}^{r}\left(A_{i}+\mathbb{Z}_{0}^{c}\right)
$$

and let $\left\{g_{1}, \ldots, g_{r}\right\}$ be a family such that $u_{z}\left(g_{i}\right)=A_{i}$. Then, $\left\{g_{1}, \ldots, g_{r}\right\}$ is a division basis, i.e., it verifies the hypothesis of WH Division Theorem. Moreover, W-H division

$$
g=h_{0}+\sum_{i=1}^{r} h_{i} g_{i}
$$

verifies

$$
v_{\mathbf{z}}\left(h_{i}\right) \geq v_{\mathbf{z}}(g)-\left|A_{i}\right| .
$$

Weierstraß-Hironaka Division-The Division Lemmas

Proof.

The trick is choosing a very special linear form for WH division. Set

$$
\begin{aligned}
L_{c}\left(x_{1}, \ldots, x_{c}\right) & =\sum_{i=1}^{c}\left(1-\frac{1}{10^{i(m+t)}}\right) x_{i} \\
L_{c, d}\left(x_{1}, \ldots, x_{c} ; y_{1}, \ldots, y_{d}\right) & =L_{c}\left(x_{1}, \ldots, x_{c}\right)+\frac{1}{10^{m}} \sum_{j=1}^{d} y_{j} .
\end{aligned}
$$

Then,

$$
v_{c, d}\left(g_{i}\right)=L_{c}\left(A_{i}\right) \quad \text { and } \quad v_{c, d}\left(g_{i}-\boldsymbol{z}^{A_{i}}\right)>L_{c}\left(A_{i}\right)
$$

The rest of the proof is induction. (Hint: the condensed form of the induction is 4 pages long.)

Weierstraß-Hironaka Division-The Division Lemmas

Lemma (WHD 2)

For every $A \in u_{\mathbf{z}}(I)$ there exists a series $h_{A, 0}$ verifying the following properties:

$$
\mathscr{E}_{\mathbf{z}}\left(h_{A, 0}\right) \subset \Delta_{0}, \quad \boldsymbol{z}^{A}-h_{A, 0} \in I, \quad v_{\mathbf{z}}\left(h_{A, 0}\right) \geq|A|
$$

Moreover, all series $h_{A, 0}$ have a common convergence disk, independently of A.

Proof.

Choose $\left\{g_{1}, \ldots, g_{r}\right\}$ as per WHD 1 , and apply division to \boldsymbol{z}^{A}, to get

$$
\boldsymbol{z}^{A}=h_{A, 0}+\sum_{i=1}^{r} h_{A, i} g_{i}
$$

Weierstraß-Hironaka Division-The Division Lemmas

Definition

We will call the family $\boldsymbol{z}^{A}-h_{A, 0}$, with $A \in \mathbb{Z}_{0}^{c}$ given by WHD 2 a specially prepared family. The finite subset

$$
\left\{\boldsymbol{z}^{A_{1}}-h_{A_{1}, 0, \ldots,}, \boldsymbol{z}^{A_{r}}-h_{A_{r}, 0,} \quad A_{i} \text { a vertex of } u(I)\right\}
$$

will be called a specially prepared set.

These series will play a central role in everything that follows.

Normal flatness I

We introduce some notations: the global graded ring w.r.t. \mathfrak{p},

$$
\operatorname{gr}_{\mathfrak{p}}(R)=\bigoplus_{i \geq 0} \mathfrak{p}^{i} / \mathfrak{p}^{i+1}=\mathbb{C}\{\boldsymbol{w}\}[\boldsymbol{z}], \quad \tilde{z}_{j}=z_{j}+\mathfrak{p}^{2}
$$

and

$$
\tilde{f}=\bar{u}_{\boldsymbol{z}}(f)+\mathfrak{p}^{2} \in \operatorname{gr}_{\mathfrak{p}}(R)
$$

Note that \widetilde{f} can be identified with the homogeneous part of f having degree $v_{\mathbf{z}}(f)$ and hence we will also call it the initial form of f w.r.t. \mathbf{z}, or the \boldsymbol{z}-initial form. We will also write, given the ideal $I \subset R$,

$$
\ln _{\mathfrak{p}}(I)=\{\widetilde{f} \mid f \in I\} \subset \operatorname{gr}_{\mathfrak{p}}(R)
$$

called the initial ideal of / w.r.t. p.
We will use analogous notations and definitions for:

Normal flatness II

- the graded ring w.r.t. \mathfrak{m} (noted $\mathrm{gr}_{\mathrm{m}}(R)$),
- the ordinary initial form of f or the $\{\mathbf{z}, \boldsymbol{w}\}$-initial form (noted \bar{f}), and
- the initial ideal of / w.r.t. \mathfrak{m} (noted $\ln _{\mathfrak{m}}(I)$).

