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1. Characteristic Variety

Let (x, y) be a set of coordinates on C*(C% ). Let
0 = &dx +ndy = 0(d,)dx + o(0,)dy

be the canonical 1-form on T*C% ,,. Let M be the D-module on C% ,, defined by

f(2x6x + 3y0d, — A)u =0

>3\, ,A € C.
K6,C—<§) x0y Ju =0

A
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2x¢E+3yn =0
Char(M) = 3\?
2= (3) =0

Let m: T*C%, — €3, be the canonical projection,

T (Char(M)\ngzcy(C,%,y) = {y? — x3 = 0} (Singular locus of M).

In fact,

«:2

Char(]\/[) - T{;Z_x?’:o}cazc,y U Tg X,y

2
X,y
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2. Logarithmic Characteristic Variety

Let N be a normal crossings divisor of a complex manifold M. Let Dy [N] be the sheaf of
meromorphic differential operators with poles on N. Let ©,,(N) be the sheaf of logarithmic
vector fields along N. Let D, (N) be the sub-ring of D,, generated by 0,,(N) and O,,. There are
symbol maps

ONn- Dy(N), — OT*(M/N)-

If M = C;, and N = {x = 0}

ON (xax + nyay) = ¢ + nyn.
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The logarithmic characteristic variety of M, Chary (M), is the closure in T*(M/N) of
Char(]\/[|M\N).

Assume N = {x = 0}. Let us compute the logarithmic characteristic variety of the example
studied on section 1. Let

dx dx
Oy = §—+ndy = on(x0x) —+ on(dy)dy

be the canonical 1-form on T*(C3%.,,/N).
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(Zxax + 3y0d, — A)u =0

If M = 2 ,
<(x6x — 1)x0, — (g) x36§>u =0
2§ +3yn =0
Chary (M) = 3\2 .
00 - -

Let my: T*(C%, /N) — C%,, be the canonical projection,

Ty (CharN(JV[)\ 2 ((C y/N)) = {y? —x3 = 0}.
Once again,

Chary (M) = Tf,2_a_g(C5,/N) U T (C3,/N).
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3. A Quick Recap on the Resolution of Singularities of Plane Curves

—~—

The blow up of C%,, at the origin, C3,, is the gluing of the charts C, , and C%, ,. by the
change of coordinates

1

{xz =YV
Y2 = X1)1

The restrictions of the blow up map o: Czy — C,Zc,y are given by
U|«:,251,y1 (1, ¥1) = (%1, %1)1),

U|(c,2€2,y2 (x2,¥2) = (X2¥2,¥2).

Iberian Meeting on Algebraic Analysis and Geometry, September 2011



Resolution of Singularities of Quasi-Ordinary Legendrian Surfaces Jodo Cabral

The exceptional divisor of the blow up, E = 0~1(0), is defined by

E nC:,chyl — {xl — O},

En(CJZCZyZ — {yz = O}I

and isomorphic to a complex projective space of dimension one.

The blow up map is a isomorphism when restricted to C2 y\E

The strict transform of an analytic subset of C% y IS the closure in «22 of the set

o L(S\E.
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4. Blow Up of a D-module

Let us now study the evolution of our example along the resolution of {y? —x3 = 0}. Set
My = M and M; as the blow up of M;_,,i=1,2,3. Set N; as the system of exceptional
divisors after o;, i = 1,2,3. From the blow up map we have the following relations:

e On (C,ch,y1
X = X1,
Yy = X1Y1,
1
x0y = 0Oy, Oy +— ;ayl'
X0y = X105, — Y10y,
e On (C,ZC2 )
X = X2Y¥2,
y - yZi
1
Y0y = axzr Oy — y_zaxzr

Y0y, = Y20y, — X0y,
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We have a morphism

For simplicity’s sake we will “reset” the coordinates after the blow up.
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First blow up: M is defined by
f(Zxax +yo0, — A)u =0

3\’ :
(x0y —y0, — 1)(x0, — ydy) — (E) x0y lu=20

AN\

\
Ty, (Chary, (MO\Tg (C2,/Ny)) = {x —y2 = 0},

Chary, (M) = T{;_yZZO}«C}zc,y/Nl) U ngc,y(@pzc,y/Nﬂ-
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Second blow up: M, is defined by
f(xax +yo, — A)u =0

3\’ :
y(Zxax — Y0, — 1)(2x6x — yay) — (E) x(yay — x0, — 1)(yay — xax) u=20

\
N, (Chaer (Mz)\ngc,y@azc,y/Nz)) ={x -y =0},

Chary, (M) = T{;—y:O}«Cch,y/NZ) U T(é;zc'y(@?c,y/Nz%
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Third blow up: M35 is defined by

f(yay — A)u =0
4 3\° .
y (3xax — Y0, — 1)(3x6x — yay) — (E) x(yay — 2x0, — 1)(yay — 2x6x) u=20
\
This system can be simplified into
f(yay — A)u =0
3\* .
(9x202 — 6(A — 1)xd + A2 + 1) — (E) x(4x202 — (42 — 6)x0, + 12 — 1) |u = 0
\
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We obtain a system where each operator depends only on one variable!

{(yay — A)u =0
P(x,0)u=0

P is an hypergeometric differential operator defined along E; with singularities at 0,1 and oo.

*= Ey
.l |
.U kg
E
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Let M be a regular holonomic D,,[N]-module, M the blow up of M with center L and N the
Inverse image of N by the blow up. We have that Char,v(]V[) Is the strict transform of
Chary (M) by the blow up of P*(M /N) with center A associated to L.

