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What is a sheaf?

Let X be a topological space and let k be a field.

Definition: A sheaf of k -vector spaces is the data of:

Open sets of X → Mod(k)

U 7→ Γ(U; F ) (= F (U))

(V ⊂ U) 7→
(
F (U)→ F (V )

)
(restriction)

s 7→ s|V

Satisfying the following gluing conditions. Let U be open and let
{Uj}j∈J be a covering of U. We have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

What is a sheaf?

Let X be a topological space and let k be a field.
Definition: A sheaf of k -vector spaces is the data of:

Open sets of X → Mod(k)

U 7→ Γ(U; F ) (= F (U))

(V ⊂ U) 7→
(
F (U)→ F (V )

)
(restriction)

s 7→ s|V

Satisfying the following gluing conditions. Let U be open and let
{Uj}j∈J be a covering of U. We have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

What is a sheaf?

Let X be a topological space and let k be a field.
Definition: A sheaf of k -vector spaces is the data of:

Open sets of X → Mod(k)

U 7→ Γ(U; F ) (= F (U))

(V ⊂ U) 7→
(
F (U)→ F (V )

)
(restriction)

s 7→ s|V

Satisfying the following gluing conditions. Let U be open and let
{Uj}j∈J be a covering of U. We have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

What is a sheaf?

Let X be a topological space and let k be a field.
Definition: A sheaf of k -vector spaces is the data of:

Open sets of X → Mod(k)

U 7→ Γ(U; F ) (= F (U))

(V ⊂ U) 7→
(
F (U)→ F (V )

)
(restriction)

s 7→ s|V

Satisfying the following gluing conditions. Let U be open and let
{Uj}j∈J be a covering of U. We have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

What is a sheaf?

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )

It means that
if s ∈ Γ(U; F ) and s|Uj = 0 for each j then s = 0

if sj ∈ Γ(Uj ; F ) such that sj = sk on Uj ∩ Uk then they glue
to s ∈ Γ(U; F ) (i.e. s|Uj = sj )

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

What is a sheaf?

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )

It means that
if s ∈ Γ(U; F ) and s|Uj = 0 for each j then s = 0
if sj ∈ Γ(Uj ; F ) such that sj = sk on Uj ∩ Uk then they glue
to s ∈ Γ(U; F ) (i.e. s|Uj = sj )

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

Examples

Let us consider

CX : Open sets of X → Mod(R)

U 7→ {continuous real valued functions on U}

The correspondence
U 7→ Γ(U; CX ) = {continuous real valued functions on U}
defines a sheaf on X
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Examples

Let us consider

Cb
X : Open sets of X → Mod(R)

U 7→ {continuous bounded functions on U}

⇒ The correspondence U 7→ Γ(U; Cb
X ) =

{continuous bounded real valued functions on U} does not
define a sheaf on X .
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Examples

Let us consider

Cb
X : Open sets of X → Mod(R)

U 7→ {continuous bounded functions on U}

For example, let X = R, Un = (−n,n), n ∈ N, and
sn : Un → R, x 7→ x2. Then sn is bounded on Un for each
n ∈ N, but x 7→ x2 is not bounded on R.

⇒ The correspondence U 7→ Γ(U; Cb
X ) =

{continuous bounded real valued functions on U} does not
define a sheaf on X .
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More Examples

Sheaves: holomorphic functions, C∞ functions , distributions.

Not sheaves: L2 functions, tempered distributions. In fact they
do not satisfy gluing conditions.

If we consider “less open subsets” and “less coverings” they
may become sheaves. We need the notion of site.
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Topological sites

The definition of sheaf depends only on
open subsets
coverings

One can generalize this notion by choosing a subfamily of open
subsets T of X and for each U a subfamily Cov(U) of coverings
if U satisfying suitable hypothesis (defining a site XT ).

Then F : T → Mod(k) is a sheaf on XT if for each U ∈ T and
each {Uj}j∈J ∈ Cov(U) we have the exact sequence

0→ F (U)→
∏
j∈J

F (Uj)→
∏

j,k∈J

F (Uj ∩ Uk )
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Example

For example, let us consider the site XT where
T =open subsets of X
Cov(U)={finite coverings of U}

and consider the correspondence U 7→ Γ(U; Cb
X ) (continuous

bounded functions). ⇒ The correspondence U 7→ Γ(U; Cb
X )

defines a sheaf on XT .
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Example

For example, let us consider the site XT where
T =open subsets of X
Cov(U)={finite coverings of U}

and consider the correspondence U 7→ Γ(U; Cb
X ) (continuous

bounded functions).
If {si} are bounded on a finite covering {Ui} of U, such
that si = sj on Ui ∩ Uj , then there exists s bounded on U
with s = si on each Ui .