The most interesting graded ring by far, is the local graded ring w.r.t. the situation $/ \subset \mathfrak{p}$,

$$
\operatorname{gr}_{(\mathfrak{p} / l)}(R / I)=\mathbb{C}\{\boldsymbol{w}\}[\tilde{\mathbf{z}}] / \ln _{\mathfrak{p}}(I)=\mathbb{C}\{\boldsymbol{w}\}\left[\mathbf{z}^{*}\right],
$$

where $z_{j}^{*}=\widetilde{z}_{j}+\ln _{\mathfrak{p}}(I)$, for $1 \leq j \leq c$.
Finally, define

$$
\Gamma=\left\{\left(\mathbf{z}^{*}\right)^{A} \text { such that } A \notin u_{\mathbf{z}}(I)\right\} .
$$

Normal flatness III

Proposition

The set Γ is a minimal generating system for $\mathrm{gr}_{(\mathfrak{p} / l)}(R / I)$ as an (R / \mathfrak{p})-module.

Definition

If $f \in R$ is a non zero, non unit, we will say that f is \mathfrak{p}-equimultiple (or simply equimultiple) if $v_{\mathbf{z}}(f)=v_{\mathbf{z}, \mathbf{w}}(f)$.
A basis $\left\{g_{1}, \ldots, g_{s}\right\}$ of / will be called equimultiple if every g_{i} is equimultiple. A basis of / will be called standard if the ordinary inital forms $\left\{\bar{g}_{1}, \ldots, \bar{g}_{s}\right\}$ generate the initial ideal $\ln _{\mathrm{m}}(I)$.
We say that X is normally flat along W at the origin if $\operatorname{gr}_{(\mathfrak{p} / l)}(R / I)$ is a free (equivalently flat) (R / \mathfrak{p})-module.

Combinatorial Characterization Theorem

Theorem (Characterisation of Normal Flatness)

With the notations we used throughout previous sections, the following conditions are equivalent:

- X is normally flat along W at $\mathbf{0}$.
(2) I has an equimultiple standard basis.

Proof.

$1 \Longrightarrow 2$: Take a specially prepared set $\left\{f_{1}, \ldots, f_{r}\right\}$ given by

$$
f_{i}=\boldsymbol{z}^{A_{i}}-h_{A_{i}, 0,}
$$

and, using that Γ is a basis of $\operatorname{gr}_{(\mathfrak{p} / /)}(R / I)$, show that $\left\{f_{1}, \ldots, f_{r}\right\}$ is actually a basis of I, then check equimultiplicity.

Combinatorial Characterization Theorem

For the other implication, we need:

Lemma (Min-lex)

Let $\left\{g_{1}, \ldots, g_{s}\right\}$ be an equimultiple standard basis of I. For every non zero $f \in I$, if $A=\min _{\operatorname{lex}}\left(\mathscr{C}_{\mathbf{z}}(\bar{f})\right)$, then $A \in u_{\mathbf{z}}(I)$ and there exists $g \in I$ equimultiple such that $u_{z}(g)=A$.

Then, we can easly show that for every degree n,

$$
\Gamma_{n}=\left\{\left(z^{*}\right)^{A} \text { such that } A \notin u_{\mathbf{z}}(I),|A|=n\right\}
$$

is linearly independent over $\mathbb{C}\{\boldsymbol{w}\}$.
Sketch of the proof: any non-trivial linear combination

$$
\sum_{A \in \Gamma_{n}} a_{A}(\boldsymbol{w})\left(\boldsymbol{z}^{*}\right)^{A}=0
$$

Combinatorial Characterization Theorem

"lifts" to some initial form

$$
\tilde{f}=\sum_{A \in \Gamma_{n}} a_{A}(\boldsymbol{w}) \tilde{\mathbf{z}}^{A}, \quad f \in I .
$$

But this is a contradiction with the Min-lex Lemma.

Corollary

Whenever I has an equimultiple standard basis, the specially prepared family is also a standard basis. In other words,
X is normally flat along W at $\mathbf{0}$ \Longleftrightarrow the specially prepared set is an equimultiple standard basis.

