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Abstract

Application of the Adjoint Method has proven successful in Shape
Optimization and Topology Optimization. In the present paper the Ad-
joint Method is applied to the optimization of eigenvalues and eigenmodes
(eigenvectors). The general case of an arbitrary cost function depending
on the first n eigenvalues and eigenmodes is detailed. The direct problem
does not involve a bilinear form and a linear form as usual in other ap-
plications. However, it is possible to follow the spirit of the method and
deduce n adjoint problems and obtain n adjoint states, where n is the
number of eigenmodes taken into account for optimization. An optimiza-
tion algorithm based on the derivative of the cost function is developed.
This derivative depends on the derivatives of the eigenmodes and the Ad-
joint Method allows one to express it in terms of the the adjoint states
and of the solutions of the direct eigenvalue problem. The formulas hold
for the case when the eigenvalues are simple. A section is dedicated to
discussions on the case when there are multiple eigenvalues. The same
procedures are applied to optimization of microstructures, modeled by
Bloch waves. The results obtained hold for general functionals depending
on the eigenvalues and on the eigenmodes of the microstructure. However,
the wave vector k⃗ is a more delicate case of optimization parameter. The
derivative of a general functional with respect to k⃗ is obtained, which has
interesting implications in band-gap maximization problems.

1 Introduction
The Adjoint Method in the Calculus of Variations is being used in a rigorous
framework in optimization problems governed by partial differential equations
since the eighties, with the papers of J. Céa, F. Murat and L. Tartar.

F. Murat and L. Tartar in [MuratTartar1985] applied the Adjoint Method
in the Theory of Homogenization and pointed out its origins in the works of
Pontryagin, namely in Pontryagin’s Principle. J. Céa in [Cea1986] uses the
Adjoint Method from the perspective of the Lagrange multipliers in a practical
way.
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Applications of the Adjoint Method to control problems, shape optimiza-
tion and topology optimization were considered in a large number of scien-
tific papers. Among them we mention [AllaireJouveT2004], [AllaireJouve2008],
[AllaireJouveVG2011], [AllaireDaponyF14] in the domain of structural optimiza-
tion of solid bodies. However the optimization of functionals depending only
on the eigenvalues, which involves a self-adjoint problem, was studied earlier in
[KikuchiChengM1995].

A brief description of the Adjoint Method is given in the sequel. The main
problem in the Calculus of Variations can be stated in a simplistic way like :
Given two physical quantities u and θ that are related u = u(θ), determine
the relation between their variations. More precisely, given a variation of the
quantity θ, denoted by δθ, it produces a variation of the quantity u, denoted
by δu; one seeks for the relation between their variations δu and δθ. When
the variations δθ and δu are infinitesimal, this leads naturally to the notion
of derivative of u with respect to θ, having in this case a linear dependency
between δu and δθ.

In the framework of applications, the relation of u and θ is given by a state
equation, which may be a partial differential equation having the variational
formulation

Aθ(uθ, v) = lθ(v), ∀v ∈ H, (Pθ)

where Aθ is a bilinear, continuous and coercive application depending on θ, lθ
is a linear, continuous application depending on θ, H is a Hilbert space. The
physical quantity θ is called control.

The state uθ depends on θ in an implicit way, through the problem (Pθ) and
one seeks to describe the variation of uθ in terms of the variation of θ, under
convenient differentiability hypothesis on the families of operators Aθ and lθ
with respect to θ.

In optimal control problems, given a functional to minimize/maximize, the
goal is to find a control θ producing the state uθ that minimizes/maximizes the
functional. Namely, given a functional

J(θ) = J (θ, uθ),

that depends on θ, in a direct mode and through the solution uθ do problem
(Pθ), one is looking for a θ that minimizes/maximizes J . Since a necessary
condition for extremum is the vanishing of the total derivative

dJ

dθ
= 0,

one of the most important ingredients is the analytic calculus of the above
referred derivative. Note that the total derivative of J involves the derivative
of uθ with respect to θ :

dJ

dθ
(θ) τ =

∂J
∂θ

(θ, uθ) τ +
∂J
∂u

(θ, uθ)
duθ
dθ

(θ) τ. (dJ)
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The difficulty lays in the fact that the term
∂J
∂u

(θ, uθ)
duθ
dθ

(θ) τ involves
duθ
dθ

(θ) τ

; note that uθ depends on θ implicitly through problem (Pθ). It is the Adjoint
Method that allows one to transform this implicit dependency in an explicit one
with respect to τ .