⇒ The correspondence U 7→ Γ(U; Cb
X ) defines a sheaf on XT .
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The general case

Let X be a topological space and consider a family of open
subsets T satisfying:

(i) U,V ∈ T ⇔ U ∩ V ,U ∪ V ∈ T ,
(ii) U \ V has finite numbers of connected components ∀U,V ∈ T ,
(iii) T is a basis for the topology of X .

Definition: The site XT is defined by:
open subsets: elements of T
Cov(U) (coverings of U ∈ Op(XT )): finite coverings of U
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Examples

1 T ={open semialgebraic subsets of Rn}

2 T ={open relatively compact subanalytic subsets of a real
analytic manifold}, the subanalytic site Xsa.

3 T ={open definable subsets of Nn}, given an O-minimal
structure (N, <, . . .), the site Xdef .
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Construction of sheaves on XT

Let F be a presheaf on XT . Assume that

F (∅) = 0

∀U,V ∈ T the sequence

0→ F (U ∪ V )→ F (U)⊕ F (V )→ F (U ∩ V )

is exact.

Then F is a sheaf on XT .
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Subanalytic sheaves

From now on we will consider the subanalytic site Xsa.
open subsets: relatively compact subanalytic open subsets

Cov(U) (coverings of U ∈ Op(Xsa)): finite coverings of U
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Subanalytic sets

Let U ⊂ Rn . Let A(U) denote the real-analytic valued
functions. Let S(A(U)) be the smallest set of subsets of U,
containing {x ∈ U; f (x) > 0} for all f ∈ A(U), and is closed
under finite union, finite intersection and complement.

Definition: A set S ∈ Rn is semianalytic if and only if for each
x ∈ Rn , there exists a neighborhood U of x , such that
S ∩ U ∈ S(A(U)). It means that S is locally defined by analytic
functions.
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Subanalytic sets

Unlike for semialgebraic sets, projections of semianalytic sets
are in general not semianalytic.

Definition: We say S ∈ Rn is a subanalytic set if for each
x ∈ Rn, there exists a relatively compact semianalytic set
X ⊂ Rn+m and a neighborhood U of x , such that S ∩ U is the
projection of X onto the first n coordinates.
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Subanalytic sets

The family Op(Xsa) of open subanalytic relatively compact
satisfy

(i) U,V ∈ Op(Xsa)⇔ U ∩ V ,U ∪ V ∈ T ,
(ii) U \ V has finite number of connected comp. ∀U,V ∈ Op(Xsa),

(iii) Op(Xsa) is a basis for the topology of X .

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

Tempered functions

Let X be a real analytic manifold manifold and let U ⊂ X be a
relatively compact subanalytic open subset, f C∞ on U is
tempered if ∃M,C > 0 such that

∣∣f (x)
∣∣ ≤ C

dist(x , ∂U)M .

This is not a sheaf with the usual topology.
For example, let X = R, then e1/x is tempered (even bounded)
on Un = {1/n < x < 1}n∈N but it is not tempered on
∪Un = {0 < x < 1}.
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Tempered functions

Anyway one can show that of U,V are open subanalytic the
sequence

0→ C∞,tX (U ∪ V )→ C∞,tX (U)⊕ C∞,tX (V )→ C∞,tX (U ∩ V )

is exact.

This implies that U 7→ C∞,tX (U) is a sheaf on the
subanalytic site Xsa.
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Fibers

In the case of subanalytic sheaves we do not have the notion of
fibers in the usual sense, i.e. if we consider

Fx = lim−→
U3x

F (U)

there are F 6' G even if Fx ' Gx ∀x ∈ X .

Example: Let X = R and consider the sheaves CR and Cb
R.

Then CR,x ' Cb
R,x ∀x ∈ R. Indeed, any continuous function f in

(x − ε, x + ε), ε > 0 is bounded in (x − ε/2, x + ε/2).
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Fibers

Hence if we consider only the fibers associated to the points of
x we loose informations about F ∈ Mod(kXsa).

