Cycle spaces of flag domains and $\mathcal{D}\text{-modules}$

Corrado MARASTONI

Università di Padova - Italy

Iberian meeting on Algebraic Analysis and Geometry Lisboa, September 28-30, 2011 This is a discussion about the following reference [FHW]:

G. Fels, A. Huckleberry and J. A. Wolf, *Cycle spaces of flag domains*. Progress in Math. 245, Birkhäuser Boston 2006.

Idea: to give an interpretation and refinement of some results therein, in a more efficient framework.

Matsuki correspondence

- *G* a semisimple algebraic group over \mathbb{C} (e.g. $G = SL(n, \mathbb{C})$)
- G_0 a s.s. real form of G (e.g. $G_0 = SL(n, \mathbb{R})$ or $G_0 = SU(p, q)$)
- K₀ a maximal compact subgroup of G₀
 [such a K₀ exists unique up to conjugation since G₀ is semisimple]
 (e.g. G₀ = SO(n, ℝ) or G₀ = SU(p) × SU(q))
- K the complexified of K₀ in G
 (e.g. K = SO(n, ℂ) or K = SL(p, ℂ) × SL(q, ℂ))

Let *P* be a parabolic subgroup of *G* (e.g. $P = \begin{pmatrix} * & * & * & * \\ 0 & * & * & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$)

X = G/P generalized flag mfd (e.g. X = (partial) flags in \mathbb{C}^n)

Then both G_0 (real) and K (complex) act on X... any relation?

Matsuki correspondence

The G_0 -orbits and the K-orbits in X = G/P are finitely many, and there is a **one-to-one correspondence** between them.

For a G_0 -orbit D, the corresponding K-orbit C_D is the only one such that $D \cap C_D$ is nonempty and compact (i.e., is a K_0 -orbit).

This correspondence:

- reverses inclusions (i.e. $D_1 \subset \overline{D_2} \implies \overline{C_{D_1}} \supset C_{D_2}$);
- extends to sheaves (i.e. $\mathbf{D}^{b}_{\mathcal{K}^{\mathrm{an}}}(\mathbb{C}_{\mathcal{X}^{\mathrm{an}}}) \simeq \mathbf{D}^{b}_{\mathcal{G}_{0}}(\mathbb{C}_{\mathcal{X}^{\mathrm{an}}})$, [M-U-V]);
- particular cases:
 - if *D* is open then $\exists^! C_D$ compact contained in *D*;
 - if *D* is closed (i.e. compact) then $\exists^! C_D$ open containing *D*.

The basic example:
$$G = SL(2, \mathbb{C})$$

$$G = SL(2, \mathbb{C}) = \left\{g = \left(\begin{array}{cc}a & b\\c & d\end{array}\right) : ad - bc = 1\right\}$$

$$G \text{ acts on } X = P_{\mathbb{C}}^{1} \text{ by } gz = \frac{az+b}{cz+d}$$

$$G_{0} = SL(2, \mathbb{R}) = \left\{g \in G : a, b, c, d \in \mathbb{R}\right\}$$

$$\simeq SU(1, 1) = \left\{\left(\begin{array}{cc}a & b\\\bar{b} & \bar{a}\end{array}\right) : |a|^{2} - |b|^{2} = 1\right\}$$

What is Matsuki correspondence in this case?

(1) Think at $G_0 = SL(2, \mathbb{R})$: then the three G_0 -orbits on X are $D_0 = \mathsf{P}^1_{\mathbb{R}}$ (closed) and $D_{\mp} = \{ \operatorname{Im} z \leq 0 \}$ (open).

Here $K_0 = SO(2, \mathbb{R}) = \left\{ \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} : \theta \in \mathbb{R} \right\} \simeq \mathbb{S}^1$, and $K = SO(2, \mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} : a^2 + b^2 = 1 \right\}$, so the *K*-orbits on *X* are

 $C_1 = \{i\}, \quad C_2 = \{-i\} \text{ and } C_3 = X \setminus \{i, -i\}.$

Hence $C_1=C_{\scriptscriptstyle D_+}$, $C_2=C_{\scriptscriptstyle D_-}$ and $C_3=C_{\scriptscriptstyle D_0}$.

(2) Think at $G_0 = SU(1, 1)$: then the three G_0 -orbits on X are

$$D_{\text{unit}} = \{|z| = 1\}$$
 (closed) and $D_{\leq 1} = \{|z| \leq 1\}$ (open).

