SOME BOUNDARY VALUE PROBLEMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

Robert Hakl, Alexander Lomtatidze, Jiř̌í Šremr
Mathematical Institute AS CR, Žižkova 22, 61662 Brno, Czech Republic, e-mail: hakl@ipm.cz, bacho@math.muni.cz, sremr@ipm.cz

2000 MS Class.: 34K06, 34K10
Keywords and phrases: First order functional differential equations, nonlinear boundary value problems, solvability and unique solvability.

On the segment $[a, b]$, we consider the boundary value problem

$$
\begin{gather*}
u^{\prime}(t)=F(u)(t), \tag{1}\\
\lambda u(a)+\mu u(b)=h(u), \tag{2}
\end{gather*}
$$

where $F: C([a, b] ; R) \rightarrow L([a, b] ; R)$ is a continuous operator satisfying Carathèodory condition, $h: C([a, b] ; R) \rightarrow R$ is a continuous functional, and $\lambda, \mu \in R,|\lambda|+|\mu| \neq 0$.

The important special case of the equation (1) is a differential equation with a deviating argument of the form

$$
\begin{equation*}
u^{\prime}(t)=f(t, u(t), u(\tau(t))), \tag{3}
\end{equation*}
$$

where $f:[a, b] \times R^{2} \rightarrow R$ is a function satisfying Carathèodory conditions, and $\tau:[a, b] \rightarrow[a, b]$ is a measurable function.

The special cases of boundary condition (2) are, in particular, periodic condition $(\lambda=-\mu)$, antiperiodic condition $(\lambda=\mu)$, and the initial conditions $(\lambda=0$, resp. $\mu=0$).

The aim of the talk is to present the main results on the solvability and unique solvability of the problem (1), (2), resp. (3), (2), contained in the monography
R. Hakl, A. Lomtatidze, J. Šremr, Some Boundary Value Problems For First Order Scalar Functional Differential Equations
which was published in the series "Folia" (Masaryk University Brno).
More detailed, there will be presented new optimal (unimprovable) sufficient conditions for solvability of problem (1), (2) both in the cases where F is linear and nonlinear operator. The question on the sign of the solution is discussed, as well.