Fundamental Theorem

If normal flatness does not hold, we cannot assert that the specially prepared set $\left\{f_{1}, \ldots, f_{r}\right\}$ is even a basis of l.

However, there exists a basis $I=\left(f_{1}, \ldots, f_{r}, g_{1}, \ldots, g_{s}\right)$ and an open polydisk $K \subset \mathbb{C}^{c} \times \mathbb{C}^{d}$ where f_{i}, g_{j} and $\boldsymbol{z}^{A}-h_{A, 0}$ are all convergent, for every $A \in u_{\boldsymbol{z}}(I)$. Let K^{\prime} be the projection of K onto \mathbb{C}^{d}.

For every $a \in K^{\prime}$ write $I^{\prime}=\left(f_{1}^{\prime}, \ldots, f_{r}^{\prime}, g_{1}^{\prime}, \ldots, g_{s}^{\prime}\right)$ where

$$
f_{i}^{\prime}=f_{i}\left(\mathbf{z}, \boldsymbol{w}^{\prime}+a\right), \quad g_{j}^{\prime}=g_{j}\left(\mathbf{z}, \boldsymbol{w}^{\prime}+a\right)
$$

I^{\prime} is an ideal in the ring $R^{\prime}=\mathbb{C}\left\{\mathbf{z}, \boldsymbol{w}^{\prime}\right\}$.

Fundamental Theorem

If we set $\mathfrak{p}=(\boldsymbol{z}) \cdot R^{\prime}$ and denote with tilde the initial forms of elements in

$$
\operatorname{gr}_{\mathfrak{p}}\left(R^{\prime}\right)=\bigoplus_{n \geq 0} \mathfrak{p}^{n} / \mathfrak{p}^{n+1}
$$

then $\ln _{\mathfrak{p}}\left(I^{\prime}\right)$ is an ideal of $\mathrm{gr}_{\mathfrak{p}}\left(R^{\prime}\right)$. We will denote with stars the classes of elements modulo I^{\prime}.

Beware

These notations are actually the same as for R and l, but there is no danger of confusion. If $a=\mathbf{0}$ we will of course put $\boldsymbol{w}^{\prime}=\boldsymbol{w}$.

Fundamental Theorem

Definition

For every integer $n \geq 0$, consider the $\mathbb{C}\left\{\boldsymbol{w}^{\prime}\right\}$-module of finite type

$$
M_{n}=\operatorname{gr}_{\left(\mathfrak{p} / l^{\prime}\right)}\left(R^{\prime} / I^{\prime}\right)_{n,}
$$

and the function $T_{a}: \mathbb{Z}_{0} \rightarrow \mathbb{Z}_{0}$ given by
$T_{\alpha}(n)=\operatorname{dim}_{\mathbb{C}}\left(M_{n} /\left(\boldsymbol{w}^{\prime}\right) \cdot M_{n}\right)$
$=$ minimal number of generators of $M_{n} /\left(\boldsymbol{w}^{\prime}\right) M_{n} \quad$ (Nakayama)

Fundamental Theorem

Theorem (Fundamental Theorem of normal flatness)

Let X be normally flat along W at $\mathbf{0}$. Then,
(c) For every $a \in K^{\prime}, X$ is normally flat along W at a.
(2) The function T_{α} is constant in K.

Conversely, if there exists a polydisk $K^{\prime \prime} \subset K^{\prime}$ such that T_{a} is constant over $K^{\prime \prime}$, then X is normally flat along W at $\mathbf{0}$.

To prove the first part, even without normal flatness, we have

$$
\boldsymbol{z}^{A}-h_{A, 0}\left(\mathbf{z}, \boldsymbol{w}^{\prime}+a\right)=\sum_{i=1}^{r} h_{A, i}\left(\mathbf{z}, \boldsymbol{w}^{\prime}+a\right) f_{i}\left(\boldsymbol{z}, \boldsymbol{w}^{\prime}+a\right), \quad \forall A \in u(I)
$$

which gives

$$
\left(z^{*}\right)^{A}-\tilde{h}_{A, 0}\left(z^{*}, w^{\prime}+a\right)=0 \quad \text { in } \operatorname{gr}_{\left(\mathfrak{p} / l^{\prime}\right)}\left(R^{\prime} / l^{\prime}\right)
$$

