Cycle spaces of flag domains and \mathcal{D}-modules

Corrado MARASTONI

Università di Padova - Italy
Iberian meeting on Algebraic Analysis and Geometry Lisboa, September 28-30, 2011

This is a discussion about the following reference [FHW]:
G. Fels, A. Huckleberry and J. A. Wolf, Cycle spaces of flag domains. Progress in Math. 245, Birkhäuser Boston 2006.

Idea: to give an interpretation and refinement of some results therein, in a more efficient framework.

Matsuki correspondence

- G a semisimple algebraic group over \mathbb{C} (e.g. $G=S L(n, \mathbb{C}))$
- G_{0} a s.s. real form of G (e.g. $G_{0}=S L(n, \mathbb{R})$ or $\left.G_{0}=S U(p, q)\right)$
- K_{0} a maximal compact subgroup of G_{0} [such a K_{0} exists unique up to conjugation since G_{0} is semisimple] (e.g. $G_{0}=S O(n, \mathbb{R})$ or $G_{0}=S U(p) \times S U(q)$)
- K the complexified of K_{0} in G
\square
Let P be a parabolic subgroup of $G\left(\right.$ e.g. $\left.P=\left(\begin{array}{llll}* & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & *\end{array}\right)\right)$ $X=G / P$ generalized flag mfd (e.g. $X=\left(\right.$ partial) flags in $\left.\mathbb{C}^{n}\right)$

Then both G_{0} (real) and K (complex) act on $X \ldots$ any relation?

Matsuki correspondence

The G_{0}-orbits and the K-orbits in $X=G / P$ are finitely many, and there is a one-to-one correspondence between them.
For a G_{0}-orbit D, the corresponding K-orbit C_{D} is the only one such that $D \cap C_{D}$ is nonempty and compact (i.e., is a K_{0}-orbit).

This correspondence:

- reverses inclusions (i.e. $D_{1} \subset \overline{D_{2}} \Longrightarrow \overline{C_{D_{1}}} \supset C_{D_{2}}$);
- extends to sheaves (i.e. $\left.\mathbf{D}_{K^{\text {an }}}^{b}\left(\mathbb{C}_{X_{\text {an }}}\right) \simeq \mathbf{D}_{G_{0}}^{b}\left(\mathbb{C}_{X^{\text {an }}}\right),[M-U-V]\right)$;
- particular cases:
- if D is open then $\exists!C_{D}$ compact contained in D;
- if D is closed (i.e. compact) then \exists ! C_{D} open containing D.

The basic example: $G=S L(2, \mathbb{C})$

$G=S L(2, \mathbb{C})=\left\{g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a d-b c=1\right\}$
G acts on $X=P_{\mathbb{C}}^{1}$ by $g z=\frac{a z+b}{c z+d}$

$$
\left.\begin{array}{rl}
G_{0} & =S L(2, \mathbb{R})=\{g \in G: a, b, c, d \in \mathbb{R}\} \\
& \simeq S U(1,1)=\left\{\left(\begin{array}{cc}
\frac{\partial}{b} & \frac{b}{a}
\end{array}\right):|a|^{2}-|b|^{2}=1\right.
\end{array}\right\}
$$

What is Matsuki correspondence in this case?
(1) Think at $G_{0}=S L(2, \mathbb{R})$: then the three G_{0}-orbits on X are

$$
D_{0}=\mathrm{P}_{\mathbb{R}}^{1}(\text { closed }) \quad \text { and } \quad D_{\mp}=\{\operatorname{Im} z \lessgtr 0\} \text { (open). }
$$

Here $K_{0}=S O(2, \mathbb{R})=\left\{\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right): \theta \in \mathbb{R}\right\} \simeq \mathbb{S}^{1}$, and $K=S O(2, \mathbb{C})=\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right): a^{2}+b^{2}=1\right\}$, so the K-orbits on X are

$$
C_{1}=\{i\}, \quad C_{2}=\{-i\} \quad \text { and } \quad C_{3}=X \backslash\{i,-i\} .
$$