When we desingularize legendrian varieties we are “desingularizing the characteristic variety of
Dy-modules”.
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5. Desingularization of Legendrian Curves

Given a plane curve Y of ((C,Zc,y, O) with multiplicity k and tangent cone transversal to {x = 0},

there are a positive integer n and a € C{t} such that «(0) # 0, (n,k) = 1 and Y admits the
local parameterization

x = t*,y = t"a(t).

The plane curve {y? — x3 = 0} admits the parameterization

{x=t2
y =t
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Let n:]P’*(C,Zw — (C,Zc,y be the canonical projection. Using the parameterization of Y we obtain a
parameterization of IP;«:,ZCJ, defined on neighbourhood of the point

Py C%, N~ 1(0).

In the case of {y? — x3 = 0}, we have on the chart (C3 ,, ,,, (dy — pdx)) of P*C%,

X,y,p
(x = t2
<y:t3

_y(@® 3’
p=—7v=3t
\ x'(t) 2
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First blow up: Set Yy = {y? — x3 = 0}, Y; = {x — y? = 0}. The following diagram commutes

2 2 O =1(0 T -~ * S y o —_—
P}, C2, CP'C2, <=2 P*C2, ~ P*(C2 /N1 ) D Py, C3, = Py, (C2, /M)

LY
n TNy
0_ T =™
Yo CC%_U < : C%’y oY
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Second blow up: Set Y, = {x — y = 0}. The following diagram commutes

A=fo=y=p=0}cP*(C2 /N, )~ P+(C2 /N}) 4= Q <P <6§;/N2>
TN, \ﬂ'wz
{r=y=0}cC2 - o &

Also

P (P;q((cpzc,y/]vl)) = P;z <(C)2c,y/N2>-
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Third blow up: Set Y; = {x — 1 = 0}. The following diagram commutes

—_—

m (L) CP* <(C§:,y/N2>M P <C%=9/N2> ~ P <®/N3>

TN, lﬂ'j\fg
o . 2 3 ~no
L=FNEk, C(Cﬂ::y < (C:n,y

Once again,

I~

P}, (C3y/Nz) = Py, (€3, /N3).
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6. Desingularization of Singularities of Quasi-Ordinary Surfaces

Lipman proved a desingularization theorem for quasi-ordinary surfaces.

Ban and Mcewan gave an embedded version of Lipman’s result.

One can completely describe the combinatory of the constructive desingularization theorem for
quai-ordinary surfaces.
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Let S be a quasi-ordinary surface defined by

1 1
z = x"y"*H (xﬁ, yﬁ) , (4, 1) € Q*\Z7.

We will blow up with center {x =y =z =0} or{x = z = 0} or {y = z = 0}, depending on:

the exceptional divisors, the global structure (reflected locally in the “history” of the divisors)
and the values of A and u
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7.Resolution of Singularities of Quasi-Ordinary Legendrian Surfaces

Theorem (6.1): Let N be a normal crossings divisor of a complex manifold M. Let L be the
intersection of at least two irreducible components of N. Let o: M — M be the blow up of M
along L.

1. The blow up of P*(M/N) along wy1(L) is a logarithmic contact manifold isomorphic to
P*(M/o~1(N)) and the diagram commutes

P* (M/N) ~——P* <M/a—1(N)>

TN I?Ta L(N)

——

M —C M

2. If S'is a hypersurface of M that is not an irreducible component of N and S is the strict
transform of S by o,

SM/N)Y = Py /o~ (N)).
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When blowing up P*(M /N along the conormal of a center on M, a problem arises:

The strict transform of the conormal of a hypersurface that has not trivial logarithmic limits of
tangents might not be a legendrian hypersurface!
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Theorem (6.2): Let N be a normal crossings divisor of a complex manifold M of dimension 3.
Let S be a quasi-ordinary surface of M. Let L be an admissible center of M that is not the
intersection of irreducible components of N. Let Let : M — M be the blow up of M along L
and N = 6~1(N). Let p: P*(M/N) — P*(M/N) be the blow up of P*(M/N) along P} (M /N).
The following diagram commutes:

_— e

Pt (M/N) CP* (M/N) ~“2 P*(M/N) +> ) < Pp* <H/N>

?I'- .I?\‘.' l i I-;:Ir

—

L,SCM - - M
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Let S be the strict transform of S by o. If S trivial logarithmic limits of tangents and the normal
cone of P¢(M/N) along P; (M /N) is “well behaved”,

P5(M/N) c Q

and

o(P(M/N)) = PLM/N).

Moreover, Pz(M /N) has trivial logarithmic limits of tangents and its normal cone is “well
behaved”.
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Let S be the strict transform of S by o. If S trivial logarithmic limits of tangents and the normal
cone of P¢(M/N) along P; (M /N) is “well behaved”,

P5(M/N) c Q

and

o(P(M/N)) = PLM/N).

Moreover, Pz(M /N) has trivial logarithmic limits of tangents and its normal cone is “well
behaved”... Most of the time...
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Problems and generalizations: At the moment we only know how to compute the limits of
tangents of quasi-ordinary hypersurfaces. If we solve the problem for an arbitrary hypersurface,
we could generalize the result for non quasi-ordinary hypersurfaces.

Iberian Meeting on Algebraic Analysis and Geometry, September 2011