Here $K_0 = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : |a| = 1 \right\} \simeq \mathbb{S}^1$, and and $K = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} : a \neq 0 \right\} \simeq \mathbb{C}^{\times}$, so the *K*-orbits on *X* are

 $C_1' = \{0\}, \quad C_2' = \{\infty\} \text{ and } C_3' = X \setminus \{0, \infty\}.$

Hence $C_1' = C_{D_{<1}}$, $C_2' = C_{D_{>1}}$ and $C_3' = C_{D_{unit}}$.

Cycle spaces: definition and Stein property

- Assume G_0 acts not transitively on X = G/P[exclude G_0 is compact, plus two noncompact special cases]
- D a open G₀-orbit (a flag domain);
 C_D the corresponding compact K-orbit in D (the base cycle of D)

•
$$q = \dim_{\mathbb{C}} C_D$$
; $J = \operatorname{stab}_G(C_D) = \{g : gC_D = C_D \text{ as subset of } X\}$

•
$$Y = \{gC_D : g \in G\} \simeq G/J;$$

 $M_D = \{gC_D : gC_D \subset D\}^\circ$ (the *cycle space* of *D*) is open in *Y*

Now $K \subseteq J \subsetneq G$ (action non transitive!) \implies only two possibilities:

- The generic case: J = K (in fact, generically K is maximal)
- The special cases: $J = KS^{\mp}$ (a parabolic subgroup)

When G_0 is "of hermitian type" and G_0/K_0 is a "bounded symmetric domain" then $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{s}^+ \oplus \mathfrak{s}^-$ with $\mathfrak{k} = \operatorname{Lie}(K)$ and \mathfrak{s}^{\pm} nilpotent $(\Rightarrow \mathfrak{k} \text{ is not maximal!})$

In this case there could be flag domains either of *holomorphic type* (special, $J = KS^{\mp}$) or of *nonholomorphic type* (generic, J = K).

Example. $G = SL(n, \mathbb{C}), G_0 = SU(p, q)$: then $K_0 = SU(p) \times SU(q)$ and $K = SL(p, \mathbb{C}) \times SL(q, \mathbb{C})$ (note that *K* is not maximal, but the reductive part of opposite parabolic subgroups KS^{\pm}).

In any case:

to the flag domain $D \subset X$ is attached the complex manifold M_D .

The (real) geometry of D could be complicated; but M_{D} ...

Theorem (FHW)

 M_{D} is a Stein manifold (i.e. the GAGA-analytic analogue of an affine variety).

Examples. The first low-dimensional cases...

- $G = SL(2, \mathbb{C}), G_0 = SU(1, 1)$: here both $D_{\leq 1} \subset X = P^1_{\mathbb{C}}$ are of holomorphic type (i.e. *J* parabolic); $Y (= M_{X, D_{\leq 1}}) = P^1_{\mathbb{C}}, M_{D_{\leq 1}} = D_{\leq 1}$.
- $G = SL(3, \mathbb{C}), G_0 = SU(1, 2)$ (hermitian form: H = (+ -)). Let $X = P_{\mathbb{C}}^2$. $K_0 = \{1\} \times SU(2), K = \{1\} \times SL(2, \mathbb{C}).$ Set $y_0 = \langle e_1 \rangle, y_0^* = \langle e_2, e_3 \rangle.$ <u> G_0 -orbits on X</u>: $D_{1,2} = \{z \in X : H|_z \ge 0\}$ (open), $D_3 = \{z : H|_z \equiv 0\}$ (closed) <u>K-orbits on X</u>: $C_1 = \{y_0\}, C_2 = \{z \in X : z \subset y_0^*\} \simeq P_{\mathbb{C}}^1, C_3 = \text{all the rest}$ Stabilizers of C_1 and C_2 are parabolic (all these domains are of hermitian type) Here $M_{D_1} = D_1$ (open ball), $M_{D_2} = \{2$ -planes on which $H > 0\}$ (also open ball)
- $G = SL(3, \mathbb{C}), G_0 = SL(3, \mathbb{R})$: the first generic case. Let $X = P_{\mathbb{C}}^2$. Think $V_{\mathbb{R}}^3 \hookrightarrow V_{\mathbb{C}}^3, K_0 = SO(V_{\mathbb{R}}^3) \simeq SO(3, \mathbb{R}), K = SO(V_{\mathbb{C}}^3) \simeq SO(3, \mathbb{C})$ <u> G_0 -orbits on X</u>: $D_1 = P_{\mathbb{C}}^2 \setminus P_{\mathbb{R}}^2$ (open), $D_2 = P_{\mathbb{R}}^2$ (closed) <u>K-orbits on X</u>: $C_1 = \{z \in X : z_1^2 + z_2^2 + z_3^2 = 0\}, C_2 = X \setminus C_1$ Stabilizer of C_1 (isotropic lines): $J = \{g : {}^t zz = 0 \Rightarrow {}^t (gz)(gz) = 0\}$ $= \{g : {}^t zz = 0 \Rightarrow {}^t z({}^t gg)z = \mathbf{0}\} = \{g : {}^t gg = \mathbf{1}\} = K$, as expected