Consider the adjoint problem in the form

Aθ(pθ, w) =
∂J
∂u

(θ, uθ)w, ∀w ∈ H, (PAθ)

the solution pθ ∈ H is called the adjoint state. Then under symmetry hypothesis
on the operators Aθ it is possible to prove that the implicit term in the expression
of (dJ) has the form :

∂J
∂u

(θ, uθ)
duθ
dθ

(θ) τ = Aθ(pθ,
duθ
dθ

(θ) τ) = Aθ(
duθ
dθ

(θ) τ, pθ) =

=

(
−dAθ

dθ
(uθ, pθ) +

dlθ
dθ

(pθ)

)
τ.

Therefore, the total derivative of J writes as the following expression, where the
dependency on τ is explicit :

dJ

dθ
(θ) τ =

(
∂J
∂θ

(θ, uθ)−
dAθ

dθ
(uθ, pθ) +

dlθ
dθ

(pθ)

)
τ.

The Calculus of Variations provides the derivative of the functional J in an
arbitrary point θ. However in the shape and topology optimization methods
only the derivative in θ = 0 is employed since these methods use the current
configuration of the control in order to determine the configuration of the next
iteration.

The problem of optimization of the eigenvalues and eigenmodes of an elastic
structure or microstructure makes the goal of the present work. The context is
essentially different from the above exposed one since the state problem does
not involve any more a bilinear form and a linear form.

In section 2 is given the setting of the problem and the objective functionals
are discussed. The derivatives, with respect to an optimization parameter, of
the eigenvalues and of the eigenmodes of vibration are deduced in section 3. In
section 4 the Adjoint Method is employed and the derivative of a general objec-
tive functional is obtained. Some comments on the case of multiple eigenvalues
are presented in section 5. Section 6 is dedicated to the optimization of the
eigenvalues and of the eigenmodes of a microstructure. The framework of Bloch
waves is chosen and the Adjoint Method applies in order to obtain the deriva-
tive of a general functional with respect to a parameter. When the parameter
is the wave vector itself, the derivative may be used in band-gap maximization
problems.
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2 Setting of the problem and the objective func-
tionals

Consider a body occupying a domain Ω ⊂ R3; the boundary ∂Ω is splitted in
two disjoint parts: the part ΓD, where the Dirichlet condition is applied, and
the part ΓN , where the Neumann condition is applied.

The symbol ϵ denotes the strain tensor and ρ the specific mass (density) of
the material. The symbol C = C(s) denotes the fourth-order elasticity tensor
and depends on the material parameters s that characterize the chosen model.
Both ρ and C may vary in different parts of the domain.

The eigenvalue problem −div(Cϵ(u)) = λρu in Ω,
u = 0 on ΓD,

Cϵ(u) · n = 0 on ΓN .
(1)

arises from the system of dynamic equations by searching its solutions of the
form u(t, x) = ϕ(t)u(x), where ϕ is a sinusoidal function. One concludes that
the function u = u(x) must satisfy the eigenvalue problem (1).

The natural frequencies ωi(s) of the model are calculated as
√
λi

2π
, where λi

are the eigenvalues of the eigenvalue problem (1). The vibration modes ui are
the eigenvectors of problem (1). Since C = C(s), the solutions (λi(s), ui(s))i≥1

of the eigenvalue problem (1) depend on s as well. The material parameters are
denoted by s, which in this case represent an m-tuple in Rm (that is, the model
has m material parameters s1, . . . , sm).

The norm ∥ · ∥L2
ρ

on the space L2(Ω)3 is induced by the following inner
product associated to the function ρ ∈ L∞(Ω) representing the specific mass
(ρ(x) ≥ ρ0 > 0 almost everywhere in Ω):

(u, v) 7→
∫
Ω

ρu · v dx .

Consider a general objective functional J(λi(s), ui(s)) depending of the first n
eigenvalues and vibration modes. The dependency of the eigenvalues λi(s) and
of the vibration modes ui(s) on the parameters s is characterized by the problem
(1) itself and is highly non-linear. Therefore J is non-linear itself.