Fundamental Theorem

This proves that Γ is a homogeneus generating system of $\operatorname{gr}_{\left(\mathfrak{p} / I^{\prime}\right)}\left(R^{\prime} / I^{\prime}\right)$.
To see that it is free, any non trivial linear combination

$$
\sum_{\in \Delta_{0},|A|=n} \varphi_{A}^{\prime}\left(\boldsymbol{w}^{\prime}\right)\left(\boldsymbol{z}^{*}\right)^{A}=0
$$

gives, by lifting, truncating and change of variables, a non trivial combination

$$
\sum_{A \in \Delta_{0},|A|=n} \varphi_{A}(\boldsymbol{w}-a)\left(\boldsymbol{z}^{*}\right)^{A}
$$

This proves 1 and 2.
To prove the converse, it is enough to show again that Γ is free: We know it is a minimal system of generators of $\mathrm{gr}_{(\mathfrak{p} / l)}(R / I)$, so

$$
T_{a}(n)=\operatorname{card}\left(\Gamma_{n}\right) .
$$

We also know it is a minimal system of generators of $\mathrm{gr}_{\left(\mathfrak{p} / \prime^{\prime}\right)}\left(R^{\prime} / I^{\prime}\right)$. It \mathbb{L} remains to prove that it is $\mathbb{C}\{\boldsymbol{w}\}$-free.

Fundamental Theorem

Suppose a non trivial relation

$$
\sum_{A \in \Delta_{0},|A|=n} \varphi_{A}(\boldsymbol{w})\left(\boldsymbol{z}^{*}\right)^{A}=0 .
$$

Γ minimal over $\mathrm{gr}_{(\mathfrak{p} / /)}(R / I)$ means $\varphi_{A}(\mathbf{0})=0$ for $A \in \Delta_{0}$. Pick an index B in the sum such that $\varphi_{B}(\boldsymbol{w}) \neq 0$ and a near $\mathbf{0}$ such that $\varphi_{B}(a) \neq 0$. Then

$$
\sum_{A \in \Delta_{0},|A|=n} \varphi_{A}\left(\boldsymbol{w}^{\prime}+a\right)\left(\boldsymbol{z}^{*}\right)^{A}=0
$$

gives $\left(\boldsymbol{z}^{*}\right)^{B}$ as a linear combination of the other exponents, hence

$$
T_{a}(n)<\operatorname{card}\left(\Gamma_{n}\right)
$$

Relationship to Hilbert functions

Definition

Recall that if O_{X} is the structure sheaf of $X, O_{X, x}$ is the stalk at x and $\mathfrak{m}_{X, \boldsymbol{x}}$ is the maximal ideal of $O_{X, x}$, the Hilbert function

$$
\mathscr{H}_{X, \boldsymbol{x}}^{(0)}: \mathbb{Z}_{0} \rightarrow \mathbb{Z}_{0}
$$

is defined by

$$
\mathscr{H}_{X, \boldsymbol{X}}^{(0)}(n)=\operatorname{dim}_{\mathbb{C}}\left(\mathfrak{m}_{X, \boldsymbol{X}}^{n} / \mathfrak{m}_{X, \boldsymbol{X}}^{n+1}\right) .
$$

Also,

$$
\begin{aligned}
\mathscr{H}_{X, \boldsymbol{x}}^{(1)}(n) & =\sum_{i=0}^{n} \mathscr{H}_{X, \boldsymbol{x}}^{(0)}(i)=\sum_{i=0}^{n} \operatorname{dim}_{\mathbb{C}}\left(\mathfrak{m}_{X, \boldsymbol{x}}^{i} / \mathfrak{m}_{X, \boldsymbol{x}}^{i+1}\right) \\
& =\operatorname{dim}_{\mathbb{C}}\left(\mathcal{O}_{X, \mathbf{x}} / \mathfrak{m}_{X, \boldsymbol{x}}^{n+1}\right)
\end{aligned}
$$

Relationship to Hilbert functions

Theorem (Normal flatness and Hilbert functions)

Suppose W is locally positive dimensional at \boldsymbol{x}. The following conditions are equivalent:
(1) X is normally flat along W at \boldsymbol{x}.
(2) $u_{z, w}(I)=u_{\mathbf{z}}(I) \times \mathbb{Z}_{0}^{d}$.
(3) $\mathscr{H}_{X, \boldsymbol{x}}^{(0)}$ is constant over $W \cap \Delta$, where Δ is a polydisk in \mathbb{C}^{c+d} centered at \boldsymbol{x} such that every series in a certain basis of I are convergent.
(a) $\mathscr{H}_{X, \boldsymbol{x}}^{(1)}$ is constant over $W \cap \Delta$, where Δ is a polydisk in \mathbb{C}^{c+d} centered at \boldsymbol{x} such that every series in a certain basis of I are convergent.
$3 \Longleftrightarrow 4$ goes for free.
$1 \Longleftrightarrow$ the specially prepared set is an equimultiple standard basis (Remember Corollary?) $\Longleftrightarrow 2$.

