Functorial properties of $\mathscr{D}[[\hbar]]$ -modules

David Raimundo

Centro de Matemáticas e Aplicações Fundamentais

September, 2011

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Contents Ingredients

Notations Formal extensions Cohomologically complete objects Graduate functor

Inverse image of \mathscr{D}^{\hbar} -modules

The inverse image extension The inverse image in the derived category The case of non-characteristic modules Extraordinary inverse image

うして ふゆう ふほう ふほう ふしつ

Direct image

Elliptic pairs

Review of \mathscr{D} -modules case Elliptic pairs over $\mathbb{C}[[\hbar]]$ Regularity Finiteness Duality Examples Functorial properties of $\mathscr{D}[[\hbar]]$ -modules $\sqcup_{\operatorname{Ingredients}}$

Contents Ingredients

Notations Formal extensions Cohomologically complete objects Graduate functor

Inverse image of \mathscr{D}^{\hbar} -modules

The inverse image extension The inverse image in the derived category The case of non-characteristic modules Extraordinary inverse image rect image

うして ふゆう ふほう ふほう ふしつ

Elliptic pairs

Review of \mathscr{D} -modules case Elliptic pairs over $\mathbb{C}[[\hbar]]$ Regularity Finiteness Duality

Examples

Notations

- ▶ X denotes a complex analytic manifold of dimension d_X
- \mathscr{O}_X denotes the ring of holomorphic functions on X
- ▶ \mathscr{D}_X denotes the ring of holomorphic differential operators on X
- $\blacktriangleright \ \Omega_X$ denotes the sheaf of differential forms of maximal degree on X

- ▶ SS(F) denotes the microsupport of a sheaf F
- char(\mathscr{M}) denotes the characteristic variety of a coherent \mathscr{D}_X -module \mathscr{M}
- $\mathbb{C}^{\hbar} := \mathbb{C}[[\hbar]]$ denotes the ring of formal power series in \hbar
- $\mathbb{C}^{\hbar, \text{loc}} := \mathbb{C}((\hbar))$ denotes the field of Laurent series in \hbar

Functorial properties of 𝒴[[ħ]]-modules └─Ingredients └─Formal extensions

Formal extensions

Consider the left exact functor:

$$(\bullet)^{\hbar} : \operatorname{Mod}(\mathbb{C}_X) \to \operatorname{Mod}(\mathbb{C}_X^{\hbar}), F \mapsto F^{\hbar} := \varprojlim_n (F \otimes \mathbb{C}_X^{\hbar} / \hbar^n \mathbb{C}_X^{\hbar}).$$

ション ふゆ く は く は く む く む く し く

In particular one obtains the ring \mathscr{D}_X^{\hbar} of holomorphic differential operators with a formal parameter \hbar .

Formal extensions

Consider the left exact functor:

$$(\bullet)^{\hbar} : \operatorname{Mod}(\mathbb{C}_X) \to \operatorname{Mod}(\mathbb{C}_X^{\hbar}), F \mapsto F^{\hbar} := \varprojlim_n (F \otimes \mathbb{C}_X^{\hbar} / \hbar^n \mathbb{C}_X^{\hbar}).$$

うして ふゆう ふほう ふほう ふしつ

In particular one obtains the ring \mathscr{D}_X^{\hbar} of holomorphic differential operators with a formal parameter \hbar . The right derived functor $(\bullet)^{\mathbb{R}\hbar} : \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X) \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$ is called the formal extension functor.

Formal extensions

Consider the left exact functor:

$$(\bullet)^{\hbar} : \operatorname{Mod}(\mathbb{C}_X) \to \operatorname{Mod}(\mathbb{C}_X^{\hbar}), F \mapsto F^{\hbar} := \varprojlim_n (F \otimes \mathbb{C}_X^{\hbar} / \hbar^n \mathbb{C}_X^{\hbar}).$$

In particular one obtains the ring \mathscr{D}_X^{\hbar} of holomorphic differential operators with a formal parameter \hbar . The right derived functor $(\bullet)^{\mathbb{R}\hbar} : \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X) \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$ is called the formal extension functor.

Proposition: [A. D'Agnolo, S. Guillermou, P. Schapira]

The objects belonging to the categories $\operatorname{Mod}_{\mathbb{R}-c}(\mathbb{C}_X)$, $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_X)$ and $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_X)$ are acyclic for the functor $(\bullet)^{\hbar}$.

Formal extensions

Consider the left exact functor:

$$(\bullet)^{\hbar} : \operatorname{Mod}(\mathbb{C}_X) \to \operatorname{Mod}(\mathbb{C}_X^{\hbar}), F \mapsto F^{\hbar} := \varprojlim_n (F \otimes \mathbb{C}_X^{\hbar} / \hbar^n \mathbb{C}_X^{\hbar}).$$

In particular one obtains the ring \mathscr{D}_X^{\hbar} of holomorphic differential operators with a formal parameter \hbar . The right derived functor $(\bullet)^{\mathbb{R}\hbar} : \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X) \to \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$ is called the formal extension functor.

Proposition: [A. D'Agnolo, S. Guillermou, P. Schapira]

The objects belonging to the categories $\operatorname{Mod}_{\mathbb{R}-c}(\mathbb{C}_X)$, $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{O}_X)$ and $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X)$ are acyclic for the functor $(\bullet)^{\hbar}$.

Lemma:

For $F, G \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X)$ we have an isomorphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$:

$$\operatorname{R\mathscr{H}\!om}_{\operatorname{\mathbb{C}}_X}(F,G^{\operatorname{R}\hbar})\simeq \operatorname{R\mathscr{H}\!om}_{\operatorname{\mathbb{C}}_X}(F,G)^{\operatorname{R}\hbar}$$

Cohomologically complete objects

Definition:

One says that $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete if $\operatorname{R}\mathscr{H}\!om_{\mathbb{C}^{\hbar}_X}(\mathbb{C}^{\hbar,\operatorname{loc}}_X,F)$ vanishes.

ション ふゆ マ キャット マックシン

Cohomologically complete objects

Definition:

One says that $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete if $\mathrm{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_X}(\mathbb{C}^{\hbar,\mathrm{loc}}_X,F)$ vanishes.

Properties:

1. Coherent \mathscr{D}_X^{\hbar} -modules and \mathbb{R} -constructible sheaves of \mathbb{C}^{\hbar} -modules are cohomologically complete.

ション ふゆ マ キャット マックシン

Cohomologically complete objects

Definition:

One says that $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete if $\mathrm{R}\mathscr{H}\!om_{\mathbb{C}^{\hbar}_X}(\mathbb{C}^{\hbar,\mathrm{loc}}_X,F)$ vanishes.

Properties:

- 1. Coherent \mathscr{D}^{\hbar}_X -modules and \mathbb{R} -constructible sheaves of \mathbb{C}^{\hbar} -modules are cohomologically complete.
- 2. If $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete, then $\mathbb{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_X}(G,F)$ is cohomologically complete for any $G \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X).$

Cohomologically complete objects

Definition:

One says that $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete if $\mathrm{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_X}(\mathbb{C}^{\hbar,\mathrm{loc}}_X,F)$ vanishes.

Properties:

- 1. Coherent \mathscr{D}^{\hbar}_X -modules and \mathbb{R} -constructible sheaves of \mathbb{C}^{\hbar} -modules are cohomologically complete.
- 2. If $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete, then $\mathbb{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_X}(G,F)$ is cohomologically complete for any $G \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X).$
- 3. If $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete and $f: X \to Y$ is a morphism of complex manifolds, then $\mathrm{R}f_*F$ is cohomologically complete.

Cohomologically complete objects

Definition:

One says that $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete if $\mathrm{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_X}(\mathbb{C}^{\hbar,\mathrm{loc}}_X,F)$ vanishes.

Properties:

- 1. Coherent \mathscr{D}_X^{\hbar} -modules and \mathbb{R} -constructible sheaves of \mathbb{C}^{\hbar} -modules are cohomologically complete.
- 2. If $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete, then $\mathbb{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_X}(G,F)$ is cohomologically complete for any $G \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X).$
- 3. If $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$ is cohomologically complete and $f: X \to Y$ is a morphism of complex manifolds, then $\mathrm{R}f_*F$ is cohomologically complete.
- 4. The formal extension $F^{\mathbb{R}\hbar}$ of any $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X)$ is cohomologically complete.

Cohomologically complete objects

Let $f:X\to Y$ be a morphism of complex manifolds and consider the natural maps

 $f_{\pi}: X \times_Y T^*Y \to T^*Y, \quad f_d: X \times_Y T^*Y \to T^*X,$

and set $T_X^*Y := f_d^{-1}(T_X^*X) \subset X \times_Y T^*Y$. f is said to be non-characteristic for $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_Y)$ if

 $T_X^*Y \cap f_\pi^{-1}(SS(F)) \subset X \times_Y T_Y^*Y.$

Cohomologically complete objects

Let $f:X\to Y$ be a morphism of complex manifolds and consider the natural maps

 $f_{\pi}: X \times_Y T^*Y \to T^*Y, \quad f_d: X \times_Y T^*Y \to T^*X,$

and set $T_X^*Y := f_d^{-1}(T_X^*X) \subset X \times_Y T^*Y$. f is said to be non-characteristic for $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_Y)$ if

$$T_X^*Y \cap f_\pi^{-1}(SS(F)) \subset X \times_Y T_Y^*Y.$$

うして ふゆう ふほう ふほう ふしつ

Lemma:

If f is non-characteristic for a cohomologically complete object $F \in \mathsf{D}^{\mathsf{b}}(\mathbb{C}^{\hbar}_{Y})$, then $f^{-1}F$ is also cohomologically complete.