3 The derivatives of the eigenvalues and eigen-
modes of vibration

In order to obtain the derivatives of the eigenvalues and modes of vibration,
the variational formulation of the eigenvalue problem (1) is used. For a fixed
parameter s, the (weak) solutions (λ(s), u(s)) of the eigenvalue problem (1) are
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the solutions of the following variational problem:{ find λ(s) ∈ R and u(s) ∈ V such that∫
Ω

C(s) ϵ(u(s)) · ϵ(v) dx = λ

∫
Ω

ρu(s) · v dx, ∀v ∈ V,
(2)

where the space V of test functions is defined as

V = {v ∈ H1(Ω)3 : v|ΓD
= 0}.

A classical result states the existence of a countably infinite set of solutions of
problem (2), with the eigenvalues (λi)i≥1 forming an increasing sequence of real
numbers, the eigenvectors (ui)i≥1 forming an hilbertian basis of L2

ρ, and such
that the pair (λi, ui) verifies problem (1) in the almost everywhere sense, for all
i ≥ 1.

For simplicity of the exposition, we will assume that the material model in
consideration for the body Ω has only one material parameter s ∈ R. However
the following results hold in the vectorial case.

Theorem 1 Provided differentiability properties of the elasticity tensor C =
C(s) with respect to a general material parameter s and assuming that the eigen-
values of problem (1) are simple, then the eigenvalues and the eigenvectors are
differentiable with respect to s.

The derivative of the eigenvalue λi = λi(s) is

dλi
ds

(s) =

∫
Ω

dC

ds
(s)ϵ(ui) · ϵ(ui) dx, (3)

where the corresponding eigenvector ui is normalized in L2
ρ: ∥ui∥L2

ρ
= 1.

The derivative
dui
ds

of the eigenvector ui = ui(s) is the solution of the problem
below:

find
dui
ds

∈< ui >
⊥ such that∫

Ω

C(s)ϵ
(dui
ds

)
· ϵ(v) dx− λi

∫
Ω

ρ
dui
ds

· v dx =

dλi
ds

(s)

∫
Ω

ρ ui · v dx−
∫
Ω

dC

ds
(s)ϵ(ui) · ϵ(v) dx,

∀v ∈ V.

(4)

where < ui >
⊥ denotes the orthogonal complement of the eigenspace generated

by ui, with respect to the inner product in L2
ρ.

Proof : In order to simplify the notations, the index i will be omitted. Con-
sider the mappings s 7→ λ(s) and u 7→ u(s), where u(s) is normalized in
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L2
ρ . The differentiability of the above mappings is proved with detail in

[RousseletChenais1990].
Since λ(s) is an eigenvalue and the associated eigenvector u(s) is in the space

V , equality (2) holds with v = u(s):∫
Ω

C(s)ϵ(u(s)) · ϵ(u(s))dx = λ(s)

∫
Ω

ρu(s) · u(s)dx = λ(s).

Thus:

dλ

ds
(s) =

d

ds

∫
Ω

C(s)ϵ(u(s)) · ϵ(u(s))dx

=

∫
Ω

d

ds

[
C(s)ϵ(u(s))

]
· ϵ(u(s)) dx+

∫
Ω

C(s)ϵ(u(s)) · d
ds
ϵ(u(s)) dx

=

∫
Ω

dC

ds
(s)ϵ(u(s)) · ϵ(u(s)) dx+ 2

∫
Ω

C(s)ϵ(u(s)) · d
ds
ϵ(u(s)) dx.

Taking v =
du

ds
(s) in (2), we conclude that the second term in the last expression

is null: ∫
Ω

C(s)ϵ(u(s)) · ϵ
(du
ds

(s)
)
dx = λ(s)

∫
Ω

ρu(s) · du
ds

(s)dx

=
1

2
λ(s)

d

ds

∫
Ω

ρ u(s) · u(s)dx

=
1

2
λ(s)

d

ds
∥u(s)∥2L2

ρ

= 0,

Therefore,
dλ

ds
(s) =

∫
Ω

dC

ds
(s)ϵ(u(s)) · ϵ(u(s))dx. (5)

On the other hand, from (2), by derivation with respect to the parameter s, it

turns out that
du

ds
(s) verifies the following problem:

∫
Ω

C(s)ϵ
(du
ds

(s)
)
· ϵ(v) dx− λ(s)

∫
Ω

ρ
du

ds
(s) · v dx =

dλ

ds
(s)

∫
Ω

ρ u(s) · v dx−
∫
Ω

dC

ds
(s)ϵ(u(s)) · ϵ(v) dx,

∀v ∈ V.