We need to consider more points.
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Spectral topology

Let us consider a countable locally finite covering {Un}n∈N of X ,
with Un ' Rn relatively compact and subanalytic.

In Un consider the ultrafilters of globally subanalytic subsets
(i.e. subanalytic in X ).
A neighborhood of an ultrafilter α is a globally subanalitic open
subset U contained in α.
We call X̃ the associated topological space. In X̃ any covering
of a relatively compact subanalytic open subset has a finite
subcover.
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We call X̃ the associated topological space. In X̃ any covering
of a relatively compact subanalytic open subset has a finite
subcover.
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Example

For example, the points of R̃ are the following. Let x ∈ R
1 {S subanalytic, S ⊇ x} (the point x)
2 {S subanalytic, S ⊇ (x , x + ε), ε > 0} (the point x+)
3 {S subanalytic, S ⊇ (x − ε, x), ε > 0} (the point x−)

Thanks to these new points we can distinguish CR from Cb
R on

R̃. For example let f = x−1. Then f /∈ Cb
R(0, ε) ∀ε > 0. Hence

f /∈ Cb
R,0+ , but f ∈ CR,0+ , this implies Cb

R,0+ 6' CR,0+ .
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Topological and subanalytic sheaves

Theorem:
Let X be a real analytic manifold. The categories Mod(kXsa) and
Mod(kX̃ ) are equivalent.

Hence, if we want to work on fibers on Xsa, we have to consider
the topological space X̃ .
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Operations

Theorem:
Let f : X → Y be a morphism of real analytic manifolds. The six
Grothendieck operations Hom, ⊗, f∗, f−1, f!!, f ! are well defined
for subanalytic sheaves.

L. PRELLI Sheaves on subanalytic sites, Rendiconti del Seminario Matematico dell’Università di Padova Vol. 120

(2008).
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The ring of differential operators

Let X be a complex analytic manifold. We denote by DX the
sheaf of rings of differential operators. Locally, a section of
Γ(U;DX ) may be written as P =

∑
|α|≤m aα(z)∂αz with aα(z)

holomorphic on U.
We denote by Mod(DX ) the category of DX -modules.
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Subanalytic sheaves and solutions

The subanalytic sheaf Ot
X of tempered holomorphic functions

has a structure of ρ!DX -module. (Γ(U; ρ!DX ) are differential
operators

∑
|α|≤m aα∂αz with aα holomorphic in U)
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Characteristic variety

Let T ∗X π→ X be the cotangent bundle and let S ⊂ π−1DX

S(x ,ξ) = {P ∈ π−1(Dx ) ; σ−1(P)(x , ξ) 6= 0}

where σ(P) is the principal symbol of P. Set EX = S−1(π−1DX ).

In EX every P with σ(P)(x , ξ) 6= 0 is (locally) invertible
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Characteristic variety

Definition: The characteristic variety Char(M) of a DX -module
M is the support of EX ⊗π−1DX

π−1M.

Exemple: If P is a differential operator andM = DX/DX P (i.e.
M = coker(DX

P→ DX )), Char(M) is the zero locus of the
principal symbol σ(P) of P.
This is because if σ(P) 6= 0 then P (locally) has an inverse in EX
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Characteristic variety

Let f : X → Y be a morphism of complex analytic manifolds
and let fπ : X ×Y T ∗Y → T ∗Y be the base change map.
Definition: f is non characteristic forM if

f−1
π (Char(M)) ∩ T ∗X Y ⊆ X ×Y T ∗Y Y

Example: If Y = Cn, X = {z1 = 0} and f : X ↪→ Y ,
M = DX/DX P with P =

∑
|α|≤m aα(z)∂αz then f is non

characteristic if the coefficient of ∂m
z1

is 6= 0 on X
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Complex of solutions

The sheaf of tempered holomorphic functions has a structure of
ρ!DX -module. (Γ(U; ρ!DX ) are differential operators∑
|α|≤m aα∂αz with aα holomorphic in U)

LetM be a coherent DX -module. We denote by Sol t (M) the
complex RHomρ!DX (ρ!M,Ot

X )

In the caseM = DX/DX P and U convex Sol t (M) on U is the
complex

Γ(U;Ot
X )

P→ Γ(U;Ot
X ).