Cohomologically complete objects

Let $f:X\to Y$ be a morphism of complex manifolds and consider the natural maps

 $f_{\pi}: X \times_Y T^*Y \to T^*Y, \quad f_d: X \times_Y T^*Y \to T^*X,$

and set $T_X^*Y := f_d^{-1}(T_X^*X) \subset X \times_Y T^*Y$. f is said to be non-characteristic for $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_Y)$ if

$$T_X^*Y \cap f_\pi^{-1}(SS(F)) \subset X \times_Y T_Y^*Y.$$

Lemma:

If f is non-characteristic for a cohomologically complete object $F \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_{Y})$, then $f^{-1}F$ is also cohomologically complete.

Proof.

The result follows from the isomorphism

$$\mathrm{R}\mathscr{H}\!\mathit{om}_{\mathbb{C}^{\hbar}_{X}}(\mathbb{C}^{\hbar,\mathrm{loc}}_{X},f^{!}\mathscr{M})\simeq f^{!}\mathrm{R}\mathscr{H}\!\mathit{om}_{\mathbb{C}^{\hbar}_{Y}}(\mathbb{C}^{\hbar,\mathrm{loc}}_{Y},\mathscr{M})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲ ■ のへで

Consider also the right exact functor that associates to each $F \in \operatorname{Mod}(\mathbb{C}_X^{\hbar})$ the quotient $F/\hbar F \in \operatorname{Mod}(\mathbb{C}_X)$. Its left derived functor is called the graduate functor:

$$\begin{array}{rcl} \operatorname{gr}_{\hbar}: \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_{X}) & \to & \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}), \\ F & \mapsto & F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathbb{C}_{X}. \end{array}$$

Consider also the right exact functor that associates to each $F \in \operatorname{Mod}(\mathbb{C}_X^{\hbar})$ the quotient $F/\hbar F \in \operatorname{Mod}(\mathbb{C}_X)$. Its left derived functor is called the graduate functor:

$$\begin{aligned} \operatorname{gr}_{\hbar} : \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_{X}) &\to \quad \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}), \\ F &\mapsto \quad F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathbb{C}_{X}. \end{aligned}$$

Theorems: [M. Kashiwara, P. Schapira]

(a) The functor $\operatorname{gr}_{\hbar}$ is conservative when restricted to cohomologically complete objects.

Consider also the right exact functor that associates to each $F \in \operatorname{Mod}(\mathbb{C}_X^{\hbar})$ the quotient $F/\hbar F \in \operatorname{Mod}(\mathbb{C}_X)$. Its left derived functor is called the graduate functor:

$$\begin{aligned} \operatorname{gr}_{\hbar} : \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_{X}) &\to \quad \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}), \\ F &\mapsto \quad F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathbb{C}_{X}. \end{aligned}$$

Theorems: [M. Kashiwara, P. Schapira]

- (a) The functor gr_{\hbar} is conservative when restricted to cohomologically complete objects.
- (b) Assume that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}(\mathscr{D}_X^{\hbar})$ is cohomologically complete and that $\operatorname{gr}_{\hbar}(\mathscr{M})$ belongs to $\mathsf{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X)$. Then, $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$.

Consider also the right exact functor that associates to each $F \in \operatorname{Mod}(\mathbb{C}_X^{\hbar})$ the quotient $F/\hbar F \in \operatorname{Mod}(\mathbb{C}_X)$. Its left derived functor is called the graduate functor:

$$\begin{aligned} \operatorname{gr}_{\hbar} : \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_{X}) &\to \quad \mathsf{D}^{\mathrm{b}}(\mathbb{C}_{X}), \\ F &\mapsto \quad F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathbb{C}_{X}. \end{aligned}$$

Theorems: [M. Kashiwara, P. Schapira]

- (a) The functor $\operatorname{gr}_{\hbar}$ is conservative when restricted to cohomologically complete objects.
- (b) Assume that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}(\mathscr{D}_X^{\hbar})$ is cohomologically complete and that $\operatorname{gr}_{\hbar}(\mathscr{M})$ belongs to $\mathsf{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X)$. Then, $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$.
- (c) Assume that \mathscr{M} is a cohomologically complete \mathscr{D}_X^{\hbar} -module with no \hbar -torsion such that $\mathscr{M}/\hbar\mathscr{M}$ is flat over \mathscr{D}_X . Then \mathscr{M} is flat over \mathscr{D}_X^{\hbar} .

Functorial properties of 𝒴[[ħ]]-modules └─Inverse image of 𝒴^ħ-modules

Contents

Notations Formal extensions Cohomologically complete objects Graduate functor

Inverse image of \mathscr{D}^{\hbar} -modules

The inverse image extension The inverse image in the derived category The case of non-characteristic modules Extraordinary inverse image

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Direct image

Elliptic pairs

Review of \mathscr{D} -modules case Elliptic pairs over $\mathbb{C}[[\hbar]]$ Regularity Finiteness Duality Examples

Extension of functors for algebras of formal deformations

Let X and X' be complex manifolds and assume that \mathcal{B}' is a *suitable* basis of compact subsets of X'. Assume also that \mathcal{S} (resp. \mathcal{S}') is a full Serre subcategory of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}^{\hbar}_X)$ (resp. \mathcal{S}' is full abelian subcategory of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}^{\hbar}_{X'})$ satisfying Condition 1).

Extension of functors for algebras of formal deformations

Let X and X' be complex manifolds and assume that \mathcal{B}' is a *suitable* basis of compact subsets of X'. Assume also that \mathcal{S} (resp. \mathcal{S}') is a full Serre subcategory of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}^{\hbar}_X)$ (resp. \mathcal{S}' is full abelian subcategory of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}^{\hbar}_X)$ satisfying Condition 1).

Condition 1:

Each $\mathscr{M} \in \mathscr{S}'|_U$ admits for each $y \in U$ an open neighborhood V of y, such that for each submodule \mathscr{N} of $\mathscr{M}|_V$, if $K \in \mathscr{B}'$ is contained in V then $H^j(K; \mathscr{N}) = 0$ for any j > 0.

Theorem: [A.R.Martins, T.M. Fernandes, D.R.]

Let $F: \mathcal{S} \to \mathcal{S}'$ be a right exact functor. Then F defines canonically a right exact functor

$$F^{\hbar}: \operatorname{Mod}_{\mathcal{S}}(\mathscr{D}^{\hbar}_{X}) \to \operatorname{Mod}(\mathscr{D}^{\hbar}_{X'}), \quad \mathscr{M} \mapsto F^{\hbar} := \varprojlim_{n} F(\mathscr{M}_{n}),$$

and if \mathcal{S}' is a subcategory of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_{X'}^{\hbar})$ then F^{\hbar} takes values in $\operatorname{Mod}_{\mathcal{S}'}(\mathscr{D}_X^{\hbar})$. Moreover, when F is exact, F^{\hbar} is also exact.

The inverse image extension

Let $f: X \to Y$ be a morphism of complex manifolds. Consider the right exact functor in the \mathscr{D} -modules framework:

 $\frac{f^*: \operatorname{Mod}(\mathscr{D}_Y) \to \operatorname{Mod}(\mathscr{D}_X), \\ \mathscr{M} \mapsto \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathscr{M}.$

The inverse image extension

Let $f: X \to Y$ be a morphism of complex manifolds. Consider the right exact functor in the \mathscr{D} -modules framework:

$$\frac{f^*: \operatorname{Mod}(\mathscr{D}_Y) \to \operatorname{Mod}(\mathscr{D}_X),}{\mathscr{M} \mapsto \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathscr{M}.}$$

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

For our purpose we can consider \mathcal{S}' as the whole category of \mathscr{D}_X -modules that satisfy Condition 1.

Proposition:

If \mathscr{M} is a coherent \mathscr{D}_Y -module, then $f^*(\mathscr{M})$ is an object of \mathcal{S}' .

The inverse image extension

Let $f: X \to Y$ be a morphism of complex manifolds. Consider the right exact functor in the \mathscr{D} -modules framework:

$$\frac{f^*: \operatorname{Mod}(\mathscr{D}_Y) \to \operatorname{Mod}(\mathscr{D}_X),}{\mathscr{M} \mapsto \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathscr{M}.}$$

For our purpose we can consider \mathcal{S}' as the whole category of \mathscr{D}_X -modules that satisfy Condition 1.

Proposition:

If \mathscr{M} is a coherent \mathscr{D}_Y -module, then $f^*(\mathscr{M})$ is an object of \mathcal{S}' .

Corollary:

The functor f^* extends canonically to a right exact functor:

$$\underline{f}^{*,\hbar} : \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_{Y}^{\hbar}) \to \operatorname{Mod}(\mathscr{D}_{X}^{\hbar}),$$

$$\mathscr{M} \mapsto \underline{f}^{*,\hbar}(\mathscr{M}) := \varprojlim(\underline{f}^{*}(\mathscr{M}_{n})).$$

Transfer module

Let $f: X \to Y$ be a morphism of complex manifolds and consider the object:

$$\mathscr{K} := \mathscr{D}_{X \to Y,\hbar} = \underline{f}^{*,\hbar}(\mathscr{D}_Y^{\hbar}) = \varprojlim_n (\mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}_{Yn}^{\hbar})).$$

ション ふゆ く は く は く む く む く し く

We remark that \mathscr{K} is a $(\mathscr{D}^{\hbar}_X, f^{-1}\mathscr{D}^{\hbar}_Y)$ -bimodule.

Transfer module

Let $f:X\to Y$ be a morphism of complex manifolds and consider the object:

$$\mathscr{K} := \mathscr{D}_{X \to Y,\hbar} = \underline{f}^{*,\hbar}(\mathscr{D}_Y^{\hbar}) = \varprojlim_n (\mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}_{Yn}^{\hbar})).$$

うして ふゆう ふほう ふほう ふしつ

We remark that \mathscr{K} is a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule. Properties:

1. The formal extension $(\mathscr{D}_X \to Y)^{\hbar}$, regarded as a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule, is isomorphic to \mathscr{K} .

