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Motivation

Kashiwara and Kaway proved ("Regular Holonomic Systems
III") that, given a Legendrian (conic Lagrangean) variety
Γ ⊂ P∗Cn and a point o ∈ Γ, there is a contact transformation ϕ
defined around o such that ϕ(Γ) is the conormal of a
hypersurface Y of Cn such that ϕ(Γ) ∩ π−1(o) is a single point
of P∗Cn.
This means that ϕ(Γ) is in generic position, or equivalently, that
Y has trivial limits of tangents.

These types of hypersurfaces occur in several key theorems of
D-module theory:
The characteristic Variety of a holonomic D-module M is a
conic Lagrangean variety Γ of T ∗Cn (or Legendrian variety of
P∗Cn).



Results

What can we say about a germ of hypersurface with trivial limits
of tangents? Curiously, very little is known.
We present a complete characterization when Y is
quasi-ordinary (actually we do a bit more).

I We obtain a method to calculate the limits of tangents of
any quasi-ordinary hypersurface, and use it to prove that

I The limit of tangents of a quasi-ordinary hypersurface is
("mostly") a topological invariant.

I The limit of tangents of a quasi-ordinary hypersurface when
the tangent cone is a hyperplane is a topological invariant.

I The triviality of the limit of tangents of a quasi-ordinary
hypersurface is a topological invariant.

Open problems:
Are the last two statements true for a general hypersurface?



background

I Le Dung Trang, Bernard Teissier (1988): Limits of tangent
spaces of a complex hypersurface singularity

I Chunsheng Ban (1994): Calculated the limits of tangents
of a quasi-ordinary singularity with a single special
monomial.



1- Quasi-ordinary singularities
Y germ at the origin of a hypersurface of Cn+1

Y = {(x1, . . . , xn, y) : f (x , y) = 0}, f ∈ C{x1, . . . , xn, y}

Apparent contour of Y relative to y

Z = {(x , y) : df/dy = f = 0} ⊃ Sing(Y )

Discriminant of Y

p : Cn+1 → Cn

(x , y) 7→ x

∆ = p(Z )



Definition
Let Y be a hypersurface of Cn+1, Y = {f = 0},
f ∈ C{x1, . . . , xn, y}. We say that Y is a quasi-ordinary
hypersurface if its discriminant (relative to y ) is a divisor with
normal crossings:

∆ = {x1 · · · xl = 0}, l ≤ n.



example

y2 − x1x3
2 = 0

The apparent contour contains the singular points and the
points where the surface "turns"relative to the projection fibers.
The discriminant is the shadow of the apparent contour. It is the
set of points of the base over which the surface has a
non-generic number of points.



example

y2 − x1x3
2 = 0

Sing = {(x1, x2, y) : f = ∂f/∂x1 = ∂f/∂x2 = ∂f/∂y = 0}
= {x2 = y = 0}
Apparent contour relative to y :
{(x1, x2, y) : f = ∂f

∂y = 0} = {x1x2 = y = 0}
Discriminant: {(x1, x2) : x1x2 = 0} (Normal Crossings Divisor)



We note that
y2 − x1x3

2 = 0

admits the parametrization:

y = x
1
2

1 x
3
2

2 .

This is true in general:

Quasi-ordinary hypersurfaces always admit parametrizations
that are power series with rational exponents (ramified
parametrizations).



Ramified parametrizations

Let Y = {f = 0}, f ∈ C{x1, . . . , xm, y} be a quasi-ordinary
hypersurface (relative to the projection that forgets y ).
Then there is a positive integer n and a power series
H ∈ C{xn

1 , . . . , xn
m} such that

f (x1, . . . , xm, H(x1/n
1 , . . . , x1/n

m )) = 0

around o. We say that the series with rational exponents
ϕ = H(x1/n

1 , . . . , x1/n
m ) ∈ C{x1/n

1 , . . . , x1/n
m } that parametrizes Y

is a quasi-ordinary ramified parametrization and we say that n
is the ramification order.