According to Fredholm alternative, the above problem has a unique solution in
< u >⊥ if the compatibility condition below holds:

dλ

ds
(s)

∫
Ω

ρ u(s) · u(s) dx−
∫
Ω

dC

ds
(s)ϵ(u(s)) · ϵ(u(s)) dx = 0. (6)
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Since u is normalized in L2
ρ and since the condition (6) holds, it turns out that

the compatibility condition above is verified and thus the derivative
du

ds
(s) is

the unique solution of the above problem.

Remark 1 Formula (3) has already been obtained in [RousseletChenais1990].
A similar formula has been used in the framework of shape optimization, see
[AllaireJouve2005].

Remark 2 For a fixed index i, the above mapping s 7→ (λi(s), ui(s)) with
∥ui∥L2

ρ
= 1, is not well defined (there are two possibilities, ui and −ui). How-

ever, for the calculation of
dui
ds

(s) the sign of the eigenvector is important.

Remark 3 Since the natural frequency νi writes in terms of the eigenvalues λi

as νi =
√
λi

2π
, the derivative of νi has consequently the form

dνi
ds

=
1

4π
√
λi

dλi
ds

=
1

4π
√
λi

∫
Ω

dC

ds
ϵ(ui) · ϵ(ui) dx. (7)

Remark 4 The case when the eigenvalues are multiple is discussed in section
5.

4 The derivative of the objective functional by
the adjoint method

Given a generic functional J(λi(s), ui(s)) depending on the first n eigenvalues
and on the corresponding n eigenvectors, a straightforward computation gives
its derivative as

dJ

ds
(s) =

n∑
i=1

∂J

∂λi

dλi
ds

(s) +

n∑
i=1

∂J

∂ui

dui
ds

(s).

and from (3) it turns out that

dJ

ds
(s) =

n∑
i=1

∂J

∂λi

∫
Ω

dC

ds
ϵ(ui(s)) · ϵ(ui(s)) dx+

n∑
i=1

∂J

∂ui

dui
ds

(s). (8)

The derivative of J with respect to the parameter s involves the derivatives

of the eigenvectors
dui
ds

(s). In order to turn explicit the last term in the above
expression of the derivative of J , the adjoint method will be employed.

Consider n adjoint problems with the form below for 1 ≤ i ≤ n:
find pi ∈ V, with

∫
Ω

ρpi · ui(s)dx = 0 such that∫
Ω

C(s)ϵ(pi) · ϵ(w)dx− λi(s)

∫
Ω

ρpi · wdx =
∂J

∂ui
w, ∀w ∈< ui >

⊥ .
(9)
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Each one of the adjoint problems (9) will allow, by considering a particular test

function w =
dui
ds

(s), to express the terms
∂J

∂ui

dui
ds

(s) :∫
Ω

C(s)ϵ(pi) · ϵ(
dui
ds

)dx− λi(s)

∫
Ω

ρpi ·
dui
ds

dx =
∂J

∂ui

dui
ds

.

Using problem (4) that defines
dui
ds

(s) with the test function equal to the

corresponding adjoint state v = pi, the above terms
∂J

∂ui

dui
ds

(s) become:

∂J

∂ui

dui
ds

(s) =
dλi
ds

(s)

∫
Ω

ρ ui · pi dx−
∫
Ω

dC

ds
(s)ϵ(ui) · ϵ(pi) dx.

Since pi belongs to < ui(s) >
⊥,

∂J

∂ui

dui
ds

(s) = −
∫
Ω

dC

ds
(s)ϵ(ui) · ϵ(pi) dx.

Consequently, the derivative of the functional J is obtained in the following
explicit form:

dJ

ds
(s) =

n∑
i=1

∂J

∂λi

∫
Ω

dC

ds
(s)ϵ(ui(s)) · ϵ(ui(s)) dx

−
n∑

i=1

∫
Ω

dC

ds
(s)ϵ(ui(s)) · ϵ(pi) dx,

(10)

where pi, for each 1 ≤ i ≤ n, is the solution of the adjoint problem (9) and
(λi(s), ui(s)) is the solution of the variational eigenvalue problem (2).