Relationship to Hilbert functions

$2 \Longrightarrow 3:$

$$
\begin{aligned}
\mathscr{H}_{X, \boldsymbol{x}}^{(0)}(n) & =\operatorname{card}\left\{C \in \mathbb{Z}_{0}^{c+d} \text { such that }|C|=n, C \notin u_{\boldsymbol{z}, \boldsymbol{w}}(I)\right\} \\
& =\sum_{m=0}^{n}\left[\sum_{A \notin u_{\mathbf{z}}(I),|A|=m}\binom{n-m-d-1}{n-m}\right] \\
& =\sum_{m=0}^{n} T_{\boldsymbol{x}}(n)\binom{n-|A|-d-1}{n-m} .
\end{aligned}
$$

$3 \Longrightarrow 1$: More involved, but it is some form of Gaussian elimination.

Cheater's example I

Consider the projective variety $H: z_{1}^{2} w_{1}^{5}+z_{2}^{3} w_{2}^{4}=0 \in \mathbb{P}^{3}$.

(1) In the chart $A_{1}: w_{1} \neq 0$, the equation of H is

$$
f_{1}: z_{1}^{2}+z_{2}^{3} w_{2}^{4}=0
$$

which is normally flat along $W \cap A_{1}$ at $(0,0,0)=$ $[0: 0: 1: 0]=P_{1}$.

Cheater's example II

(2) In the chart $A_{2}: w_{2} \neq 0$, the equation of H is

$$
f_{2}: z_{1}^{2} w_{1}^{5}+z_{2}^{3}=0
$$

which is not normally flat along $W \cap A_{2}$ at $(0,0,0)=$ $[0: 0: 0: 1]=P_{2}$.

The reason for this behaviour is that Sing $(H)=r_{1} \cup r_{2} \cup r_{3}$, with $r_{1} \cap r_{2}=P_{1}$, and $r_{1} \cap r_{3}=P_{2}$, but there's extra tangency at $P_{2} \notin A_{1}$. (See pictures.)

Example

Consider the germ of analytic function around the origin given by its parametric Puiseux series

$$
\left\{\begin{array}{l}
z_{1}=w^{9 / 5} z_{3}^{6 / 5} \\
z_{2}=w^{6 / 5} z_{3}^{4 / 5}
\end{array}\right.
$$

or X given by the ideal

$$
I=\left(z_{1}^{5}-w^{9} z_{3}^{4}, z_{2}^{5}-w^{6} z_{3}^{4}, z_{1}^{2}-z_{2}^{3}\right)
$$

After some computations, we get an equimultiple standard basis (also a specially prepared set)

$$
I=\left(-z_{1}^{2}+z_{2}^{3}, w^{3} z_{3}^{2} z_{1}^{4}-z_{2} z_{1}^{5},-z_{1}^{5}+w^{3} z_{3}^{2} z_{2}^{2} z_{1}^{2}, w^{6} z_{3}^{4}-z_{2}^{2} z_{1}^{2}\right) .
$$

Hence, X is normally flat along W at the origin.

CAVEAT EMPTOR

Combinatorial is not (yet) effective!!!

But there's some useful work: Beck (2009).

Open problems...

Many things about normal flatness, specially as for its behaviour in the resolution process is concerned are still unknown.
Some interesting questions:

- What is a sufficient condition for normal flatness to hold after a blowing up?
- What happens when normal flatness does not hold after a blowing up?
- How do the Newton diagrams and Hilbert functions evolve after blowing ups?

An interesing project: glue computation of series and combinatorics.