Hence $C_{1}=C_{D_{+}}, C_{2}=C_{D_{-}}$and $C_{3}=C_{D_{0}}$.
(2) Think at $G_{0}=S U(1,1)$: then the three G_{0}-orbits on X are

$$
D_{\text {unit }}=\{|z|=1\} \quad \text { (closed) } \quad \text { and } \quad D_{\lessgtr 1}=\{|z| \lessgtr 1\} \text { (open). }
$$

Here $K_{0}=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right):|a|=1\right\} \simeq \mathbb{S}^{1}$, and and $K=\left\{\left(\begin{array}{cc}a & 0 \\ 0 & a^{-1}\end{array}\right): a \neq 0\right\} \simeq \mathbb{C}^{\times}$, so the K-orbits on X are

$$
C_{1}^{\prime}=\{0\}, \quad C_{2}^{\prime}=\{\infty\} \quad \text { and } \quad C_{3}^{\prime}=X \backslash\{0, \infty\}
$$

Hence $C_{1}^{\prime}=C_{D_{<1}}, C_{2}^{\prime}=C_{D_{>1}}$ and $C_{3}^{\prime}=C_{D_{\text {unit }}}$.

Cycle spaces: definition and Stein property

- Assume G_{0} acts not transitively on $X=G / P$ [exclude G_{0} is compact, plus two noncompact special cases]
- D a open G_{0}-orbit (a flag domain);
C_{D} the corresponding compact K-orbit in D (the base cycle of D)
- $q=\operatorname{dim}_{\mathbb{C}} C_{D} ; J=\operatorname{stab}_{G}\left(C_{D}\right)=\left\{g: g C_{D}=C_{D}\right.$ as subset of $\left.X\right\}$
- $Y\left(=M_{x, D}\right)=\left\{g C_{D}: g \in G\right\} \simeq G / J$;
$M_{D}=\left\{g C_{D}: g C_{D} \subset D\right\}^{\circ}$ (the cycle space of D) is open in Y
Now $K \subseteq J \subsetneq G$ (action non transitive!) \Longrightarrow only two possibilities:
- The generic case: $J=K$ (in fact, generically K is maximal)
- The special cases: $J=K S^{\mp}$ (a parabolic subgroup)

When G_{0} is "of hermitian type" and G_{0} / K_{0} is a "bounded symmetric domain" then $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{s}^{+} \oplus \mathfrak{s}^{-}$with $\mathfrak{k}=\operatorname{Lie}(K)$ and $\mathfrak{s}^{ \pm}$nilpotent ($\Rightarrow \mathfrak{k}$ is not maximal!)
In this case there could be flag domains either of holomorphic type (special, $J=K S^{\mp}$) or of nonholomorphic type (generic, $J=K$).

Example. $G=S L(n, \mathbb{C}), G_{0}=S U(p, q)$: then $K_{0}=S U(p) \times S U(q)$ and $K=S L(p, \mathbb{C}) \times S L(q, \mathbb{C})$ (note that K is not maximal, but the reductive part of opposite parabolic subgroups $K S^{ \pm}$).

In any case:

$$
\text { to the flag domain } D \subset X \text { is attached the complex manifold } M_{D}
$$

The (real) geometry of D could be complicated; but $M_{D} \ldots$

Theorem (FHW)

M_{D} is a Stein manifold (i.e. the GAGA-analytic analogue of an affine variety).

Examples. The first low-dimensional cases...