Transfer module

Let $f:X\to Y$ be a morphism of complex manifolds and consider the object:

$$\mathscr{K} := \mathscr{D}_{X \to Y,\hbar} = \underline{f}^{*,\hbar}(\mathscr{D}_Y^{\hbar}) = \varprojlim_n (\mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}_{Yn}^{\hbar})).$$

うして ふゆう ふほう ふほう ふしつ

We remark that \mathscr{K} is a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule. Properties:

- 1. The formal extension $(\mathscr{D}_X \to Y)^{\hbar}$, regarded as a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule, is isomorphic to \mathscr{K} .
- 2. $\operatorname{gr}_{\hbar} \mathscr{K} \simeq \mathscr{D}_{X \longrightarrow Y}$.

Transfer module

Let $f:X\to Y$ be a morphism of complex manifolds and consider the object:

$$\mathscr{K} := \mathscr{D}_{X \to Y,\hbar} = \underline{f}^{*,\hbar}(\mathscr{D}_Y^{\hbar}) = \varprojlim_n (\mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}_{Yn}^{\hbar})).$$

うして ふゆう ふほう ふほう ふしつ

We remark that \mathscr{K} is a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule. Properties:

- 1. The formal extension $(\mathscr{D}_X \to Y)^{\hbar}$, regarded as a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule, is isomorphic to \mathscr{K} .
- 2. $\operatorname{gr}_{\hbar} \mathscr{K} \simeq \mathscr{D}_{X \longrightarrow Y}$.
- 3. \mathscr{K} is cohomologically complete.

Transfer module

Let $f: X \to Y$ be a morphism of complex manifolds and consider the object:

$$\mathscr{K} := \mathscr{D}_{X \to Y,\hbar} = \underline{f}^{*,\hbar}(\mathscr{D}_Y^{\hbar}) = \varprojlim_n (\mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}_{Yn}^{\hbar})).$$

We remark that \mathscr{K} is a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule. Properties:

- 1. The formal extension $(\mathscr{D}_X \to Y)^{\hbar}$, regarded as a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule, is isomorphic to \mathscr{K} .
- 2. $\operatorname{gr}_{\hbar} \mathscr{K} \simeq \mathscr{D}_{X \longrightarrow Y}$.
- 3. \mathscr{K} is cohomologically complete.
- 4. For each $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{Y}), \, \mathscr{K} \overset{\mathrm{L}}{\otimes}_{f^{-1}(\mathscr{D}^{\hbar}_{X})} f^{-1}\mathscr{M}$ is cohomologically complete.

Transfer module

Let $f: X \to Y$ be a morphism of complex manifolds and consider the object:

$$\mathscr{K} := \mathscr{D}_{X \to Y,\hbar} = \underline{f}^{*,\hbar}(\mathscr{D}_Y^{\hbar}) = \varprojlim_n (\mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}_{Yn}^{\hbar})).$$

We remark that \mathscr{K} is a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule. Properties:

- 1. The formal extension $(\mathscr{D}_X \to Y)^{\hbar}$, regarded as a $(\mathscr{D}_X^{\hbar}, f^{-1}\mathscr{D}_Y^{\hbar})$ -bimodule, is isomorphic to \mathscr{K} .
- 2. $\operatorname{gr}_{\hbar} \mathscr{K} \simeq \mathscr{D}_{X \longrightarrow Y}$.
- 3. \mathscr{K} is cohomologically complete.
- 4. For each $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{Y}), \, \mathscr{K} \overset{\mathrm{L}}{\otimes}_{f^{-1}(\mathscr{D}^{\hbar}_{X})} f^{-1}\mathscr{M}$ is cohomologically complete.
- 5. For each $\mathscr{M} \in \mathrm{Mod}_{\mathrm{coh}}(\mathscr{D}_Y^{\hbar}), \underline{f}^{*,\hbar}(\mathscr{M})$ is cohomologically complete.

Transfer module

Proof:

1. In fact the components of the projective limits coincide, that is, for each *n* we have: $\mathscr{D}_{X \to Y} \otimes_{\mathbb{C}_X} \mathbb{C}^{\hbar}_X / \hbar^n \mathbb{C}^{\hbar}_X \simeq \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}^{\hbar}_{Yn}).$

Transfer module

Proof:

1. In fact the components of the projective limits coincide, that is, for each *n* we have: $\mathscr{D}_{X \to Y} \otimes_{\mathbb{C}_X} \mathbb{C}^{\hbar}_X / \hbar^n \mathbb{C}^{\hbar}_X \simeq \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}(\mathscr{D}^{\hbar}_{Yn}).$

うして ふゆう ふほう ふほう ふしつ

2. It is a consequence of 1.

Transfer module

Proof:

1. In fact the components of the projective limits coincide, that is, for each *n* we have: $\mathscr{D}_{X \to Y} \otimes_{\mathbb{C}_X} \mathbb{C}^{\hbar}_X / \hbar^n \mathbb{C}^{\hbar}_X \simeq \mathscr{O}_X \otimes_{f^{-1} \mathscr{O}_Y} f^{-1}(\mathscr{D}^{\hbar}_{Yn}).$

- 2. It is a consequence of 1.
- 3. The idea is to prove that $\mathscr{D}_{X \to Y}^{\mathbb{R}\hbar} \simeq \mathscr{D}_{X \to Y}^{\hbar} \simeq \mathscr{K}.$

Transfer module

Proof:

1. In fact the components of the projective limits coincide, that is, for each *n* we have: $\mathscr{D}_{X \to Y} \otimes_{\mathbb{C}_X} \mathbb{C}^{\hbar}_X / \hbar^n \mathbb{C}^{\hbar}_X \simeq \mathscr{O}_X \otimes_{f^{-1} \mathscr{O}_Y} f^{-1}(\mathscr{D}^{\hbar}_{Yn}).$

- 2. It is a consequence of 1.
- 3. The idea is to prove that $\mathscr{D}_{X \to Y}^{\mathbb{R}\hbar} \simeq \mathscr{D}_{X \to Y}^{\hbar} \simeq \mathscr{K}.$

4. We can replace $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{Y})$ by a local free resolution of finite rank: $\mathscr{D}^{\hbar, \bullet}_{Y} \xrightarrow{\mathrm{qis}} \mathscr{M}$. Then we obtain a quasi-isomorphism:

$$\mathscr{K}^{\bullet} \xrightarrow{\operatorname{qis}} \mathscr{K} \overset{\operatorname{L}}{\otimes}_{f^{-1}\mathscr{D}_{Y}^{\hbar}} f^{-1}\mathscr{M}$$

うして ふゆう ふほう ふほう ふしつ

and the result follows from 3.

5. Since \mathscr{M} is a coherent \mathscr{D}_{Y}^{\hbar} -module we may consider a finite presentation of \mathscr{M} :

$$\mathscr{D}_Y^{\hbar,\oplus M} \to \mathscr{D}_Y^{\hbar,\oplus N} \to \mathscr{M} \to 0.$$

Applying the right exact functor $\underline{f}^{*,\hbar}$ we obtain the exact sequence below:

$$\mathscr{K}^{\oplus M} \to \mathscr{K}^{\oplus N} \to \underline{f}^{*,\hbar}(\mathscr{M}) \to 0.$$

Since the category of cohomologically complete modules is thick, the result follows from 3.

うつう 山田 エル・エー・ 山田 うらう

The inverse image in the derived category

Proposition:

For $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$, we have an isomorphism in $\operatorname{Mod}(\mathscr{D}_Y^{\hbar})$:

$$\mathscr{K} \otimes_{f^{-1}(\mathscr{D}_X^{\hbar})} f^{-1}\mathscr{M} \xrightarrow{\sim} \underline{f}^{*,\hbar}(\mathscr{M}).$$
 (1)

うして ふむ くまく ふせく しゃくしゃ

Proof:

Step 1: first we construct morphisms

$$\mathscr{K} \otimes_{f^{-1}\mathscr{O}_Y^{\hbar}} f^{-1}\mathscr{M} \to \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathscr{M}_n.$$

Applying the universal property of projective limits we get the canonical morphism (1).

The inverse image in the derived category

Proposition:

For $\mathscr{M} \in \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar})$, we have an isomorphism in $\operatorname{Mod}(\mathscr{D}_Y^{\hbar})$:

$$\mathscr{K} \otimes_{f^{-1}(\mathscr{D}_X^{\hbar})} f^{-1}\mathscr{M} \xrightarrow{\sim} \underline{f}^{*,\hbar}(\mathscr{M}).$$
 (1)

Proof:

Step 1: first we construct morphisms

$$\mathscr{K} \otimes_{f^{-1}\mathscr{O}_Y^{\hbar}} f^{-1}\mathscr{M} \to \mathscr{O}_X \otimes_{f^{-1}\mathscr{O}_Y} f^{-1}\mathscr{M}_n.$$

Applying the universal property of projective limits we get the canonical morphism (1).

Step 2: if \mathscr{M} is a free \mathscr{D}_X^{\hbar} -module of finite rank, say $\mathscr{D}_X^{\hbar,\oplus M}$, then (1) is an isomorphism since both sides are isomorphic to $\mathscr{K}^{\oplus M}$.

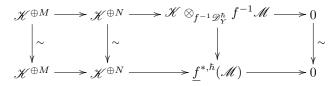
The inverse image in the derived category

Step 3: to prove the general case we take a finite presentation of \mathcal{M} :

$$\mathscr{D}_Y^{\hbar,\oplus M} \to \mathscr{D}_Y^{\hbar,\oplus N} \to \mathscr{M} \to 0.$$

Applying the right exact functors $\mathscr{K} \otimes_{f^{-1}\mathscr{D}_Y^{\hbar}} f^{-1} \bullet$ and $\underline{f}^{*,\hbar}$, we get a commutative diagram:

うして ふゆう ふほう ふほう ふしつ



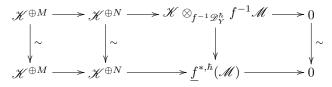
The conclusion follows by the five lemma.