Special monomials

A quasi-ordinary parametrization y = φ(x) of Y features a finite
number of monomials that are topological invariants of Y . They
are called the special monomials of Y . They are those where
the order of ramification changes (or in particular, where a new
variable first appears). For example:

y = x2/5
1 + x1/2

1 + x3/5
1 + x6/10

1 x1/2
2 + x6/10

1 x3/2
2

Special monomials :

N1 = x2/5
1 , N2 = x1/2

1 = x5/10
1 , N3 = x6/10

1 x6/10
2

For example, x3/5
1 is not special because x3/5

1 = N1x1/5.



The special monomials are totally ordered:

(N3) ⊂ (N2) ⊂ (N1)

The q.o. parametrization can be written as

y = f1N1 + . . . + fsNs

where fi are units determined uniquely by the ramification order.

Example:

y = x2/5
1 + x1/2

1 + x3/5
1 + x6/10

1 x1/2
2 + x6/10

1 x3/2
2

= x2/5
1 (1 + x1/5

1 ) + x1/2
1 + x6/10

1 x1/2
2 (1 + x1/10

2 ).



Very Special Monomials

A special monomial Ni is very special if {Ni = 0} 6= {Ni−1 = 0},
that is, if it is a monomial where a new variable first appears.
example:

y = x2/5
1 (1 + x1/5

1 ) + x1/2
1 + x6/10

1 x1/2
2 (1 + x1/10

2 ).

y = x2/5
1 (1 + x1/5

1 ) + x1/2
1 + x6/10

1 x1/2
2 (1 + x1/10

2 ).

Very special: M1 = x2/5
1 , M2 = x6/10

1 x1/2
2



Notation

They are so special that they demand from us a change in
notation:

Nk =
k∏

i=1

mk∏
j=1

xakij
ij , 1 ≤ k ≤ g

example:

y = x2/5
1 + x1/2

1 + x6/10
1 x1/2

2 → y = x2/5
11 + x1/2

11 + x6/10
11 x1/2

21



limits of tangents

Let Y ⊂ Cn+1 be q.o. hypersurface, let o be a point of Y .

Let Σ be the set of singular points of Y .

Let (pi) be a sequence of points of Y − Σ converging to o. This
induces a sequence of tangent spaces Tpi Y ⊂ TCn+1.

Suppose Tpi Y converges to T ∈ TCn+1. Then we say that T is
a limit of tangents of Y at o.

Let Λo be the set of all limits of tangents of Y at o. We call Λo
the limit of tangents of Y at o.

Our purpose will be to calculate Λo.



Since Y is a hypersurface defined by f = 0 for a certain
f ∈ Cn+1{x1, . . . , xn, y}, we can identify each Tpi Y with the
kernel of dfpi ∈ T ∗Cn+1. But multiplying df by α ∈ C∗ preserves
the kernel so we identify

Tpi Y = 〈dfpi 〉 ∈ P∗Cn+1

where

P∗Cn+1 =
(

T ∗Cn+1 \ Cn+1
)

/C∗

is the projectivized cotangent space. We’ll look at the limits of
tangents as elements of P∗Cn+1.



How to calculate Λ? Is it enough to calculate limits of curves?

We need to establish an upper bound for Λ.



Conormal

The set of limits of tangents of {Λp, p ∈ Y} can be bundled
together into a variety, through the folowing construction:

Y hipersurface de Cn+1.

We say that

P∗Y Cn+1 = {(p, < dfp >) : p ∈ Yreg} ⊂ P∗Cn+1

is the Conormal of Y . We have

Λp = π−1(p) ∩ P∗Y Cn+1

where π : P∗Y Cn+1 → Cn+1 is the canonical projection.
So the fiber above each p holds the limits of tangents of Y at p.



It can be shown that the conormal of Y is a legendrian (or conic
lagrangean) subvariety of P∗Cn+1.

Ley γ be a point of the conormal. We say that the conormal is
in generic position if π−1(π(γ)) ∩ P∗Y Cn+1 is a single point.

So the conormal of Y is a lagrangean variety in generic position
at γ if and only if Y has trivial limits of tangents at π(γ).



Parametrization of the conormal of a q.o. hypersurface

Let (x1, . . . , xn, y , ξ1, . . . , ξn, ζ) be homogeneous coordinates of
P∗Cn+1 and let (x1, . . . , xn, y , p1, . . . , pn), where pi = ξi/ζ be
projective coordinates in the chart ζ 6= 0.