- $G=S L(2, \mathbb{C}), G_{0}=S U(1,1)$: here both $D_{\$ 1} \subset X=P_{\mathbb{C}}^{1}$ are of holomorphic type (i.e. J parabolic); $Y\left(=M_{X, D_{\S} 1}\right)=P_{\mathbb{C}}^{1}, M_{D_{\S}}=D_{\$ 1}$.
- $G=S L(3, \mathbb{C}), G_{0}=S U(1,2)$ (hermitian form: $\left.H=(+--)\right)$. Let $X=P_{\mathbb{C}}^{2}$. $K_{0}=\{1\} \times S U(2), K=\{1\} \times S L(2, \mathbb{C}) . \quad$ Set $\quad y_{0}=\left\langle e_{1}\right\rangle, \quad y_{0}^{*}=\left\langle e_{2}, e_{3}\right\rangle$.
Go-orbits on $X: D_{1,2}=\left\{z \in X:\left.H\right|_{z} \gtrless 0\right\}$ (open), $D_{3}=\left\{z:\left.H\right|_{z} \equiv 0\right\}$ (closed) K-orbits on $X: \quad C_{1}=\left\{y_{0}\right\}, \quad C_{2}=\left\{z \in X: z \subset y_{0}^{*}\right\} \simeq P_{\mathbb{C}}^{1}, \quad C_{3}=$ all the rest Stabilizers of C_{1} and C_{2} are parabolic (all these domains are of hermitian type) Here $M_{D_{1}}=D_{1}$ (open ball), $M_{D_{2}}=\{2$-planes on which $H>0\}$ (also open ball)
- $G=S L(3, \mathbb{C}), G_{0}=S L(3, \mathbb{R})$: the first generic case. Let $X=P_{\mathbb{C}}^{2}$.

Think $V_{\mathbb{R}}^{3} \hookrightarrow V_{\mathbb{C}}^{3}, K_{0}=S O\left(V_{\mathbb{R}}^{3}\right) \simeq S O(3, \mathbb{R}), K=S O\left(V_{\mathbb{C}}^{3}\right) \simeq S O(3, \mathbb{C})$
G_{0}-orbits on $X: \quad D_{1}=P_{\mathbb{C}}^{2} \backslash \mathrm{P}_{\mathbb{R}}^{2}$ (open), $\quad D_{2}=\mathrm{P}_{\mathbb{R}}^{2}$ (closed)
K-orbits on $X: \quad C_{1}=\left\{z \in X: z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\}, \quad C_{2}=X \backslash C_{1}$
Stabilizer of C_{1} (isotropic lines): $J=\left\{g:^{t} z z=0 \Rightarrow^{t}(g z)(g z)=0\right\}$
$=\left\{g:{ }^{t} z z=0 \Rightarrow{ }^{t} z\left({ }^{t} g g\right) z=\mathbf{0}\right\}=\left\{g:^{t} g g=\mathbf{1}\right\}=K$, as expected

The idea is to transfer data from D to its cycle space M_{D}. There is no direct map $D-->M_{D} \quad \ldots \quad$ rather, a double fibration

$$
\text { where } S_{D}=\left\{(x, y) \in D \times M_{D}: x \in y\right\}
$$

[FHW]: The map μ has contractible fibers, and ν is proper. Hence...

Theorem (FHW)

Let E be a G_{0}-homogeneous holomorphic vector bundle on D.
Then \exists a G_{0}-homogeneous holomorphic vector bundle E^{\prime} on M_{D} and a natural map $\varphi: H^{q}\left(D ; \mathcal{O}_{E}\right) \longrightarrow \Gamma\left(M_{D} ; \mathcal{O}_{E^{\prime}}\right)$, injective if E is "negative enough" so that $H^{j}\left(C_{D} ;\left.\Omega_{\mu}^{k}(E)\right|_{C_{D}}\right)=0$ for $j<q, k>0$.

The construction of φ is quite standard (cf. Eastwood-Penrose-Wells).

Two questions arise about the $\operatorname{map} \varphi: H^{q}\left(D ; \mathcal{O}_{E}\right) \longrightarrow \Gamma\left(M_{D} ; \mathcal{O}_{E^{\prime}}\right)$.
(1) For a given E, how to describe E^{\prime} ? And then:

How to describe the image of φ by a system of PDEs on M_{D} ?
(2) The injectivity condition of φ (i.e. E is "negative enough" so that...) appears to depend on E, G_{0}, D and P, and is quite complicated. Could one find an easier and less depending condition?