The inverse image in the derived category

Step 3: to prove the general case we take a finite presentation of \mathcal{M} :

$$\mathscr{D}_Y^{\hbar,\oplus M} \to \mathscr{D}_Y^{\hbar,\oplus N} \to \mathscr{M} \to 0.$$

Applying the right exact functors $\mathscr{K} \otimes_{f^{-1}\mathscr{D}_Y^{\hbar}} f^{-1} \bullet$ and $\underline{f}^{*,\hbar}$, we get a commutative diagram:



The conclusion follows by the five lemma.

Corollary:

The functor $\underline{f}^{*,\hbar}$ is left derivable and for $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_X)$ we have:

$${}^{\mathbb{L}}\underline{f}^{*,\hbar}(\mathscr{M})\simeq \mathscr{K}^{\mathbb{L}}_{\mathfrak{H}^{-1}(\mathscr{D}^{\hbar}_{X})}f^{-1}\mathscr{M}.$$

The case of non-characteristic modules

Recall that one says that f is non-characteristic for a coherent $\mathscr{D}_Y\text{-}\mathrm{module}\ \mathscr{M}$ if:

 $T_X^*Y \cap f_\pi^{-1} \operatorname{char}(\mathscr{M}) \subset X \times_Y T_Y^*Y.$

ション ふゆ マ キャット マックシン

The case of non-characteristic modules

Recall that one says that f is non-characteristic for a coherent \mathscr{D}_Y -module \mathscr{M} if:

 $T_X^*Y \cap f_\pi^{-1} \operatorname{char}(\mathscr{M}) \subset X \times_Y T_Y^*Y.$

Denote by NC(f) the full Serre subcategory of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_Y)$ consisting of non-characteristic \mathscr{D}_Y -modules for f. It is well-known that the functor \underline{f}^* restricted to NC(f) is an exact functor that takes values in $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X)$.

The case of non-characteristic modules

Recall that one says that f is non-characteristic for a coherent \mathscr{D}_Y -module \mathscr{M} if:

$$T_X^* Y \cap f_\pi^{-1} \operatorname{char}(\mathscr{M}) \subset X \times_Y T_Y^* Y.$$

Denote by NC(f) the full Serre subcategory of $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_Y)$ consisting of non-characteristic \mathscr{D}_Y -modules for f. It is well-known that the functor \underline{f}^* restricted to NC(f) is an exact functor that takes values in $\operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X)$.

Corollary:

We have an exact functor $\underline{f}^{*,\hbar}$: $\operatorname{Mod}_{NC(f)}(\mathscr{D}_Y^{\hbar}) \to \operatorname{Mod}_{\operatorname{coh}}(\mathscr{D}_X^{\hbar}).$

Theorem: [A.R. Martins, T. Monteiro Fernandes, D.R.]

Assume that \mathscr{M} is a non-characteristic \mathscr{D}_Y^{\hbar} -module. Then one has a natural isomorphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$:

$$f^{-1}\mathcal{R}\mathscr{H}om_{\mathscr{D}_{Y}^{\hbar}}(\mathscr{M},\mathscr{O}_{Y}^{\hbar}) \xrightarrow{\sim} \mathcal{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\underline{f}^{*,\hbar}(\mathscr{M}),\mathscr{O}_{X}^{\hbar}).$$
(2)

Theorem: [A.R. Martins, T. Monteiro Fernandes, D.R.] Assume that \mathscr{M} is a non-characteristic \mathscr{D}_Y^{\hbar} -module. Then one has a natural isomorphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$:

$$f^{-1}\mathcal{R}\mathscr{H}om_{\mathscr{D}_{Y}^{\hbar}}(\mathscr{M},\mathscr{O}_{Y}^{\hbar}) \xrightarrow{\sim} \mathcal{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\underline{f}^{*,\hbar}(\mathscr{M}),\mathscr{O}_{X}^{\hbar}).$$
(2)

Proof:

Step 1: we define the morphism (2) using the canonical morphism

$$f^{-1}\mathcal{R}\mathscr{H}om_{\mathscr{D}_{Y}^{\hbar}}(\mathscr{M},\mathscr{O}_{Y}^{\hbar})\to\mathcal{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\mathscr{K}^{\mathcal{L}}\otimes_{f^{-1}\mathscr{D}_{Y}^{\hbar}}f^{-1}\mathscr{M},\mathscr{K}^{\mathcal{L}}\otimes_{f^{-1}\mathscr{D}_{Y}^{\hbar}}f^{-1}\mathscr{O}_{Y}^{\hbar})$$

うして ふゆう ふほう ふほう ふしつ

and proving that the inverse image of \mathscr{O}_Y^{\hbar} is \mathscr{O}_X^{\hbar} .

Theorem: [A.R. Martins, T. Monteiro Fernandes, D.R.] Assume that \mathscr{M} is a non-characteristic \mathscr{D}_Y^{\hbar} -module. Then one has a natural isomorphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$:

$$f^{-1}\mathcal{R}\mathscr{H}om_{\mathscr{D}_{Y}^{\hbar}}(\mathscr{M},\mathscr{O}_{Y}^{\hbar}) \xrightarrow{\sim} \mathcal{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\underline{f}^{*,\hbar}(\mathscr{M}),\mathscr{O}_{X}^{\hbar}).$$
(2)

Proof:

Step 1: we define the morphism (2) using the canonical morphism

$$f^{-1}\mathrm{R}\mathscr{H}\!om_{\mathscr{D}_{Y}^{\hbar}}(\mathscr{M},\mathscr{O}_{Y}^{\hbar}) \to \mathrm{R}\mathscr{H}\!om_{\mathscr{D}_{X}^{\hbar}}(\mathscr{K}^{\mathrm{L}}_{\otimes_{f^{-1}\mathscr{D}_{Y}^{\hbar}}}f^{-1}\mathscr{M},\mathscr{K}^{\mathrm{L}}_{\otimes_{f^{-1}\mathscr{D}_{Y}^{\hbar}}}f^{-1}\mathscr{O}_{Y}^{\hbar})$$

うして ふゆう ふほう ふほう ふしつ

and proving that the inverse image of \mathscr{O}_Y^{\hbar} is \mathscr{O}_X^{\hbar} . Step 2: both sides of (2) are cohomologically complete.

Theorem: [A.R. Martins, T. Monteiro Fernandes, D.R.] Assume that \mathscr{M} is a non-characteristic \mathscr{D}_Y^{\hbar} -module. Then one has a natural isomorphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$:

$$f^{-1}\mathcal{R}\mathscr{H}om_{\mathscr{D}_{Y}^{\hbar}}(\mathscr{M},\mathscr{O}_{Y}^{\hbar}) \xrightarrow{\sim} \mathcal{R}\mathscr{H}om_{\mathscr{D}_{X}^{\hbar}}(\underline{f}^{*,\hbar}(\mathscr{M}),\mathscr{O}_{X}^{\hbar}).$$
(2)

Proof:

Step 1: we define the morphism (2) using the canonical morphism

$$f^{-1}\mathrm{R}\mathscr{H}\!om_{\mathscr{D}_{Y}^{\hbar}}(\mathscr{M},\mathscr{O}_{Y}^{\hbar}) \to \mathrm{R}\mathscr{H}\!om_{\mathscr{D}_{X}^{\hbar}}(\mathscr{K}^{\mathrm{L}}_{\otimes_{f^{-1}\mathscr{D}_{Y}^{\hbar}}}f^{-1}\mathscr{M},\mathscr{K}^{\mathrm{L}}_{\otimes_{f^{-1}\mathscr{D}_{Y}^{\hbar}}}f^{-1}\mathscr{O}_{Y}^{\hbar})$$

うして ふむ くまく ふせく しゃくしゃ

and proving that the inverse image of \mathscr{O}_Y^{\hbar} is \mathscr{O}_X^{\hbar} . Step 2: both sides of (2) are cohomologically complete. Step 3: when we apply $\operatorname{gr}_{\hbar}$ to the morphism (2) we obtain the CKK isomorphism in the \mathscr{D}_X -modules framework. Hence, (2) is also an isomorphism.

Functorial properties of 𝒴[[ħ]]-modules └─ Inverse image of 𝒷^ħ-modules └─ Extraordinary inverse image

Extraordinary inverse image

Similarly to the case of \mathscr{D} -modules, one considers the duality functor:

$$\begin{array}{rcl} \mathbb{D}_{\hbar}: \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})^{\mathrm{op}} & \to & \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X}), \\ \mathscr{M} & \mapsto & \mathrm{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M}, \mathscr{D}^{\hbar}_{X} \otimes_{\mathscr{O}_{X}} \Omega^{\otimes -1}_{X})[d_{X}]. \end{array}$$

ション ふゆ く は く は く む く む く し く

Extraordinary inverse image

Similarly to the case of \mathcal{D} -modules, one considers the duality functor:

$$\begin{split} \mathbb{D}_{\hbar} &: \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})^{\mathrm{op}} &\to \quad \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X}), \\ & \mathscr{M} &\mapsto \quad \mathrm{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M}, \mathscr{D}^{\hbar}_{X} \otimes_{\mathscr{O}_{X}} \Omega_{X}^{\otimes -1})[d_{X}]. \end{split}$$

We define the so called extraordinary inverse image:

$${}^{\mathbb{L}}\underline{f}^{!,\hbar}:\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{Y})\to\mathsf{D}^{\mathrm{b}}(\mathscr{D}^{\hbar}_{X}),\quad\mathscr{M}\mapsto\mathbb{D}_{\hbar}({}^{\mathbb{L}}\underline{f}^{*,\hbar}(\mathbb{D}_{\hbar}(\mathscr{M}))).$$

ション ふゆ く は く は く む く む く し く

Extraordinary inverse image

Similarly to the case of \mathscr{D} -modules, one considers the duality functor:

$$\begin{split} \mathbb{D}_{\hbar} &: \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})^{\mathrm{op}} &\to \quad \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X}), \\ & \mathscr{M} &\mapsto \quad \mathrm{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M}, \mathscr{D}^{\hbar}_{X} \otimes_{\mathscr{O}_{X}} \Omega_{X}^{\otimes -1})[d_{X}]. \end{split}$$

We define the so called extraordinary inverse image:

$${}^{\mathbb{L}}\underline{f}^{!,\hbar}:\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{Y})\to\mathsf{D}^{\mathrm{b}}(\mathscr{D}^{\hbar}_{X}),\quad\mathscr{M}\mapsto\mathbb{D}_{\hbar}({}^{\mathbb{L}}\underline{f}^{*,\hbar}(\mathbb{D}_{\hbar}(\mathscr{M}))).$$

Recall that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$ is said to be holonomic if $\mathrm{gr}_{\hbar}(\mathscr{M})$ is holonomic in the \mathscr{D} -module sense. Hence, the functors \mathbb{D}_{\hbar} , $^{\mathbb{L}}\underline{f}^{*,\hbar}$, and $^{\mathbb{L}}\underline{f}^{\hbar,!}(\mathscr{M})$ preserve holonomicity as a consequence of the analogous properties for \mathscr{D} -modules.

