

UNIVERSIDADE DE LISBOA

CENTRO DE MATEMÁTICA E APLICAÇÕES FUNDAMENTAIS Av. Prof. Gama Pinto 2, 1649-003 LISBOA, PORTUGAL Tel. (351) 217 904 700

Mês de: ABRIL 2014

SEMINÁRIO DE ANÁLISE E EQUAÇÕES DIFERENCIAIS

(Nova Alteração de dia)

Dia 16 de Abril (quarta-feira), às 14h, na Sala B3-01

Oscillation and non-oscillation criteria for half-linear Emden-Fowler type systems

Zdeněk Opluštil

(Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Czech Republic)

Jiří Šremr

(Institute of Mathematics, Academy of Sciences of the Czech Republic)

Abstract:

On the half-line $[0, +\infty)$ we consider the two-dimensional half-linear Emden-Fowler type system

$$u' = g(t)|v|^{1/\alpha} \operatorname{sgn} v,$$

$$v' = p(t)|u|^{\alpha} \operatorname{sgn} u,$$
(1)

where $g, p: [0, +\infty[\rightarrow \mathbb{R} \text{ are locally integrable functions, } \alpha > 0, \text{ and } g(t) \ge 0 \text{ for a. e. } t \ge 0.$ A frequently studied particular case of system (1) is the half-linear second-order differential equations with the *q*-Laplacian

$$(r(t)\Phi_q(u'))' + c(t)\Phi_q(u) = 0$$
(2)

in which $\Phi_q(x) := |x|^{q-1} \operatorname{sgn} x, q > 1, r, c : [0, +\infty[\to \mathbb{R} \text{ are continuous functions, and } r \text{ is positive.}$ The Hartman-Wintner theorem for equation (2) is well-known in the case, where

$$\int_0^{+\infty} r^{1-q}(s) \mathrm{d}s = +\infty,\tag{3}$$

Apoio: Local:

UNIVERSIDADE De lisboa

CENTRO DE MATEMÁTICA E APLICAÇÕES FUNDAMENTAIS Av. Prof. Gama Pinto 2, 1649-003 LISBOA, PORTUGAL Tel. (351) 217 904 700

which allows one to derive further oscillation and non-oscillation criteria of Hille and Nahari type (see, e. g., [1, 2, 3]). As for the case, where

$$\int_{0}^{+\infty} r^{1-q}(s) \mathrm{d}s < +\infty,\tag{4}$$

as far as we know, the Hartman-Wintner theorem and some Hille and Nahari type oscillation criteria are proved only under the additional assumption that $c(t) \ge 0$ for $t \ge 0$ (see, e.g., survey given in [1]).

The aim of our talk is to present the Hartman-Wintner theorem and some oscillation and nonoscillation criteria for system (1), which essentially generalise known results in the case, where $\int_0^{+\infty} g(s) ds = +\infty$ (corresponding to (3)), and do not require the assumption $p(t) \leq 0$ for a.e. $t \geq 0$ in the contrary case $\int_0^{+\infty} g(s) ds < +\infty$ (corresponding to (4)).

References

- O. Došlý, P. Řehák, Half-linear differential equations, North-Holland Mathematics Studies, 202, Elsevier, Amsterdam, 2005.
- [2] N. Kandelaki, A. Lomtatidze, D. Ugulava, On oscillation and nonoscillation of a second order half-linear equation, Georgian Math. J. 7 (2000), No. 2, p. 329–346.
- [3] J. D. Mirzov, Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations, Folia Facul. Sci. Natur. Univ. Masar. Brun., Mathematica 14, Brno: Masaryk University, 2004.

	HOSP.
	SANTA
	MARIA
	Av. Prof. Gama Pinto
	Entrada
ENTRECA	AMPOS

Apoio:

PEst-OE/MAT/UI0209/2013

Local:

INSTITUTO PARA A INVESTIGAÇÃO INTERDISCIPLINAR Av. Prof. Gama Pinto, 2 1649-003 Lisboa