Idea: to study this integral transform in the homological language of sheaves and \mathcal{D}-modules (formalized by D'Agnolo-Schapira, ~ 1995).

- Sheaves: encode the geometric aspects ("what goes where"). $X \stackrel{f}{\longleftarrow} S \xrightarrow{g} Y: \quad F$ sheaf on Y (e.g. $\left.F=\mathbb{C}_{B \mid Y}\right) \leadsto F^{\wedge}=R f_{!} g^{-1} F$ sheaf on X.
- \mathcal{D}-modules: the analytic ones ("equations on data \& transforms").

Take a datum $u=\left(u_{1}, \ldots, u_{n}\right) \in\left(\mathcal{C}_{X}^{\infty}\right)^{n}$ s.t. $\sum_{j=1}^{n} P_{i j} u_{j}=0$ for $i=1, \ldots, m$
\rightsquigarrow operator $P:\left(\mathcal{C}_{X}^{\infty}\right)^{n} \rightarrow\left(\mathcal{C}_{X}^{\infty}\right)^{m} \rightsquigarrow$ coherent \mathcal{D}_{X}-module $\mathcal{M}_{P}:=\frac{\mathcal{D}_{X}^{n}}{\mathcal{D}_{X}^{m} \cdot P}$
\rightsquigarrow transformed (complex of) \mathcal{D}_{Y}-modules $\left(\mathcal{M}_{P}\right)^{\wedge}:=D g_{!} D f^{*} \mathcal{M}_{P}$
\rightsquigarrow operator P^{\prime} on \mathcal{C}_{Y}^{∞}, satisfied by $u^{\wedge}=\int_{g} f^{*} u \quad$ (i.e. $P^{\prime} u^{\wedge}=0$)

- Adjunction form.: $\mathrm{R} \mathrm{\Gamma}\left(X ; \operatorname{Sol}\left(\mathcal{M}, F^{\wedge} \otimes \mathcal{O}_{X}\right)\right) \xrightarrow{\sim} \mathrm{R} \Gamma\left(Y ; \operatorname{Sol}\left(\mathcal{M}^{\wedge}, F \otimes \mathcal{O}_{Y}\right)\right)$ [shift].

How to interpret our transform (final aim: $\left.H^{q}\left(D ; \mathcal{O}_{E}\right) \xrightarrow{\varphi} \Gamma\left(M_{D} ; \mathcal{O}_{E^{\prime}}\right)\right)$ in the language of sheaves and \mathcal{D}-modules?

1. Choose $X=G / P, Y=G / K$ (ok also in the hermitian case), $S=\{(x, y) \in X \times Y: x \in y\}$
2. Geometry. A flag domain $D \subset X \leadsto$ our target is $M_{D} \subset Y$. Take the sheaf $\mathbb{C}_{M_{D} \mid Y}$ on $Y \Longrightarrow\left(\mathbb{C}_{M_{D} \mid Y}\right)^{\wedge}$ on X is what?
[FHW] (exegesis) : One has $\left(\mathbb{C}_{M_{D} \mid Y}\right)^{\wedge} \simeq \mathbb{C}_{D \mid X}{ }^{\left[-2 d_{S} / X\right]}$.
3. Analysis. What equations on our data? Nothing!

Hence $P=0 \rightsquigarrow \mathcal{M}_{P} \simeq \mathcal{D}^{m}$ (locally) \rightsquigarrow
Take the \mathcal{D}_{X}-module $\mathcal{M}_{\lambda}=\mathcal{D}_{X} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}\left(-w_{P} \lambda\right)$ (λ a P-dom. wgt) $\Longrightarrow\left(\mathcal{M}_{\lambda}\right)^{\wedge}$ on Y is what?