The idea is to transfer data from D to its cycle space M_D .

There is no direct map $D - - \Rightarrow M_D$... rather, a *double fibration*

[FHW]: The map μ has contractible fibers, and ν is proper. Hence...

Theorem (FHW)

Let E be a G_0 -homogeneous holomorphic vector bundle on D. Then \exists a G_0 -homogeneous holomorphic vector bundle E' on M_D and a natural map $\varphi: H^q(D; \mathcal{O}_E) \longrightarrow \Gamma(M_D; \mathcal{O}_{E'})$, injective if E is "negative enough" so that $H^j(C_D; \Omega^k_\mu(E)|_{C_D}) = 0$ for j < q, k > 0.

The construction of φ is quite standard (cf. Eastwood-Penrose-Wells).

Two questions arise about the map $\varphi : H^q(D; \mathcal{O}_E) \longrightarrow \Gamma(M_D; \mathcal{O}_{E'})$.

- For a given *E*, how to describe E'? And then: How to describe the image of φ by a system of PDEs on M_p ?
- The injectivity condition of φ (i.e. E is "negative enough" so that...) appears to depend on E, G₀, D and P, and is quite complicated. Could one find an easier and less depending condition ?

Idea: to study this integral transform in the homological language of sheaves and D-modules (formalized by D'Agnolo-Schapira, ~1995).

- Sheaves: encode the geometric aspects ("what goes where"). $X \xleftarrow{f} S \xrightarrow{g} Y$: F sheaf on Y (e.g. $F = \mathbb{C}_{B|Y}$) $\rightsquigarrow F^{\wedge} = Rf_!g^{-1}F$ sheaf on X.
- \mathcal{D} -modules: the analytic ones ("equations on data & transforms").

Take a datum $u = (u_1, \ldots, u_n) \in (\mathcal{C}_X^{\infty})^n$ s.t. $\sum_{j=1}^n P_{ij}u_j = 0$ for $i = 1, \ldots, m$

- \rightsquigarrow operator $P: (\mathcal{C}_X^{\infty})^n \to (\mathcal{C}_X^{\infty})^m \rightsquigarrow$ coherent \mathcal{D}_X -module $\mathcal{M}_P := \frac{\mathcal{D}_X^n}{\mathcal{D}_V^m \cdot P}$
- \rightsquigarrow transformed (complex of) \mathcal{D}_Y -modules $(\mathcal{M}_P)^{\wedge} := Dg_! Df^* \mathcal{M}_P$
- \rightsquigarrow operator P' on C_Y^{∞} , satisfied by $u^{\wedge} = \int_g f^* u$ (i.e. $P' u^{\wedge} = 0$).
- Adjunction form.: $\mathsf{R}\Gamma(X; Sol(\mathcal{M}, F^{\wedge} \otimes \mathcal{O}_X)) \xrightarrow{\sim} \mathsf{R}\Gamma(Y; Sol(\mathcal{M}^{\wedge}, F \otimes \mathcal{O}_Y))$ [shift].

How to interpret our transform (final aim: $H^q(D; \mathcal{O}_E) \xrightarrow{\varphi} \Gamma(M_D; \mathcal{O}_{E'})$) in the language of sheaves and \mathcal{D} -modules?

- 1. Choose X = G/P, Y = G/K (ok also in the hermitian case), $S = \{(x, y) \in X \times Y : x \in y\}$
- 2. **Geometry.** A flag domain $D \subset X \quad \rightsquigarrow \quad \text{our target is } M_D \subset Y$. Take the sheaf $\mathbb{C}_{M_D|Y}$ on $Y \implies (\mathbb{C}_{M_D|Y})^{\wedge}$ on X is what?