Contents

Netetions

Formal extensions Cohomologically complete object Graduate functor

Inverse image of \mathscr{D}^{\hbar} -modules

The inverse image extension The inverse image in the derived category The case of non-characteristic modules Extraordinary inverse image

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Direct image

Elliptic pairs

Review of \mathscr{D} -modules case Elliptic pairs over $\mathbb{C}[[\hbar]]$ Regularity Finiteness Duality

Examples

Direct image

Still denote by $f: X \to Y$ a morphism of complex manifolds. We introduce the functors of direct image and proper direct image of \mathscr{D}^{\hbar} -modules associated to f, respectively denoted by $\mathrm{R}\underline{f}^{\hbar}_{*}$, $\mathrm{R}\underline{f}^{\hbar}_{-}: \mathsf{D}^{\mathrm{b}}(\mathscr{D}^{\hbar \text{ op}}_{X}) \to \mathsf{D}^{\mathrm{b}}(\mathscr{D}^{\hbar \text{ op}}_{Y})$, and defined by:

$$\begin{split} \mathbf{R}\underline{f}^{\hbar}_{*}(\mathscr{M}) &:= Rf_{*}(\mathscr{M} \overset{\mathbf{L}}{\otimes}_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}), \\ \mathbf{R}\underline{f}^{\hbar}_{!}(\mathscr{M}) &:= Rf_{!}(\mathscr{M} \overset{\mathbf{L}}{\otimes}_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}). \end{split}$$

Direct image

Still denote by $f: X \to Y$ a morphism of complex manifolds. We introduce the functors of direct image and proper direct image of \mathscr{D}^{\hbar} -modules associated to f, respectively denoted by $\mathrm{R}\underline{f}^{\hbar}_{*}$, $\mathrm{R}\underline{f}^{\hbar}_{\underline{l}}: \mathsf{D}^{\mathrm{b}}(\mathscr{D}^{\hbar\,\mathrm{op}}_{X}) \to \mathsf{D}^{\mathrm{b}}(\mathscr{D}^{\hbar\,\mathrm{op}}_{Y})$, and defined by:

$$\begin{split} \mathbf{R}\underline{f}^{\hbar}_{*}(\mathscr{M}) &:= Rf_{*}(\mathscr{M} \overset{\mathbf{L}}{\otimes}_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}), \\ \mathbf{R}\underline{f}^{\hbar}_{!}(\mathscr{M}) &:= Rf_{!}(\mathscr{M} \overset{\mathbf{L}}{\otimes}_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}). \end{split}$$

Theorem: [A.R.Martins, T.Monteiro Fernandes,D.R.] Suppose that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{good}}(\mathscr{D}_X^{\hbar^{\mathrm{op}}})$ (resp. $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{hol}}(\mathscr{D}_X^{\hbar^{\mathrm{op}}})$) and that f is proper when restricted to $\mathrm{supp}(\mathscr{M})$. Then,

$$\mathrm{R}\underline{f}^{\hbar}_{*}(\mathscr{M}) \in \mathsf{D}^{\mathrm{b}}_{\mathrm{good}}(\mathscr{D}^{\hbar\,\mathrm{op}}_{Y})$$

(resp. $\mathrm{R}\underline{f}^{\hbar}_{*}(\mathscr{M}) \in \mathsf{D}^{\mathrm{b}}_{\mathrm{hol}}(\mathscr{D}_{Y}^{\hbar^{\mathrm{op}}}).)$

The case of a closed immersion

Consider the case of a closed submanifold $i: X \hookrightarrow Y$. In this case $\mathscr{D}_{X \to Y}$ is flat over \mathscr{D}_X . Hence, $\mathscr{K} \simeq \mathscr{D}_{X \to Y}^{\hbar}$ is flat over \mathscr{D}_X^{\hbar} .

ション ふゆ く は く は く む く む く し く

The case of a closed immersion

Consider the case of a closed submanifold $i: X \hookrightarrow Y$. In this case $\mathscr{D}_{X \to Y}$ is flat over \mathscr{D}_X . Hence, $\mathscr{K} \simeq \mathscr{D}_{X \to Y}^{\hbar}$ is flat over \mathscr{D}_X^{\hbar} . Consider the exact functor

$$\underline{i}_*: \mathrm{Mod}_{\mathrm{coh}}(\mathscr{D}_X^{\mathrm{op}}) \to \mathrm{Mod}_{\mathrm{coh}}(\mathscr{D}_Y^{\mathrm{op}}), \quad \mathscr{M} \mapsto \underline{i}_*(\mathscr{M}) := i_*(\mathscr{M} \otimes_{\mathscr{D}_X} \mathscr{D}_X \to Y).$$

We can extend \underline{i}_* to an exact functor

$$\underline{i}^{\hbar}_{*} : \operatorname{Mod}_{\operatorname{coh}}((\mathscr{D}^{\hbar}_{X})^{\operatorname{op}}) \to \operatorname{Mod}_{\operatorname{coh}}((\mathscr{D}^{\hbar}_{Y})^{\operatorname{op}})$$
$$\underline{i}^{\hbar}_{*}(\mathscr{M}) := \varprojlim_{n} i_{*}(\mathscr{M}_{n} \otimes_{\mathscr{D}_{X}} \mathscr{D}_{X} \to_{Y}).$$

,

The case of a closed immersion

Consider the case of a closed submanifold $i: X \hookrightarrow Y$. In this case $\mathscr{D}_{X \to Y}$ is flat over \mathscr{D}_X . Hence, $\mathscr{K} \simeq \mathscr{D}^{\hbar}_{X \to Y}$ is flat over \mathscr{D}^{\hbar}_X . Consider the exact functor

$$\underline{i}_*: \mathrm{Mod}_{\mathrm{coh}}(\mathscr{D}_X^{\mathrm{op}}) \to \mathrm{Mod}_{\mathrm{coh}}(\mathscr{D}_Y^{\mathrm{op}}), \quad \mathscr{M} \mapsto \underline{i}_*(\mathscr{M}) := i_*(\mathscr{M} \otimes_{\mathscr{D}_X} \mathscr{D}_X \to Y).$$

We can extend \underline{i}_* to an exact functor

$$\underline{i}^{\hbar}_{*} : \operatorname{Mod}_{\operatorname{coh}}((\mathscr{D}^{\hbar}_{X})^{\operatorname{op}}) \to \operatorname{Mod}_{\operatorname{coh}}((\mathscr{D}^{\hbar}_{Y})^{\operatorname{op}})$$
$$\underline{i}^{\hbar}_{*}(\mathscr{M}) := \varprojlim_{n} i_{*}(\mathscr{M}_{n} \otimes_{\mathscr{D}_{X}} \mathscr{D}_{X \to Y}).$$

,

うして ふゆう ふほう ふほう ふしつ

Proposition:

The extension $\underline{i}^{\hbar}_{*}$ coincides with the direct image previously defined.

Contents

Notations Formal extensions Cohomologically complete objec Graduate functor

Inverse image of \mathscr{D}^{\hbar} -modules

The inverse image extension The inverse image in the derived category The case of non-characteristic modules Extraordinary inverse image

うして ふゆう ふほう ふほう ふしつ

Direct image

Elliptic pairs

Review of \mathscr{D} -modules case Elliptic pairs over $\mathbb{C}[[\hbar]]$ Regularity Finiteness Duality Examples

Elliptic pairs: a generalization of elliptic systems

Definition: Let $F \in \mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}_X)$ and $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$. The pair (\mathscr{M}, F) is an *f*-elliptic pair (over \mathbb{C}) if:

 $\operatorname{char}_f(\mathscr{M})\cap \operatorname{SS}(F)\subset T^*_XX.$

Let $a_X : X \to \{\text{pt}\}$ denote the constant map. One says that (\mathcal{M}, F) is an elliptic pair if it is an a_X -elliptic pair.

Elliptic pairs: a generalization of elliptic systems

Definition:

Let $F \in \mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}_X)$ and $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$. The pair (\mathscr{M}, F) is an f-elliptic pair (over \mathbb{C}) if:

 $\operatorname{char}_f(\mathscr{M})\cap \operatorname{SS}(F)\subset T^*_XX.$

Let $a_X : X \to \{\text{pt}\}$ denote the constant map. One says that (\mathcal{M}, F) is an elliptic pair if it is an a_X -elliptic pair.

Definition:

Let M be a real analytic manifold and X a complexification of M. One says that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$ is elliptic if $(\mathscr{M}, \mathbb{C}_M)$ is an elliptic pair.

Elliptic pairs: a generalization of elliptic systems

Definition:

Let $F \in \mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}_X)$ and $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$. The pair (\mathscr{M}, F) is an f-elliptic pair (over \mathbb{C}) if:

$\operatorname{char}_f(\mathscr{M})\cap \operatorname{SS}(F)\subset T^*_XX.$

Let $a_X : X \to \{\text{pt}\}$ denote the constant map. One says that (\mathcal{M}, F) is an elliptic pair if it is an a_X -elliptic pair.

Definition:

Let M be a real analytic manifold and X a complexification of M. One says that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X)$ is elliptic if $(\mathscr{M}, \mathbb{C}_M)$ is an elliptic pair.