We'll talk about the (complex of) \mathcal{D}_{Y}-modules $\left(\mathcal{M}_{\lambda}\right)^{\wedge}$ in a moment.
4. Putting the above in [D'A-S] adjunction formulas, one gets $(\diamond) \mathrm{R} \Gamma\left(D ; \mathcal{O}_{X}(\lambda)\right) \xrightarrow{\sim} \mathrm{R} \Gamma\left(M_{D} ; \operatorname{Sol}\left(\left(\mathcal{M}_{\lambda}\right)^{\wedge}, \mathcal{O}_{Y}\right){ }^{[-q]}\right.$. Adj. Form.
5. $\left(\mathcal{M}_{\lambda}\right)^{\wedge}$ is a quasi-G-equivariant (complex of) \mathcal{D}_{Y}-modules \rightsquigarrow (enough at $y_{0}=e K$) corresponds to the (\mathfrak{g}, K)-module

$$
\operatorname{R\Gamma }\left(X ; \mathcal{B}_{C_{D} \mid X} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(\gamma(\lambda))\right)
$$

where γ depends only on $P \quad$ (it is $\left.\gamma(\lambda)=-w_{P} \lambda+2\left(\rho-\rho_{P}\right)\right)$
Can use tools of (\mathfrak{g}, K)-modules (e.g. BGG) to compute ($\diamond \diamond$)
6. Now: when is $\left(\mathcal{M}_{\lambda}\right)^{\wedge}$ (hence $\left.(\diamond \diamond)\right)$ concentrated in degree 0 ? Let \widetilde{X} the full flag manifold, $\pi: \widetilde{X} \rightarrow X$ the (smooth) projection $\mathcal{N}_{\lambda}=\mathcal{B}_{C_{D} \mid X} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}(\gamma(\lambda))$ is a twisted $\mathcal{D}_{X, \gamma(\lambda)}$-module \rightsquigarrow $D \pi^{-1} \mathcal{N}_{\lambda}$ also a twisted $\mathcal{D}_{\widetilde{X}, \gamma(\lambda)}-\bmod$, and $\operatorname{R\Gamma }\left(\widetilde{X} ; D \pi^{-1} \mathcal{N}_{\lambda}\right) \simeq(\diamond \diamond)$
7. [Beilinson-Bernstein]: if μ integrally antidom. $\left(\left\langle\mu-\rho, \alpha^{\vee}\right\rangle \notin \mathbb{Z}_{>0}\right)$ then $\operatorname{R} \Gamma(\widetilde{X} ; \mathcal{L})$ is in degree 0 for any twisted $\mathcal{D}_{\widetilde{X}, \mu}$-module \mathcal{L}.
\Longrightarrow A sufficient condition for $\left(\mathcal{M}_{\lambda}\right)^{\wedge}$ to be in degree 0 is that
(*) $\quad \gamma(\lambda)-\rho=-w_{P} \lambda+\rho-2 \rho_{P}$ is integrally antidominant
8. Assuming (\star), let $\square_{\lambda}: \mathcal{O}\left(H_{\lambda}^{\prime}\right) \rightarrow \mathcal{O}\left(H_{\lambda}^{\prime \prime}\right)$ be a system of PDEs associated to $\left(\mathcal{M}_{\lambda}\right)^{\wedge}$. Applying H^{q} to adjunction formula (\diamond) :

$$
H^{q}\left(D ; \mathcal{O}_{X}(\lambda)\right) \xrightarrow{\sim} \quad\left\{v \in \Gamma\left(M_{D} ; \mathcal{O}\left(H_{\lambda}^{\prime}\right)\right): \square_{\lambda} v=0\right\}
$$

So, what about the two problems of [FHW] ?
(1) For a given E, how to describe E^{\prime} and the image of φ by a system of PDEs on M_{D} ? Given λ, computing $\square_{\lambda}, H_{\lambda}^{\prime}$ and $H_{\lambda}^{\prime \prime}$ is a matter of (\mathfrak{g}, K)-modules.
(2) The injectivity condition of φ seems to depend on E, G_{0}, D and P, and is complicated. Find an easier and less depending condition?
Condition (\star) depends only on E and P, and not on G_{0} and D.

