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ABSTRACT

To study the long-term dynamical behaviour predicted by mathematical models of ecosystems,
bifurcation analysis can be used. In addition to equilibria, limit cycles or chaotic behaviour,
or combinations thereof, can occur. In such an analysis the parameter space is divided into
regions where the system behaves qualitatively the same. The boundaries of these regions are
formed by bifurcation points in which the system is structurally unstable. These points can be
found by a classical local stability analysis. The procedure is to calculate the equilibrium or
limit cycle, linearise, study stability of that equilibrium or limit cycle, and use the fact that the
nonlinear system behaves the same as the approximating linear system in the neighbourhood
of the equilibrium or limit cycle.

Contrary to these local bifurcations, with global bifurcations a local analysis is not suffi-
cient. Saddle equilibrium points and limit cycles can be connected. Starting in the unstable
manifold of one point or cycle integration in time gives an orbit through the state-space that
ends via a stable manifold at the same point or cycle (homoclinic) or at the stable manifold
of another point or cycle (heteroclinic).

We will present numerical bifurcation analysis results for a number of previously pub-
lished food chain models focusing on global bifurcations. One is the well-know Rosenzweig-
MacArthur model [1] which has been studied intensively. We will link the occurrence of the
Shil’nikov homoclinic point-to-point, heteroclinic point-to-cycle and the homoclinic cycle-to-
cycle global bifurcation. The Shil’nikov bifurcation forms a skeleton for a cascade of flip
and tangent bifurcations and is associated chaotic dynamics. The homoclinic cycle-to-cycle
global bifurcation is related to crises where, under parameter variation, the chaotic attractor
suddenly appears or disappears.

The results were obtained using methods described in [2,3] for the numerical continuation
of point-to-cycle and cycle-to-cycle connecting orbits in 3-dimensional autonomous ODE’s.
Projection boundary conditions are used in the BVP formulation allowing a straightforward
implementation in auto [4], in which only the standard features of the software are em-
ployed. Complete auto demos, which can be easily adapted to any autonomous 3-dimensional
ODE system, are available: http://www.bio.vu.nl/thb/research/project/globif/ and
AUTO2007p version 0.6 http://indy.cs.concordia.ca/auto/.

Furthermore the analysis of two models published in literature are revisited. In [5] also
a three trophic food chain is analysed. The results presented in that paper will be put into
context by comparison with results of a more detailed analysis taking global bifurcation into
account. In that model coexisting chaotic attractors occur. Here the homoclinic cycle-to-cycle
global bifurcation is also related to crises where the chaotic attractor changes shape or merge.

In [6] the first two trophic levels of a food chain are modelled where both producer and
grazer are composed of two essential elements: carbon and phosphorous. The Liebig min-
imum law is used to model the trophic interaction. Then system-parameters (e.g. growth
rate) depend discontinuously on the state variables. As a consequence the Jacobian matrix



evaluated at an equilibrium is discontinuous with respect to a bifurcation parameter. Bifur-
cation points different from those occurring in the classical smooth models are found. These
new bifurcation points are analysed numerically. Moreover the results will be compared with
those of a smooth alternative model where all system-parameters depend smoothly on the
state variables.
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