Example:

For $X = \mathbb{C}^n$ and $M = \mathbb{R}^n$, the Laplace operator Δ yields an elliptic \mathscr{D}_X -module $\mathscr{D}_X/\mathscr{D}_X\Delta$.

Theorem: [P. Schapira, J.P. Schneiders]

Let (\mathscr{M},F) be an f-elliptic pair. Then the canonical morphism below is an isomorphism:

ション ふゆ マ キャット マックシン

$$F \otimes_{\mathbb{C}_X} (\mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{D}_{X \to Y}) \to \mathrm{R}\mathscr{H}om_{\mathbb{C}_X}(\mathrm{D}'F, \mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{D}_{X \to Y}).$$

Theorem: [P. Schapira, J.P. Schneiders]

Let (\mathcal{M}, F) be an *f*-elliptic pair. Then the canonical morphism below is an isomorphism:

$$F \otimes_{\mathbb{C}_X} (\mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{D}_X \to Y) \to \mathrm{R}\mathscr{H}om_{\mathbb{C}_X}(\mathrm{D}'F, \mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{D}_X \to Y).$$

Moreover, assume that (\mathcal{M}, F) is a good *f*-elliptic pair with *f*-proper support. Then, $\underline{f}_!(\mathcal{M} \otimes F)$ is an object of $\mathsf{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{D}_Y^{\mathrm{op}})$ and there is a duality isomorphism:

$$\underline{f}_!(\underline{\mathbf{D}}_X(\mathscr{M})\otimes \mathbf{D}'F) \xrightarrow{\sim} \underline{\mathbf{D}}_Y[f_!(\mathscr{M}\otimes F)].$$

Theorem: [P. Schapira, J.P. Schneiders]

Let (\mathscr{M},F) be an elliptic pair. Then the canonical morphism below is an isomorphism:

ション ふゆ マ キャット マックシン

$$F \otimes_{\mathbb{C}_X} (\mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{O}_X) \to \mathrm{R}\mathscr{H}om_{\mathbb{C}_X}(\mathrm{D}'F, \mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{O}_X).$$

Theorem: [P. Schapira, J.P. Schneiders]

Let (\mathscr{M},F) be an elliptic pair. Then the canonical morphism below is an isomorphism:

$$F \otimes_{\mathbb{C}_X} (\mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{O}_X) \to \mathrm{R}\mathscr{H}om_{\mathbb{C}_X}(\mathrm{D}'F, \mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{O}_X).$$

Assume also that:

- \mathcal{M} is a good \mathcal{D}_X -module
- $\operatorname{supp}(\mathscr{M}) \cap \operatorname{supp}(F)$ is compact

Then, the complexes

$$\begin{split} & \mathrm{R}\Gamma(X,\mathrm{R}\mathscr{H}\!\mathit{om}_{\,\mathscr{D}_{X}}(\mathscr{M},\mathrm{R}\mathscr{H}\!\mathit{om}_{\,\mathbb{C}_{X}}(F,\mathscr{O}_{X}))) \\ & \mathrm{R}\Gamma(X,\Omega_{X}[d_{X}] \overset{\mathrm{L}}{\otimes}_{\,\mathscr{D}_{X}}(\mathscr{M} \otimes_{\mathbb{C}_{X}} F)) \end{split}$$

belong to $\mathsf{D}^{\mathrm{b}}_{f}(\mathbb{C})$ and are dual one to each other.

Functorial properties of 𝔅[[ħ]]-modules └─Elliptic pairs └─Elliptic pairs over ℂ[[ħ]]

Elliptic pairs over \mathbb{C}^{\hbar}

Definitions:

(a) The \hbar -characteristic variety of $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_X)$ with respect to f is defined by $\mathrm{char}_{\hbar,f}(\mathscr{M}) := \mathrm{char}_f(\mathrm{gr}_{\hbar}(\mathscr{M})).$

Functorial properties of 𝔅[[ħ]]-modules └─Elliptic pairs └─Elliptic pairs over ℂ[[ħ]]

Elliptic pairs over \mathbb{C}^{\hbar}

Definitions:

- (a) The \hbar -characteristic variety of $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_X)$ with respect to f is defined by $\mathrm{char}_{\hbar,f}(\mathscr{M}) := \mathrm{char}_f(\mathrm{gr}_{\hbar}(\mathscr{M})).$
- (b) One says that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$ is a good \mathscr{D}^{\hbar}_{X} -module if $\mathrm{gr}_{\hbar}(\mathscr{M})$ is a good \mathscr{D}_{X} -module.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Elliptic pairs over \mathbb{C}^{\hbar}

Definitions:

- (a) The \hbar -characteristic variety of $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_X)$ with respect to f is defined by $\mathrm{char}_{\hbar,f}(\mathscr{M}) := \mathrm{char}_f(\mathrm{gr}_{\hbar}(\mathscr{M})).$
- (b) One says that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$ is a good \mathscr{D}^{\hbar}_{X} -module if $\mathrm{gr}_{\hbar}(\mathscr{M})$ is a good \mathscr{D}_{X} -module.
- (c) An *f*-elliptic pair (\mathcal{M}, F) over \mathbb{C}^{\hbar} is the data of an object \mathcal{M} of $\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$ and an object F of $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}^{\hbar}_{X})$, such that

 $\operatorname{char}_{\hbar,f}(\mathscr{M}) \cap \operatorname{SS}(F) \subset T_X^* X.$

Elliptic pairs over \mathbb{C}^{\hbar}

Definitions:

- (a) The \hbar -characteristic variety of $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_X)$ with respect to f is defined by $\mathrm{char}_{\hbar,f}(\mathscr{M}) := \mathrm{char}_f(\mathrm{gr}_{\hbar}(\mathscr{M})).$
- (b) One says that $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$ is a good \mathscr{D}^{\hbar}_{X} -module if $\mathrm{gr}_{\hbar}(\mathscr{M})$ is a good \mathscr{D}_{X} -module.
- (c) An *f*-elliptic pair (\mathcal{M}, F) over \mathbb{C}^{\hbar} is the data of an object \mathcal{M} of $\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$ and an object F of $\mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}^{\hbar}_{X})$, such that

 $\operatorname{char}_{\hbar,f}(\mathscr{M})\cap \operatorname{SS}(F)\subset T^*_XX.$

Proposition:

Let $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$ and let $F \in \mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}^{\hbar}_{X})$. Then (\mathscr{M}, F) is an elliptic pair over \mathbb{C}^{\hbar} if and only if $(\mathrm{gr}_{\hbar}(\mathscr{M}), \mathrm{gr}_{\hbar}(F))$ is an elliptic pair over \mathbb{C} .

Regularity for elliptic pairs over \mathbb{C}^{\hbar}

Lemma: Let $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$. Then: (a) $\mathscr{M}^{\mathrm{L}}_{\otimes_{\mathscr{D}^{\hbar}_{X}}}\mathscr{K}$ is cohomologically complete.

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Regularity for elliptic pairs over \mathbb{C}^{\hbar}

Lemma: Let $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$. Then: (a) $\mathscr{M} \otimes_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}$ is cohomologically complete. (b) $\mathrm{SS}(\mathscr{M} \otimes_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}) \subset \mathrm{char}_{f}(\mathscr{M})$.

ション ふゆ マ キャット マックシン

Regularity for elliptic pairs over \mathbb{C}^{\hbar}

Lemma:
Let
$$\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{X})$$
. Then:
(a) $\mathscr{M} \otimes_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}$ is cohomologically complete.
(b) $\mathrm{SS}(\mathscr{M} \otimes_{\mathscr{D}^{\hbar}_{X}} \mathscr{K}) \subset \mathrm{char}_{f}(\mathscr{M})$.
Theorem: [D.R.]

Let (\mathcal{M}, F) be an *f*-elliptic pair over \mathbb{C}^{\hbar} . Then the canonical morphism below is an isomorphism:

$$F^{\mathbf{L}}_{\otimes_{\mathbb{C}^{\hbar}_{X}}}(\mathscr{M}^{\mathbf{L}}_{\otimes_{\mathscr{D}^{\hbar}_{X}}}\mathcal{K}) \xrightarrow{r} \mathrm{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_{X}}(\mathrm{D}'F,\mathscr{M}^{\mathbf{L}}_{\otimes_{\mathscr{D}^{\hbar}_{X}}}\mathcal{K}).$$

Proof:

Recall that for $G, F \in D^{b}(\mathbb{C}^{\hbar}_{X})$ the canonical morphism $\mathbb{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_{X}}(G, \mathbb{C}^{\hbar}_{X}) \overset{\mathcal{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} F \to \mathbb{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_{X}}(G, F)$ is an isomorphism if $\mathrm{SS}(F) \cap \mathrm{SS}(G) \subset T^{*}_{X}X.$

```
Functorial properties of 𝒴[[ħ]]-modules
└─Elliptic pairs
└─Regularity
```

Lemma: Let $F, G \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X)$. Then, there is a natural bifunctorial morphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$:

ション ふゆ く は く は く む く む く し く

 $F \otimes G^{\mathrm{R}\hbar} \xrightarrow{\alpha} (F \otimes G)^{\mathrm{R}\hbar}.$

Lemma: Let $F, G \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}_X)$. Then, there is a natural bifunctorial morphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}_X^{\hbar})$:

$$F \otimes G^{\mathrm{R}\hbar} \xrightarrow{\alpha} (F \otimes G)^{\mathrm{R}\hbar}.$$

Theorem: [D.R.]