H0(U;Sol t (M)) = {s ∈ Γ(U;Ot
X ), Ps = 0} = ker P

H1(U;Sol t (M)) = Γ(U;Ot
X )/PΓ(U;Ot

X ) = cokerP
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Cauchy-Kowaleskaya-Kashiwara

Theorem:
LetM be a coherent DY -module and suppose that f is non
characteristic forM. Then f−1Sol t (M) ' Sol t (f−1M).
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The case of 1 operator

Let Y = Cn, X = {z1 = 0} and let f : X ↪→ Y . Suppose that U
is a convex open subanalytic subset of X andM = DY/DY P,
with P =

∑
|α|≤m aα(z)∂αz with a(m,0,...,0)(z) 6= 0 on X .

In this case f−1M' Dm
X .

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

The case of 1 operator

Let Y = Cn, X = {z1 = 0} and let f : X ↪→ Y . Suppose that U
is a convex open subanalytic subset of X andM = DY/DY P,
with P =

∑
|α|≤m aα(z)∂αz with a(m,0,...,0)(z) 6= 0 on X .

In this case f−1M' Dm
X .

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

The case of 1 operator

We are reduced to the isomorphism

Γ(U; f−1Sol t (M))
∼→ (Γ(U;Ot

X ))m

s 7→ (s|X , ∂z1s|X , . . . , ∂m−1
z1

s|X )

where s ∈ Γ(V ;Ot
Y ) with V ∈ Op(Ysa), V ∩ X = U
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The case of 1 operator

i.e. to the existence and uniqueness of the solution of{
Ps = 0
∂ks|X = gk k = 0, . . . ,m − 1

for any (gk )m−1
k=0 ∈ (Γ(U;Ot

X ))m.
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The case of 1 operator

Moreover we have H1(U; f−1Sol t (DY/DY P)) = 0.

For a
neighborhood V of U in Y and s ∈ Γ(V ;Ot

Y ) there exist
U ⊂ V ′ ⊆ V and s′ ∈ Γ(V ′;Ot

Y ) such that Ps′ = s|V ′ .
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Normal deformation

X : real n-dimensional analytic manifold
M: closed submanifold of codimension `
TMX : normal bundle.
Normal deformation of X :

an analytic manifold X̃M ,
an application (p, t) : X̃M → X × R

such that


p−1(X \M) isomorphic to (X \M)× (R \ {0}),

t−1(c) isomorphic to X for each c 6= 0,
t−1(0) isomorphic to TMX .
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Example

X = C

M = {0}

T0C ' C

X̃0 ' C× R

p : X̃0 ' C× R → C
(z, r) 7→ zr
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Specialization

Let Ω = C× R+

and s : T0C ' C ↪→ C× R.

We define

ν0F = ρ−1s−1ΓΩp−1F .

Let x be a point of T0C ' C. We have

ν0Fx = lim−→
U∈x

F (U)

where U is a sector containing x .
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Specialization

Let Ot
C be the subanalytic sheaf of tempered holomorphic

functions. In that case we have

ν0Ot
C ' A≤0

where A≤0 is the sheaf (on the blow-up at 0) of holomorphic
functions with moderate growth at the origin.
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Specialization

Let Ow
C be the subanalytic sheaf of Whitney holomorphic

functions. In that case we have

ν0Ow
C ' A

where A is the sheaf (on the blow-up at 0) of holomorphic
functions asymptotically developable at the origin.

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

Specialization

Let Ow
C be the subanalytic sheaf of Whitney holomorphic

functions. In that case we have

ν0Ow
C ' A

where A is the sheaf (on the blow-up at 0) of holomorphic
functions asymptotically developable at the origin.

Luca Prelli Sheaves on subanalytic sites andD-modules



Contents
Sheaves

Sheaves on subanalytic sites
D-modules

Specialization and asymptotic expansions

Multi-specialization

It is possible to construct a normal deformation in Cn with
respect to D = {z1 · · · z` = 0}, ` ≤ n, and a specialization
functor νD.

This is done by recursively perform the normal deformation
construction with respect to each divisor Di = {zi = 0},
1 ≤ i ≤ `.
Applying this functor to the sheaf of Whitney holomorphic
functions we obtain Majima’s sheaf A of functions strongly
asymptotically developable.
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Luca Prelli

Lisboa, 28 september 2011
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