An optimization algorithm based on the above derivative was developed and
applied in [OliveiraToaderV2012] for identification purposes in material damage
for the case of a dam.

5 Multiple eigenvalues
This section is devoted to the case of multiple eigenvalues. This case is consid-
ered difficult and is excluded by many theoretical studies, or, at the best, some
rough, partial results are stated. Also, many numerical approaches ignore this
case altogether.

Let us begin with a very simple example, the Laplace operator in a circular
domain Ω : {

−∆u = λu in Ω
u = 0 on ∂Ω

(11)

No structural parameters for now, no optimization, just analysis of a fixed do-
main. The first eigenvalue of problem (11) is simple; the second and third
eigenvalues coincide.
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Remark 5 It can be argued that the above situation is “pathological”, unsta-
ble and thus of no practical interest. This argument lies on the fact that in
nature there are no perfect circles. Any object or structure in real world has
imperfections. For instance, it may present a slight excentricity or other tiny
imperfections. For a real world object, the probability of getting λ2 = λ3 is
negligible. Thus, this situation has no practical interest; it represents only an
abstract toy case. This argument applies even to numerical approaches to the
problem : most softwares approximate the domain Ω by a mesh; thus, Ω will be
computationally not a perfect circle. Even if meshless methods are employed,
round-off errors will almost always prevent λ2 = λ3 from happening.

The above argument is quite strong; however, when considering a varying
parameter (like in structural optimization), equality between two eigenvalues
becomes an unavoidable fact, as the following example illustrates. Consider the
same problem (11) in a different domain

Ω =
{
(x, y) ∈ R2 :

x2

s2
+ y2 ≤ 1

}
This is an ellipse whose excentricity depends on the parameter s > 0. If we plot
λ1, λ2 and λ3 against s, for a discrete family of values of s between 0.8 and 1.2,
we get a picture like in Figure 1.

parameter s

ei
ge

nv
al

ue
s

0.8 0.9 1 1.1 1.20.85 0.95 1.05 1.15

10

20

5

15

Figure 1: First three eigenvalues for an ellipse

The crossing occuring (at s = 1) between λ2 and λ3, is “stable” in the sense
that small imperfections in the physical object (or numerical errors) will not
prevent it from happening.

Remark 6 With regard to Figure 1, several interesting questions arise. For
instance, why should one call it “a crossing” between eigenvalues rather than
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Figure 2: Crossing or just brief touch ?

considering that λ2 and λ3 merely touch each other at s = 1 and then go apart
again ? In other words, can we robustly distinguish between the two situa-
tions depicted in Figure 2 ? Yet another way of putting it : how do we label
eigenvalues ? Should we always stick stubbornly to the increasing order ? If
we do so, it makes no sense to call it “crossing”; eigenvalues will allways just
briefly touch each other. On the other hand, this strategy will produce points of
non-differentiability. But if we “relax” the labelling procedure by giving up the
“increasing” requirement, we may get a smooth dependence of both λ1 and λ2
with respect to the structural parameter s. Smoothness of course represents a
huge advantage, but it comes at the cost of new difficulties, new callenges. If
the labelling of eigenvalues is no longer pre-established, we need a new, reliable
labelling strategy.

Remark 7 People interested in optimization may argue that non-differentiability
of the objective functional at only one point is no obstacle. The algorithm builds
a sequence of discrete points sk which converge to a minimum point, and the
probability of one of these points hitting at the non-differentiability point is negli-
gible. This argument is fallacious. If one tries to use the usual (steepest-descent-
like) approach to this optimization problem, the algorithm will become unstable
as soon as it reaches the neighborhood of the multiple eigenvalue, precisely due
to jumps in the derivative of the objective functional. To make things worse,
many objective functional will attain their minimum at a point corresponding to
a multiple eigenvalue.

Remark 8 There are optimization algorithms specially designed for non-smooth
objective functionals (like the bundle method or derivative-free methods). At first
sight, these algorithms transform the question of labelling (or sorting) eigenval-
ues into an irrelevant detail. Recall, however, that derivative-based methods
are usually faster than the ones which do not use derivatives. Thus, it is still
interesting to try to obtain smooth curves whenever possible.