Consider an elliptic pair of the form (\mathcal{M}, F^{\hbar}) over \mathbb{C}^{\hbar} such that $F \in \mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}_X)$. Then there is a commutative diagram of isomorphisms in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$:

$$\begin{split} \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M},\mathrm{D}'_{\mathbb{C}^{\hbar}}F^{\hbar}\overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}}\mathscr{O}^{\hbar}_{X}) & \xrightarrow{\bar{\alpha}} & \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M},(\mathrm{D}'_{\mathbb{C}}F\otimes\mathscr{O}_{X})^{\mathrm{R}\hbar}) \\ & & \downarrow^{\bar{r_{1}}} & & \downarrow^{\bar{r_{2}}} \\ \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M},\mathrm{R}\mathscr{H}\!\mathit{om}_{\mathbb{C}^{\hbar}_{X}}(F^{\hbar},\mathscr{O}^{\hbar}_{X})) & \xrightarrow{\sim} & \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M},\mathrm{R}\mathscr{H}\!\mathit{om}(F,\mathscr{O}_{X})^{\mathrm{R}\hbar}) \\ & & \xrightarrow{\sim} & \overset{\sim}{\to} & \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M},\mathrm{R}\mathscr{H}\!\mathit{om}(F,\mathscr{O}_{X})^{\mathrm{R}\hbar}) \\ & & \xrightarrow{\sim} & \overset{\sim}{\to} & \overset{\sim}{$$

Theorem: [D.R.] Let (\mathscr{M}, F) be a good *f*-elliptic pair over \mathbb{C}^{\hbar} with *f*-proper support. Then, $\underline{f}^{\hbar}_{*}(\mathscr{M} \bigotimes_{\mathbb{C}^{\hbar}_{X}}^{\mathbb{L}} F)$ belongs to $\mathsf{D}^{\mathrm{b}}_{\mathrm{good}}(\mathscr{D}^{\hbar}_{Y})$.

ション ふゆ マ キャット マックシン

Theorem: [D.R.]

Let (\mathscr{M}, F) be a good *f*-elliptic pair over \mathbb{C}^{\hbar} with *f*-proper support. Then, $\underline{f}^{\hbar}_{*}(\mathscr{M} \bigotimes_{\mathbb{C}^{\hbar}_{X}}^{\mathrm{L}} F)$ belongs to $\mathsf{D}^{\mathrm{b}}_{\mathrm{good}}(\mathscr{D}^{\hbar}_{Y})$.

Proof:

We get that $\mathscr{N} := \underline{f}^{\hbar}_{!}(\mathscr{M} \bigotimes_{\mathbb{C}^{\hbar}_{X}}^{\mathbb{L}} F)$ is cohomologically complete as a consequence of the regularity theorem.

Theorem: [D.R.]

Let (\mathscr{M}, F) be a good *f*-elliptic pair over \mathbb{C}^{\hbar} with *f*-proper support. Then, $\underline{f}^{\hbar}_{*}(\mathscr{M} \bigotimes_{\mathbb{C}^{\hbar}_{X}}^{\mathrm{L}} F)$ belongs to $\mathsf{D}^{\mathrm{b}}_{\mathrm{good}}(\mathscr{D}^{\hbar}_{Y})$.

Proof:

We get that $\mathscr{N} := \underline{f}_{!}^{\hbar}(\mathscr{M} \bigotimes_{\mathbb{C}_{X}^{\hbar}}^{\mathbb{L}} F)$ is cohomologically complete as a consequence of the regularity theorem. On the other hand, we have

$$\operatorname{gr}_{\hbar}(\mathscr{N}) \simeq \underline{f}_{!}(\operatorname{gr}_{\hbar}(\mathscr{M}) \otimes \operatorname{gr}_{\hbar}(F)).$$

Theorem: [D.R.]

Let (\mathscr{M}, F) be a good *f*-elliptic pair over \mathbb{C}^{\hbar} with *f*-proper support. Then, $\underline{f}^{\hbar}_{*}(\mathscr{M} \bigotimes_{\mathbb{C}^{\hbar}_{X}}^{\mathrm{L}} F)$ belongs to $\mathsf{D}^{\mathrm{b}}_{\mathrm{good}}(\mathscr{D}^{\hbar}_{Y})$.

Proof:

We get that $\mathscr{N} := \underline{f}_{!}^{\hbar}(\mathscr{M} \bigotimes_{\mathbb{C}_{X}^{\hbar}}^{\mathbb{L}} F)$ is cohomologically complete as a consequence of the regularity theorem. On the other hand, we have

$$\operatorname{gr}_{\hbar}(\mathscr{N}) \simeq \underline{f}_{!}(\operatorname{gr}_{\hbar}(\mathscr{M}) \otimes \operatorname{gr}_{\hbar}(F)).$$

Applying Schapira-Schneiders finiteness result to the elliptic pair $(\operatorname{gr}_{\hbar}(\mathscr{M}), \operatorname{gr}_{\hbar}(F))$ we conclude that $\operatorname{gr}_{\hbar}(\mathscr{N})$ belongs to $\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_{Y})$. Hence, \mathscr{N} belongs to $\mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}^{\hbar}_{Y})$.

From now on we shall consider the case $f = a_X$. Denote by ω_X the dualizing sheaf on X: $\omega_X \simeq a_X^! \mathbb{C}^{\hbar} \simeq \mathbb{C}^{\hbar}[2d_X]$. Since there is a morphism of functors $a_{X!}a_X^! \to id$, we get a canonical morphism: $\mathrm{R}\Gamma_c(X;\omega_X) \to \mathbb{C}^{\hbar}$.

Given a complex $I \in \mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar})$, denote by I^* the dual $I^* := \operatorname{RHom}_{\mathbb{C}^{\hbar}}(I, \mathbb{C}^{\hbar}).$

Lemma:

For each $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}(\mathscr{D}_{X}^{\hbar^{\mathrm{op}}})$, there is a canonical morphism in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar})$:

$$\varphi: \mathrm{R}\Gamma(X, \mathrm{R}\mathscr{H}\!om_{\mathscr{D}^{\hbar}_{X}}(\mathscr{M}, \Omega^{\hbar}_{X}[d_{X}])) \to (\mathrm{R}\Gamma_{c}(X; \mathscr{M}^{\mathsf{L}} \otimes_{\mathscr{D}^{\hbar}_{X}} \mathscr{O}^{\hbar}_{X}))^{*}$$

Proof:

The morphism φ is defined by the sequence of morphisms below:

 $\mathrm{R}\Gamma(X; \mathrm{R}\mathscr{H}om_{\mathscr{R}^{\hbar}}(\mathscr{M}, \Omega^{\hbar}_{X}[d_{X}]))$ $\rightarrow \quad \mathrm{R}\Gamma(X; \mathrm{R}\mathscr{H}\!\mathit{om}_{\mathbb{C}^{\hbar}_{\mathbf{Y}}}(\mathscr{M}^{\mathrm{L}} \otimes_{\mathscr{D}^{\hbar}_{\mathbf{Y}}} \mathscr{O}^{\hbar}_{X}, \Omega^{\hbar}_{X}[d_{X}]^{\mathrm{L}} \otimes_{\mathscr{D}^{\hbar}_{\mathbf{Y}}} \mathscr{O}^{\hbar}_{X})$ $\rightarrow \quad \mathrm{R}\Gamma(X; \mathrm{R}\mathscr{H}\!om_{\mathbb{C}_Y^{\hbar}}(\mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_Y^{\hbar}} \mathscr{O}_X^{\hbar}, \mathbb{C}_X^{\hbar}[2d_X])$ $\simeq \operatorname{R}\Gamma(X; \operatorname{R}\mathscr{H}om_{\mathbb{C}^{\hbar}_{Y}}(\mathscr{M} \overset{\operatorname{L}}{\otimes}_{\mathscr{D}^{\hbar}_{Y}} \mathscr{O}^{\hbar}_{X}, \omega_{X})$ $\rightarrow \operatorname{R\mathscr{H}om}_{\mathbb{C}^{\hbar}}(\operatorname{R}\Gamma_{c}(X;\mathscr{M}^{\operatorname{L}}\otimes_{\mathscr{D}^{\hbar}_{x}}\mathscr{O}_{X};\operatorname{R}\Gamma(X;\omega_{X})))$ $\rightarrow \quad \mathrm{R}\mathscr{H}\!om_{\mathbb{C}^{\hbar}}(\mathrm{R}\Gamma_{c}(X;\mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}^{\hbar}_{v}}\mathscr{O}_{X};\mathbb{C}^{\hbar}))$ $= (\mathrm{R}\Gamma(X; \mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_{Y}^{\hbar}} \mathscr{O}_{X}))^{*}.$

Theorem: [D.R.]

Let (\mathcal{M}, F) be a good elliptic pair over \mathbb{C}^{\hbar} with compact support. Then, there is an isomorphism in $\mathsf{D}^{\mathrm{b}}_{f}(\mathbb{C}^{\hbar})$:

$$\varphi: \mathrm{R}\Gamma(X; \mathrm{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{X}}(F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathscr{M}, \Omega^{\hbar}_{X}[d_{X}])) \xrightarrow{\sim} (\mathrm{R}\Gamma(X; F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}^{\hbar}_{X}} \mathscr{O}^{\hbar}_{X}))^{*}.$$

ション ふゆ マ キャット マックシン

Theorem: [D.R.]

Let (\mathcal{M}, F) be a good elliptic pair over \mathbb{C}^{\hbar} with compact support. Then, there is an isomorphism in $\mathsf{D}^{\mathrm{b}}_{f}(\mathbb{C}^{\hbar})$:

$$\varphi: \mathrm{R}\Gamma(X; \mathrm{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{X}}(F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathscr{M}, \Omega^{\hbar}_{X}[d_{X}])) \xrightarrow{\sim} (\mathrm{R}\Gamma(X; F \overset{\mathrm{L}}{\otimes}_{\mathbb{C}^{\hbar}_{X}} \mathscr{M} \overset{\mathrm{L}}{\otimes}_{\mathscr{D}^{\hbar}_{X}} \mathscr{O}^{\hbar}_{X}))^{*}$$

Proof:

The morphism is obtained by applying the previous lemma to the \mathscr{D}_X^{\hbar} -module $F \bigotimes_{\mathbb{C}_X}^{\mathbf{L}} \mathscr{M}$. By the finiteness theorem both sides of φ are objects of $\mathsf{D}_f^{\mathbf{b}}(\mathbb{C}^{\hbar})$. Since $\operatorname{gr}_{\hbar} : \mathsf{D}_f^{\mathbf{b}}(\mathbb{C}^{\hbar}) \to \mathsf{D}_f^{\mathbf{b}}(\mathbb{C})$ is a conservative functor, it is enough to prove that $\operatorname{gr}_{\hbar}(\varphi)$ is an isomorphism. But, by construction, $\operatorname{gr}_{\hbar}(\varphi)$ is an isomorphism by the duality theorem of Schapira and Schneiders.