If the hypersurface Y has a parametrization

y = ϕ(x), ϕ ∈ C{x1/n},

then its conormal P∗Y Cn is parametrized

y = ϕ(x), pi =
dy
dxi

, 1 ≤ i ≤ n.

where
dy
dxij

= aiij
Mi

xij
σij , σij unit of C{x1/n}.

From this parametrization we can obtain equations for analytic
sets that bound the conormal.



Strategy:

1-Use the equations of the conormal to find an analytic set Λ
that is an ’upper bound’ for the limit of tangents Λ.

2-’Fill’ the upper bound with an adequate family of limits of
curves.



Example:

y = x1/2
1 x2/3

2

The conormal is parametrized by

y = x1/2
1 x2/3

2 , p1 =
dy
dx1

=
1
2

x−1/2
1 x2/3

2 , p2 =
dy
dx2

=
3
2

x1/2
1 x−1/3

2

Then p1p2 = 1
3x1/3

2 . The conormal is within the analytic set
p3

1p3
2 = 1

27x2. Hence, in the fiber over the origin of C2, we have
that p1p2 = 0.

So Λ ⊂ Λ = {p1p2 = 0}. We have an upper bound for the limit
of tangents over 0.

Λ has two irreducible components, p1 = 0 and p2 = 0.



Now we fill up the component {p2 = 0}.
Take the family of curves t 7→ (x(y), y(t)) = (ε1tα1 , ε2tα2).
These curves of C2 induce curves on the conormal.

Choosing α1 = 2, α2 = 3, we get

p1 =
2
3
ε
−1/2
1 ε

2/3
2 , p2 =

2
3
ε

1/2
1 ε

−1/3
2 t

Then

lim
t→0

(p1(t), p2(t)) =

(
2
3
ε
−1/2
1 ε

2/3
2 , 0

)
.

By choosing adequate εi ∈ C∗ e obtain all the possible limits in
the component p2 = 0. The other component can be filled up in
a similar way. Hence Λ = Λ = {p1p2 = 0}. (the conormal is not
in generic position)

In general: The choice of the αi isolates an irreducible
component; the choice of the εi fills up a dense set of the
component. Can we always do this?(yes)



Suppose we have s very special monomials:
y = f1M1 + . . . + fsMs, where fi are units.
For each very special monomial Mk , k ≥ 2,

Mk =
k−1∏
s=1

ms∏
j=1

xaksj
sj xak1

k1 · · · x
akmk
kmk

we check the exponents of the new variables for subsets

J ∈ P({(k , 1), . . . , (k , mk )})

such that ∑
j∈J

akkj ≥ 1.

For each such set J we obtain∏
j∈J

ξkj = 0.



The case of the first special monomial is different:

I If
∑m1

i=1 a11i > 1 then ξ11 · · · ξ1m1 = 0.
I If

∑m1
i=1 a11i < 1 then ζ = 0.

Up to now all this is topological invariant since it only depends
on the special exponents (which is kinda weird, actually).

Here is the exception: Suppose

m1∑
i=1

a11i = 1.



Example:

y = ax1/2
1 x1/2

2 + x1/2
1 x1/2

2 x1/2
3 , a ∈ C∗.

Then

p1 = (1/2)x−1/2
1 x1/2

2 (a + x1/2
3 ),

p2 = (1/2)x1/2
1 x−1/2

2 (a + x1/2
3 )

p1p2 = (1/4)(a2 + 2ax1/2
3 + x3).

ξ1ξ2 = ζ2(1/4)(a2 + 2ax1/2
3 + x3).

Λ ⊂ {ξ1ξ2 = (a2/4)ζ2}.

The cone we obtained depends not only on the special
exponents but also on the coefficient a. Hence it is not a
topological invariant.



Main Results

Theorem

Suppose that
∑m1

i=1 a11i > 1.

Then the tangent cone of Y at o is {y = 0} and Λ is determined
by the equations∏

j∈J

ξkj = 0 for all k , J such that
∑
j∈J

akkj ≥ 1.



Main Results

Theorem

Suppose that
∑m1

i=1 a11i < 1.