In [BarbarosieRochaT], an algorithm is described which “colours” a set of
data points in order to obtain a number of curves as smooth as possible. That is,
the algorithm receives an input like in the left hand side of Figure 3 and produces
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Figure 3: Colouring algorithm

an output like in the right hand side of the same Figure. This algorithm has no
knowledge of where the data points come from; in particular, it has no knowledge
of the eigenvectors associated to them. However, an interesting phenomenon has
been observed : if we draw not only the eigenvalues but also the eigenvectors (like
in Figure 4), it can be seen that this “colouring” procedure turns the dependence
of the eigenvectors continuous or even smooth. Of course, the eigenvectors are
not uniquely determined at the crossing point (there is an increased degree
of arbitrariness due to the multiplicity of the eigenvalue). But, when looking
immediately before and immediately after the crossing point, one can easily see
the continuity (and perhaps even differentiability) of the eigenvectors.

Eigenvector

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−4

−3

−2

−1

0

1

2

3

4 Eigenvalue λ1
Eigenvalue λ2
Eigenvalue λ3

Figure 4: Eigenvalues and eigenvectors

Note that the eigenvectors usually belong to a space of high dimension and
cannot be easily represented graphically. For instance, Figure 4 shows the eigen-
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values and eigenvectors of the matrix 0 1− s2 −s
1− s2 s/2 1− s2

−s 1− s2 0


with s varying between −1.5 and 1.5. The grey arrows represent a projection
of the three-dimensional eigenvectors on a certain two-dimensional subspace.

Remark 9 For more than one structural parameter, things are more compli-
cated; see, for instance, Exercise 2.4 in [ConcaPlanchardV1995, Chapter III].
This is object of ongoing work.

Results in this section were obtained using the softwares FreeFem++ [Hecht2012],
Matplotlib [Hunter2007], xgraphic [Jouve] and xfig [xfig].

6 The adjoint method in the framework of Bloch
waves

The above considerations may be adapted to the framework of Bloch waves. See
[AllaireConca1998] and [ConcaPlanchardV1995, Chapter III] for a more detailed
presentation on Bloch wave theory.

Consider a body in RN (N = 2 or 3) made of a periodic material, that is, a
material whose inhomogeneities are periodically distributed. Suppose that the
period is small when compared to the overall size of the body. A general notion
of periodicity is needed, according to which a function is periodic if it is invariant
to a group of translations. Note that any translation can be identified with a
vector in RN and the composition of translations corresponds to the sum of the
respective vectors, thus any notion of periodicity can be described by an additive
subgroup G of RN with N linearly independent generators g⃗1, g⃗2, . . . , g⃗N (such
a subgroup is called a lattice). A complex function φ : RN → C is said to be
G-periodic if

φ(x+ g⃗) = φ(x), ∀x ∈ RN ∀g⃗ ∈ G.

An elastic Bloch wave is the superposition of a plane wave of the form ei⟨k⃗,x⟩

and a perturbation φ which is a G-periodic function. Thus, a Bloch wave writes
:

u(x) = ei⟨k⃗,x⟩φ(x).

Note that this is equivalent to the following conditions on u :

u(x+ g⃗j) = ei⟨k⃗,g⃗j⟩u(x), ∀x ∈ RN , ∀j = 1, . . . N.

The vector k⃗ is called “wave vector”.
It is useful to define the dual group G∗ as

G∗ =
{
h⃗ ∈ RN such that ⟨⃗h, g⃗⟩ ∈ 2πZ, ∀g⃗ ∈ G

}
12



When an elastic Bloch wave propagates through a body made of a G-periodic
material, and supposing that the wavelength is comparable to the size of the
periodicity cell, then the following problem, called Bloch cellular problem, char-
acterizes the propagation phenomenon :

−div(Cϵ(u)) = λρu in RN
perf(T ),

Cϵ(u) · n = 0 on ∂T,
u(x+ g⃗j) = ei⟨k⃗,g⃗j⟩u(x), ∀x ∈ RN

perf(T ), ∀j = 1, . . . N.

(12)

In the above, T is a compact set representing a model hole in the periodicity
cell Y and RN

perf(T ) is the perforated space defined by

RN
perf(T ) = RN \

∪
m∈ZN

(T +m1g⃗1 + . . .mN g⃗N ).