Example 1:

Let \mathbb{K} be either \mathbb{C} or \mathbb{C}^{\hbar} . Then $SS(\mathbb{K}_X) = T_X^*X$ and $(\mathscr{M}, \mathbb{K}_X)$ is an elliptic pair over \mathbb{C}^{\hbar} , for every $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X^{\hbar})$.

ション ふゆ く は く は く む く む く し く

Example 1:

Let \mathbb{K} be either \mathbb{C} or \mathbb{C}^{\hbar} . Then $SS(\mathbb{K}_X) = T_X^*X$ and $(\mathscr{M}, \mathbb{K}_X)$ is an elliptic pair over \mathbb{C}^{\hbar} , for every $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{coh}}(\mathscr{D}_X^{\hbar})$.

In particular, as a corollary of finiteness and duality theorems, we conclude that if \mathscr{M} is a good \mathscr{D}_X^{\hbar} -module with compact support, then the complex of global solutions $\mathrm{R}\Gamma(X, \mathrm{Sol}_{\hbar}(\mathscr{M}))$ has finitely generated cohomology over \mathbb{C}^{\hbar} and it is isomorphic to the dual of the complex $\mathrm{R}\Gamma(X, \Omega_X[d_X] \overset{\mathrm{L}}{\otimes}_{\mathscr{D}_X} \mathscr{M}).$

Example 2:

In particular if we consider a coherent \mathscr{O}_X^{\hbar} -module \mathscr{F} , then $(\mathscr{F} \bigotimes_{\mathscr{O}_X^{\hbar}}^{L} \mathscr{Q}_X^{\hbar}, \mathbb{C}_X^{\hbar})$ is an elliptic pair over \mathbb{C}^{\hbar} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 2:

In particular if we consider a coherent \mathscr{O}_X^{\hbar} -module \mathscr{F} , then $(\mathscr{F} \bigotimes_{\mathscr{O}_X^{\hbar}}^{L} \mathscr{D}_X^{\hbar}, \mathbb{C}_X^{\hbar})$ is an elliptic pair over \mathbb{C}^{\hbar} .

Example 3:

Since $\operatorname{char}_{\hbar}(\mathscr{O}_{X}^{\hbar}) = T_{X}^{*}X$, $(\mathscr{O}_{X}^{\hbar}, F)$ is an elliptic pair over \mathbb{C}^{\hbar} , for every $F \in \mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}^{\hbar}_{X})$.

Example 2:

In particular if we consider a coherent \mathscr{O}_X^{\hbar} -module \mathscr{F} , then $(\mathscr{F} \bigotimes_{\mathscr{O}_X^{\hbar}}^{L} \mathscr{D}_X^{\hbar}, \mathbb{C}_X^{\hbar})$ is an elliptic pair over \mathbb{C}^{\hbar} .

Example 3:

Since $\operatorname{char}_{\hbar}(\mathscr{O}_{X}^{\hbar}) = T_{X}^{*}X$, $(\mathscr{O}_{X}^{\hbar}, F)$ is an elliptic pair over \mathbb{C}^{\hbar} , for every $F \in \mathsf{D}^{\mathrm{b}}_{\mathbb{R}-\mathrm{c}}(\mathbb{C}^{\hbar}_{X})$.

Example 4:

Let X be the complexification of a real analytic manifold M.

(a) We say that \mathscr{M} is an elliptic \mathscr{D}^{\hbar}_X -module if $(\mathscr{M}, \mathbb{C}^{\hbar}_M)$ is an elliptic pair over \mathbb{C}^{\hbar} .

(b) We say that $P \in \mathscr{D}_X^{\hbar}$ is an elliptic operator if $\mathscr{D}_X^{\hbar}/\mathscr{D}_X^{\hbar}P$ is an elliptic \mathscr{D}_X^{\hbar} -module.

Let X be the complexification of a real analytic manifold M. The classical sheaves of real analytic functions and hyperfunctions on X are respectively defined by:

$$\mathscr{A}_M := \mathbb{C}_M \otimes_{\mathbb{C}_X} \mathscr{O}_X,$$
$$\mathscr{B}_M := \mathcal{R}\mathscr{H} om_{\mathbb{C}_X} (\mathcal{D}'_{\mathbb{C}} \mathbb{C}_M, \mathscr{O}_X).$$

ション ふゆ マ キャット マックシン

Let X be the complexification of a real analytic manifold M. The classical sheaves of real analytic functions and hyperfunctions on X are respectively defined by:

$$\mathscr{A}_M := \mathbb{C}_M \otimes_{\mathbb{C}_X} \mathscr{O}_X, \\ \mathscr{B}_M := \mathrm{R}\mathscr{H} \mathscr{O}m_{\mathbb{C}_X}(\mathrm{D}'_{\mathbb{C}}\mathbb{C}_M, \mathscr{O}_X).$$

In the \hbar -framework, we can consider the sheaves:

$$\begin{split} \mathscr{A}_{M,\hbar} &:= \mathbb{C}_{M}^{\hbar} \overset{\mathcal{L}}{\otimes}_{\mathbb{C}_{X}^{\hbar}} \mathscr{O}_{X}^{\hbar}, \quad \mathscr{A}_{M}^{\hbar} := (\mathbb{C}_{M} \otimes_{\mathbb{C}_{X}} \mathscr{O}_{X})^{\hbar}; \\ \mathscr{B}_{M,\hbar} &:= \mathrm{R}\mathscr{H}om_{\mathbb{C}_{X}^{\hbar}} (\mathrm{D}_{\mathbb{C}^{h}}^{\ell} \mathbb{C}_{M}^{\hbar}, \mathscr{O}_{X}^{\hbar}), \quad \mathscr{B}_{M}^{\hbar} := \mathrm{R}\mathscr{H}om_{\mathbb{C}_{X}} (\mathrm{D}_{\mathbb{C}}^{\ell} \mathbb{C}_{M}, \mathscr{O}_{X})^{\hbar}. \end{split}$$

Let X be the complexification of a real analytic manifold M. The classical sheaves of real analytic functions and hyperfunctions on X are respectively defined by:

$$\mathscr{A}_{M} := \mathbb{C}_{M} \otimes_{\mathbb{C}_{X}} \mathscr{O}_{X},$$
$$\mathscr{B}_{M} := \mathcal{R}\mathscr{H}om_{\mathbb{C}_{X}}(\mathcal{D}_{\mathbb{C}}^{\prime}\mathbb{C}_{M}, \mathscr{O}_{X}).$$

In the $\hbar\text{-}\mathrm{framework},$ we can consider the sheaves:

$$\begin{split} \mathscr{A}_{M,\hbar} &:= \mathbb{C}_{M}^{\hbar} \overset{\mathcal{L}}{\otimes}_{\mathbb{C}_{X}^{\hbar}} \mathscr{O}_{X}^{\hbar}, \quad \mathscr{A}_{M}^{\hbar} := (\mathbb{C}_{M} \otimes_{\mathbb{C}_{X}} \mathscr{O}_{X})^{\hbar}; \\ \mathscr{B}_{M,\hbar} &:= \mathrm{R}\mathscr{H}om_{\mathbb{C}_{X}^{\hbar}} (\mathrm{D}_{\mathbb{C}^{\hbar}}^{\prime} \mathbb{C}_{M}^{\hbar}, \mathscr{O}_{X}^{\hbar}), \quad \mathscr{B}_{M}^{\hbar} := \mathrm{R}\mathscr{H}om_{\mathbb{C}_{X}} (\mathrm{D}_{\mathbb{C}}^{\prime} \mathbb{C}_{M}, \mathscr{O}_{X})^{\hbar}. \end{split}$$

Proposition:

There is a monomorphism $i: \mathscr{A}_{M,\hbar} \hookrightarrow \mathscr{A}_{M}^{\hbar}$ and an isomorphism $\mathscr{B}_{M,\hbar} \simeq \mathscr{B}_{M}^{\hbar}$.

Corollary: [D.R.]

Let \mathscr{M} be an elliptic \mathscr{D}_X^{\hbar} -module on M.

(a) There is a commutative diagram of isomorphisms in $\mathsf{D}^{\mathrm{b}}(\mathbb{C}^{\hbar}_X)$:

うして ふゆう ふほう ふほう ふしつ

(b) If M is compact and $\mathscr{M} \in \mathsf{D}^{\mathrm{b}}_{\mathrm{gd}}(\mathscr{D}^{\hbar}_{X})$, then $\mathrm{R}\Gamma(M; \mathbb{R}\mathscr{H}om_{\mathscr{D}^{\hbar}_{M}}(\mathscr{M}, \mathscr{B}_{M,\hbar}))$ belongs to $\mathsf{D}^{\mathrm{b}}_{f}(\mathbb{C}^{\hbar})$ and is isomorphic to the dual of $\mathrm{R}\Gamma(M; \Omega^{\hbar}_{X} \otimes_{\mathscr{D}^{\hbar}_{Y}}^{\mathbb{L}}\mathscr{M}).$

References I

- A. D'Agnolo, S. Guillermou and P. Schapira, Regular holonomic D^{[[ħ]]}-modules, Publ. RIMS, Kyoto Univ. (2010).
- M. Kashiwara and P. Schapira, *Deformation quantization* modules, arXiv:1003.3304v2 (2010).
- P. Schapira and J-P. Schneiders, *Elliptic pairs I: relative finiteness and duality*, Astérisque Soc. Math. France, **224** (1994).

うつう 山田 エル・エー・ 山田 うらう