Then the tangent cone of Y at o is {x11 · · · x1m1 = 0} and Λ is
determined by the equations{

ζ = 0∏
j∈J ξkj = 0 for all k , J such that

∑
j∈J akkj ≥ 1.



Main Results

Theorem

Suppose that
∑m1

i=1 a11i = 1.

Λ is determined by the equations

{ ∏
j∈J ξkj = 0 for all k , J such that k > 1 and

∑
I akkj ≥ 1.∏m1

i=1 ξci − sζc
n+1 = 0,

where ci are integers and s is a complex number determined by
the coefficient f1(0) of M1 in the ramified series of Y .
The tangent cone,

yc − s1

m1∏
i=1

xdi
1i = 0

also depends on the value of f1(0) (through s1).



Corollary
The set of limits of tangents of Y only depends on the tangent
cone of Y and the topology of Y .

Corollary
If the tangent cone of Y is a hyperplane (or
a111 + . . . + a11m1 6= 1), the set of limits of tangents of Y only
depends on the topology of Y .

Corollary
The triviality of the set of limits of tangents of Y is a topological
invariant of Y .
(The set of limits of tangents of Y is trivial if and only if all the
exponents of all the special monomials of Y are greater or
equal than 1.)



Open problems:

Can we do this for other surfaces?

Essentials of the proof:

I Good invariants (very special monomials and their
exponents)

I Total order of the special monomials

and, at a more gritty level

dy
dxij

= aiij
Mi

xij
σij , σij unit.

(a good working relationship between the conormal and the
invariants we may have)

This is what we need to supply.



This is not the end of the talk because...

...I lied about my motivations (Sorry)

What we (me, Joao Cabral, Orlando Neto) really wanted to do
was dessingularize Lagrangean Varieties (Joao will talk about
this joint work later today).

And for that what we really needed was to characterize the
triviality of logarithmic limits of tangents.

What is that?



Logarithmic limits of tangents
M complex manifold, N normal crossings divisor.

T ∗M - vector bundle with sheaf of sections Ω1
M .

T ∗〈M/N〉 - vector bundle with sheaf of sections Ω1
M〈N〉.

(logarithmic differential forms with poles along N).

T ∗〈M/N〉 is endowed with a canonical logarithmic differential
form

θ ∈ Ω1
T∗〈M/N〉〈π

−1(N)〉

where π : T ∗〈M/N〉 → M is the canonical projection

If M = Cn
x1,...,xn and N = {x1 · · · xk = 0}

θn =
k∑

i=1

ξi
dxi

xi
+

n∑
i=k+1

ξidxi



S hypersurface of M, S 6⊂ M \ N.

T ∗
S〈M/N〉 : closure of T ∗

S\N(M \ N) in T ∗〈M/N〉.

Given o ∈ S, the logarithmic limit of tangents of S at o equals

T ∗
S〈M/N〉 ∩ π−1(o).

We can calculate the limits of tangents of S with poles along N
at o by similar methods to the ones discussed.



example

Recall the example y = x1/2
1 x3/2

2 .

Λ is equal to p2 = 0.

Logarithmic limit of tangents for N = {x1 = 0}:

The canonical 1-form is now

θ = ξ1
dx1

x1
+ ξ2dx2 + ζdy

, so

p1 = x1
∂y
∂x1

= x1/2
1 x3/2

2 . Hence p1 = 0

Hence in the logarithmic case the limit becomes trivial (in
general what you get is lots more trivial limits of tangents in the
logarithmic case).



example

Again, y = x1/2
1 x3/2

2 .

Logarithmic limit of tangents for N = {y = 0}:

The canonical 1-form is now

θ = ξ1dx1 + ξ2dx2 + ζ
dy
y

, so

p1 =

∂y
∂x1
y

=
1
x1

. Hence x1ξ1 = ζ.

Hence the logarithmic limit of tangents is given by ζ = 0.



By similar arguments we can solve the general
three-dimensional case:

z = ϕ(x1/n, y1/n) = xλyµ + xayb + . . . , λ ≥ µ

1- If N = {xy = 0}, N = {yz = 0}, N = {xyz = 0} the
logarithmic limits of tangents are always trivial.

2- If N = {z = 0}, Λ is trivial iff µ = 0 and b ≥ 1.

(etc)
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