Denote by H1
#(RN

perf(T ),C
N ) the completion in the norm of H1(Y \ T,CN )

of the space of functions in C∞(RN
perf(T ),C

N ) which are G-periodic.

For k⃗ ∈ C arbitrarily fixed, denote by Wk⃗(R
N
perf(T )) the set of Bloch waves

having the plane wave in the direction k⃗ :

Wk⃗(R
N
perf(T )) = {u : RN

perf(T ) → CN | u(x) = ei⟨k⃗,x⟩φ(x), φ ∈ H1
#(RN

perf(T ),C
N )}.

Thus the last equation in (12) is equivalent to u ∈ Wk⃗(R
N
perf(T )). Note that

W0(RN
perf(T )) = H1

#(RN
perf(T ),C

N ) and Wk⃗(R
N
perf(T )) is a Hilbert space, ob-

tained from H1
#(RN

perf(T ),C
N ) by multiplication with the fixed function ei⟨k⃗,x⟩.

The natural norm ∥ · ∥L2
ρ

on the space L2(RN
perf(T ),C

N ) is induced by the
following inner product associated to the function ρ ∈ L∞(RN

perf) representing
the specific mass (ρ(x) ≥ ρ0 > 0 almost everywhere in RN

perf):

(u, v) 7→
∫
Y \T

ρu · v̄ dx . (13)

In this section, the bar denotes the complex conjugate.
The variational formulation of the Bloch cellular problem (12) is

find λ ∈ R and u ∈Wk⃗(R
N
perf(T )) such that∫

Y \T
C(s) ϵ(u) · ϵ(v̄) dx = λ

∫
Y \T

ρu · v̄ dx, ∀v ∈Wk⃗(R
N
perf(T )).

(14)

The following theorem, similar to Theorem 1, holds.

Theorem 2 Provided differentiability properties of the elasticity tensor C =
C(s) with respect to a general material parameter s and assuming that the eigen-
values of problem (1) are simple, then the eigenvalues and the eigenvectors are
differentiable with respect to s.
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The derivative of the eigenvalue λl = λl(s) is

dλl
ds

(s) =

∫
Y \T

dC

ds
(s) ϵ(ul) · ϵ(ūl) dx, (15)

where the corresponding eigenvector ul is normalized in the L2
ρ norm of L2(RN

perf(T ))

: ∥ul∥L2
ρ
= 1.

The derivative
dul
ds

of the eigenvector ul = ul(s) is the solution of the problem
below:

find
dul
ds

in Wk⃗(R
N
perf(T )), such that

∫
Y \T

ρ
dul
ds

ūl dx = 0 and

∫
Y \T

C(s) ϵ
(dul
ds

)
· ϵ(v̄) dx− λl

∫
Y \T

ρ
dul
ds

· v̄ dx =

dλl
ds

(s)

∫
Y \T

ρ ul · v̄ dx−
∫
Y \T

dC

ds
(s) ϵ(ul) · ϵ(v̄) dx, ∀v ∈Wk⃗(R

N
perf(T )).

(16)
where < ul >

⊥ denotes the orthogonal complement of the eigenspace generated
by ul, with respect to the inner product (13).

The derivative of a functional F (λl(s), ul(s)) depending on the first n eigen-
values and on the corresponding n eigenvectors may be written in terms of n
adjoint states pl, as :

dF

ds
(s) =

n∑
l=1

∂F

∂λl

∫
Y \T

dC

ds
(s) ϵ(ul(s)) · ϵ(ūl(s)) dx

−
n∑

l=1

∫
Y \T

dC

ds
(s) ϵ(ul(s)) · ϵ(p̄l) dx.

(17)

Each adjoint state pl is the solution of the following adjoint problem, for
1 ≤ l ≤ n:

find pl ∈Wk⃗(R
N
perf(T )), with

∫
Y \T

ρpl · ūl(s)dx = 0 such that∫
Y \T

C(s) ϵ(pl) · ϵ(w̄) dx− λl(s)

∫
Y \T

ρ pl · w̄ dx =
∂F

∂ul
w,

∀w ∈Wk⃗(R
N
perf(T )).