[FHW] (exegesis) : One has $(\mathbb{C}_{M_D|Y})^{\wedge} \simeq \mathbb{C}_{D|X} [-2d_{S/X}]$.

3. **Analysis.** What equations on our data? Nothing! Hence $P = 0 \iff \mathcal{M}_P \simeq \mathcal{D}^m$ (locally) \rightsquigarrow Take the \mathcal{D}_X -module $\mathcal{M}_\lambda = \mathcal{D}_X \otimes_{\mathcal{O}_X} \mathcal{O}_X(-w_P\lambda)$ ($\lambda \neq P$ -dom. wgt) $\implies (\mathcal{M}_\lambda)^{\wedge}$ on Y is what?

We'll talk about the (complex of) \mathcal{D}_Y -modules $(\mathcal{M}_\lambda)^{\wedge}$ in a moment.

- 4. Putting the above in [D'A-S] adjunction formulas, one gets (\Diamond) $\mathsf{R}\Gamma(D; \mathcal{O}_X(\lambda)) \xrightarrow{\sim} \mathsf{R}\Gamma(M_D; Sol((\mathcal{M}_\lambda)^{\wedge}, \mathcal{O}_Y))$ [-q]. Adj. Form.
- 5. $(\mathcal{M}_{\lambda})^{\wedge}$ is a quasi-*G*-equivariant (complex of) \mathcal{D}_{Y} -modules \rightsquigarrow (enough at $y_{0} = eK$) corresponds to the (\mathfrak{g}, K) -module

$$(\Diamond \Diamond) \qquad \qquad \mathsf{R} \Gamma \big(X; \mathcal{B}_{\mathcal{C}_D | X} \otimes_{\mathcal{O}_X} \mathcal{O}_X(\gamma(\lambda)) \big)$$

where γ depends only on *P* (it is $\gamma(\lambda) = -w_P \lambda + 2(\rho - \rho_P)$) Can use tools of (\mathfrak{g}, K) -modules (e.g. BGG) to compute ($\Diamond \Diamond$)

- Now: when is (M_λ)[∧] (hence (◊◊)) concentrated in degree 0? Let X̃ the full flag manifold, π : X̃ → X the (smooth) projection N_λ = B_{C_D|X} ⊗_{O_X} O_X(γ(λ)) is a twisted D_{X,γ(λ)}-module ~→ Dπ⁻¹N_λ also a twisted D_{X̃,γ(λ)}-mod, and RΓ(X̃; Dπ⁻¹N_λ) ≃ (◊◊)
 [Beilinson-Bernstein]: if μ integrally antidom. (⟨μ - ρ, α[∨]⟩ ∉ Z_{>0})
- then $\mathsf{R}\Gamma(\widetilde{X};\mathcal{L})$ is in degree 0 for any twisted $\mathcal{D}_{\widetilde{X},\mu}$ -module \mathcal{L} .
 - \implies A sufficient condition for $(\mathcal{M}_{\lambda})^{\wedge}$ to be in degree 0 is that

(★)
$$\gamma(\lambda) - \rho = -W_P \lambda + \rho - 2\rho_P$$
 is integrally antidominant

8. Assuming (\bigstar) , let $\Box_{\lambda} : \mathcal{O}(H'_{\lambda}) \to \mathcal{O}(H''_{\lambda})$ be a system of PDEs associated to $(\mathcal{M}_{\lambda})^{\wedge}$. Applying H^q to adjunction formula (\Diamond):

$$H^{q}(D; \mathcal{O}_{X}(\lambda)) \xrightarrow{\sim} \{ v \in \Gamma(M_{D}; \mathcal{O}(H_{\lambda}')) : \Box_{\lambda} v = 0 \}$$

So, what about the two problems of [FHW] ?

- For a given *E*, how to describe *E'* and the image of φ by a system of PDEs on M_D?
 Given λ, computing □_λ, H'_λ and H''_λ is a matter of (g, K)-modules.
 - The injectivity condition of φ seems to depend on E, G_0 , D and P, and is complicated. **Find an easier and less depending condition** ?

Condition (\bigstar) depends only on *E* and *P*, and not on *G*₀ and *D*.