References I

Jose M. Aroca, Heisuke Hironaka, and José L. Vicente. The theory of the maximal contact. Instituto "Jorge Juan" de Matemáticas, Consejo Superior de Investigaciones Cientificas, Madrid, 1975. Memorias de Matemática del Instituto "Jorge Juan", No. 29. [Mathematical Memoirs of the "Jorge Juan" Institute, No. 29].
José M. Aroca, Heisuke Hironaka, and José L. Vicente. Desingularization theorems, volume 30 of Memorias de Matemática del Instituto "Jorge Juan" [Mathematical Memoirs of the Jorge Juan Institute]. Consejo Superior de Investigaciones Científicas, Madrid, 1977. ISBN 84-00-03602-6.
T. Beck. Formal desingularization of surfaces: The jung method revisited. Journal of Symbolic Computation, 44(2):131-160, 2009.
Bruce Michael Bennett. On the characteristic functions of a local ring. Ann. of Math. (2), 91:25-87, 1970. ISSN 0003-486X.
Edward Bierstone and Pierre D. Milman. Uniformization of analytic spaces. J. Amer. Math. Soc., 2(4):801-836, 1989. ISSN 0894-0347. doi: 10.2307/1990895. URL http://dx.doi.org/10.2307/1990895.

References II

Edward Bierstone and Pierre D. Milman. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant. Invent. Math., 128(2):207-302, 1997. ISSN 0020-9910. doi: 10.1007/s002220050141. URL http://dx.doi.org/10.1007/s002220050141.

Ana María Bravo, Santiago Encinas, and Orlando Villamayor. A simplified proof of desingularization and applications. Rev. Mat. Iberoamericana, 21(2):349-458, 2005. ISSN 0213-2230. URL http: //projecteuclid.org/getRecord?id=euclid.rmi/1123766802.
S. Encinas and O. Villamayor. Good points and constructive resolution of singularities. Acta Math., 181(1):109-158, 1998. ISSN 0001-5962. doi: 10.1007/BFo2392749. URL http://dx.doi.org/10.1007/BF02392749.

Santiago Encinas and Herwig Hauser. Strong resolution of singularities in characteristic zero. Comment. Math. Helv., 77(4):821-845, 2002. ISSN 0010-2571. doi: 10.1007/PLoo012443. URL http://dx.doi.org/10.1007/PL00012443.

References III

Santiago Encinas and Orlando Villamayor. A new proof of desingularization over fields of characteristic zero. In Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001), volume 19, pages 339-353, 2003. URL http: //projecteuclid.org/getRecord?id=euclid.rmi/1063050156.
André Galligo. Théorème de division et stabilité en géometrie analytique locale. Ann. Inst. Fourier (Grenoble), (29):107-184, 1979.
M. Herrmann and U. Orbanz. Between equimultiplicity and normal flatness. In Algebraic geometry (La Rábida, 1981), volume 961 of Lecture Notes in Math., pages 200-233. Springer, Berlin, 1982.
M. Herrmann, S. Ikeda, and U. Orbanz. Equimultiplicity and blowing up. Springer-Verlag, Berlin, 1988. ISBN 3-540-15289-X. An algebraic study, With an appendix by B. Moonen.
Heisuke Hironaka. Introduction to the theory of infinitely near singular points. Consejo Superior de Investigaciones Científicas, Madrid, 1974. Memorias de Matematica del Instituto "Jorge Juan", No. 28.

References IV

Monica Idà and Mirella Manaresi. Some remarks on normal flatness and multiplicity in complex spaces. In Commutative algebra (Trento, 1981), volume 84 of Lecture Notes in Pure and Appl. Math., pages 171-182. Dekker, New York, 1983.

Monique Lejeune-Jalabert and Bernard Teissier. Quelques calculs utiles pour la resolution des singularités. Centre de Mathématiques, École Polytechnique, Paris, 1971. Rédigés par Lê D ung Tráng et J. J. Risler, Exposés faits au Centre de Mathématiques de l'École Polytechnique, No. M72.1171.
U. Orbanz and L. Robbiano. Projective normal flatness and Hilbert functions. Trans. Amer. Math. Soc., 283(1):33-47, 1984. ISSN 0002-9947. doi: 10.2307/1999988. URL http://dx.doi. org/10.2307/1999988.
Lorenzo Robbiano. A theorem on normal flatness. Compositio Math., 38 (3):293-298, 1979. ISSN 0010-437X. URL http://www.numdam.org/item?id=CM_1979__38_3_293_0.

Lorenzo Robbiano. On normal flatness and some related topics. In Commutative algebra (Trento, 1981), volume 84 of Lecture Notes in Pure and Appl. Math., pages 235-251. Dekker, New York, 1983.