(18)

When trying to design acoustic filters or optical waveguides, as described in
[SigmundJensen2003] or [BarbarosieNeves2004], one is interested in varying the
wave vector. Typically, one is looking for a microstructure having a bandgap
as large as possible. For instance, one may want to maximize the gap between

14
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Figure 5: Brillouin triangle in the space of wave vectors

λ2 and λ3 (assuming that the eigenvalues are numbered in increasing order). In
this case, the problem can be written as

max
s

min
k⃗

(
λ3(s, k⃗)− λ2(s, k⃗)

)
(19)

Previous numerical approaches to this problem consider a fixed grid of wave
vectors k⃗1, k⃗2, . . . (often placed on the boundary of the triangle shown in Figure
5) and seek to maximize the “worst case” :

max
s

min
i

(
λ3(s, k⃗i)− λ2(s, k⃗i)

)
(20)

This is equivalent to the maximization of the minimum between a finite family of
functionals depending on the parameter s. However, it would be advantageous
to be able to actively look for the worst case (the wave vector where λ2 and
λ3 are closest), by using a steepest descent algorithm, for instance. Thus, it is
interesting to try to differentiate the eigenvalues with respect to k⃗.

In the sequel, we shall focus on a more general formulation

max
s

min
k⃗
F
(
λl(s, k⃗), ul(s, k⃗)

)
(21)

The derivative of the eigenvalues λl and of the eigenmodes ul with respect to k⃗
will be computed and, by making use of the adjoint method, the derivative of
the functional F

(
λl(s, k⃗), ul(s, k⃗)

)
with respect to k⃗ will be explicitly obtained.

In order to achieve this, it is preferable to write u(x) in the form of Bloch
wave u(x) = ei⟨k⃗,x⟩φ(x). Thus, the cellular problem may be written as :

find λ ∈ R and φ ∈ H1
#(RN

perf(T ),C
N ) such that∫

Y \T
Cαβγδ (e

i⟨k⃗,x⟩φα),β (e
−i⟨k⃗,x⟩ψγ),δ dx = λ

∫
Y \T

ρφαψα dx,

∀ψ ∈ H1
#(RN

perf(T ),C
N ).

(22)

15



The derivative of λl is obtained as

∂λl
∂kj

= 2Re

∫
Y \T

iCαjγδ ulα ūlγ,δ; (23)

while the problem that defines the derivative of φl,
∂φl

∂kj
, writes



find
∂φl

∂kj
∈ H1

#(RN
perf(T ),C

N ), such that
∫
Y \T

ρ
∂φlα

∂kj
φ̄lα dx = 0 and

∫
Y \T

Cαβγδ

(
ei⟨k⃗,x⟩

∂φlα

∂kj

)
,β
(e−i⟨k⃗,x⟩ψγ),δ dx− λl

∫
Y \T

ρ
∂φlα

∂kj
ψα dx =

∂λl
∂kj

∫
Y \T

ρφlα ψα dx−

−
∫
Y \T

iCαβγδ

(
δβj φlα e

i⟨k⃗,x⟩(e−i⟨k⃗,x⟩ψγ),δ − δδj(e
i⟨k⃗,x⟩φlα),β e

−i⟨k⃗,x⟩ψγ

)
dx,

∀ψ ∈ H1
#(RN

perf(T ),C
N ).

(24)
Consider the adjoint problem in the form

find pl ∈ H1
#(RN

perf(T ),C
N ) with

∫
Y \T

ρ pl φ̄l dx = 0 such that∫
Y \T

Cαβγδ

(
ei⟨k⃗,x⟩plα

)
,β
(e−i⟨k⃗,x⟩ψ̄γ),δ dx− λ

∫
Y \T

ρ plα ψ̄α dx =
∂F

∂φα
ψα,

∀ψ ∈ H1
#(RN

perf(T ),C
N ).

(25)
Then, the derivative of the functional F may be expressed as

dF

dkj
(k⃗) =

n∑
l=1

∂F

∂λl
2Re

∫
Y \T

iCαjγδ ulα ūlγ,δ dx−

−
n∑

l=1

∫
Y \T

iCαβγδ

(
δβj φlα e

i⟨k⃗,x⟩(e−i⟨k⃗,x⟩ p̄lγ),δ −

− δδj(e
i⟨k⃗,x⟩φlα),β e

−i⟨k⃗,x⟩ p̄lγ

)
dx.

(26)

This formula opens the possibility of solving (19) through a gradient based
algorithm instead of considering a discrete set of wavevectors like in (20).
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