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Abstract. The paper is is concerned with a free boundary problem of magnetohydrody-
namics for viscous incompressible fluid not subjected to capillary forces on the free boundary.
It is shown that the problem is correctly posed in anisotropic Sobolev spaces.

1 Introduction

The paper is concerned with a free boundary problem of magnetohydrodynamics for vis-
cous incompressible electrically conducting fluid. It is assumed that the fluid occupies a vari-
able domain 214 with the boundary I'; that should be found together with the vector fields of
velocity v(w,t), magnetic and electric fields H (z,t), E(z,t) and the pressure function p(z, t).
The fluid is surrounded by an infinite vacuum region {29y = R?’\Qlt, where the fields H and E
vanishing at infinity should be found as well. At the initial moment of time ¢ = 0 the domains
Q0 =, : = 1,2, and the vector fields v(z,0), H(z,0) are given.

The governing equations are the Navier-Stokes equations with the magnetic field H and
the Maxwell equations without displacement current (i.e., without the time derivative E;) -
see [1,2]:
vi+ (v-V)o-—V -T(v,p) =V -Ty(H) =0,

V-v(x,t) =0, x€Qy, t>0,

MHt = —’I“OtE, V- -H= O, T € Qlt U Qgt, (11)
rotH = o(E + p(v x H)), x € Qyy, t >0,

rotH=0, V-H=0, V-E=0, x¢€Qy.

\

These equations are supplemented by initial and jump conditions

Tv,p)n+[n-Ty(H)n|=0, V,=v-n, zecly,

w[pH] 4+ [y, x E] =0, z €Ty,

wH -n|=0, [H;] =0, zecly,

v(z,0) =vo(x), =€ o, H(x,0)=Hy(x), xz¢€ QoU Q.

(1.2)

Here, T'(v,p) is the viscous stress tensor: T(v,p) = —pl + vS(v), S(v) = Vo + (Vo)T
is the doubled rate-of-strain tensor, Th(H) = u(H ® H — L|H|*I) is the magnetic stress
tensor, p is a piece-wise constant function equal to p; in Q, o = const > 0 in Qy4, a = 0 in



Qo¢, m is the normal to exterior with respect to Qi4, V,, is the velocity of evolution of I'; in
the direction n, H, = H — n(n - H) is the tangential component of H. By [u] we mean the
jump of the function u(z), given in Q, i = 1,2, on Ty: [u]|p, = v —u® | v = u(x, )zea,,-
Finally, n, = (n1,n2,n3) and n; are the components of the normal vector n to the surface
® = {z €Ty,t >0} in R%

The condition n:[uH] + [n; x E] = 0 on I'; stems from the assumption that the equation
By, = —rotE, B = uH, is satisfied in the sense of the distributions theory in the space-time
R* (see [3,4]).

To separate out a unique E, we need to impose on E a certain normalization restriction,
because, together with E| the vector field E + Vw(x,t) = E1, satisfies all the relations (1.1),
(1.2), if w is a solution of the Dirichlet problem

Viw(z,t) =0, z€Qy, Weer, =0, w—0, |z|— oo,

and w = 0 in €. The normalization condition can be taken in the form

E® .ndS =0 (1.3)
Iy
(see more detail in Section 3).

Free boundary problems of magnetohydrodynamics are studied in [5] and then in [3,4,6,7],
always with the positive coefficient of the surface tension o. The surface tension is a strong
regularizer of the problem that guarantees, in particular, more smooth free boundary in com-
parison with the case ¢ = 0. Therefore the scheme of analysis of the problem with ¢ = 0 is
essentially modified in comparison with the capillary case, in particular, in the choice of basic
functional spaces. It turns out that the vector field of velocity of the fluid should possess one
spatial derivative more than the magnetic field. This implies modification of all the auxiliary
technical estimates, in particular, of nonlinear terms. Another peculiarity of the present work
is the fact that the solution can be extended on the infinite time interval £ > 0. The method
of extension is proposed in [§].

We consider the simplest problem studied in [5], but with the infinite domain g;. The
solution is found in anisotropic Sobolev - Slobodetskii spaces with the exponent of summability
p = 2. For simplicity, the domain 14 is assumed to be simply connected, although the results
extend to the case of multi-connected €1, as in [6].

Before stating the main result of the paper, we write the problem (1.1), (1.2) in fixed
domains €7 UQa, Q; = 0, using the Lagrangian coordinates £ € €); that are connected with
the Eulerian coordinates x € {214 by

t
x:§+/0 w(g, t)dE = X(E,t), €€, (1.4)

where u(¢,t) = v(X(,1),t). Since v(z,t) is defined only in 94, we extend w(&,t) from
into R? by means of a fixed extension operator and consider the mapping

=+ | W) = XHE ), € e RY, (15)

where u* is the extension of u. We assume that the extension conserves the regularity prop-
erties of w (in the sense that inequalities (1.10) are satisfied) and uw* has a fixed compact
support.



The mapping (1.4) transforms Q; = Q;0, i = 1,2, into Qj, at least for small ¢.

Let
ox

L(u) = (—

w= (%

be the Jacobi matrix of the transformation (1.5), the Jacobian and the co-factors matrix,

respectively. We set A = ET; the index ”7T” means transposition. If £ € 1, then L(£,t) = 1,
L=AT

We make the change of variables (1.5) in (1.1)-(1.2) and introduce new unknown functions

), L(u) = detl, L =LL!

w(E,t), q(&t) =p(X,t), h(&t)=LH(E), el t)=LE®E¢),

where

H(¢,t) = H(X*(&,1),1), E(&t) = E(X*(€,1),1).
Since

v§ . h(f,t) = va . H(SE, t)|m:X*(§,t)v Vg . e(§,t) = va . E(:C,t)’z:X*(g’t),
rot, H = %rotyﬁTﬁ, H,|,—x+ = gtﬁ — (L - V)ﬁ,

—~ __ __ T
H -n(X) = |Ano| ' (h - 1), H—n(H-n):AT(h—A Ano

|An0|2

(h'nO))7 EEF(%

(cf. [5],), we obtain

wy — vViu+ Vyqg — Vo - T (Lh) =0,
Ve -u=0, £€Q, t>0,

(1.6)
Tu(u, q)n(X,t) + [Tn (LR)n(X, )] =0, & €Ty,
u(§,0) = vo(§) =uo(§), &€,
7L ap L
pulhy — L, Zh — L (w- V“)Eh) = —rotP (&, t)e,
£y, i=1,2, (1.7)
ProtPh = a(Pe+ (L 'u x h)), V-h =0, £ € Qy,
rotPh =0, V-h=0, V-e=0, £¢€Qo,
( AT A
- mo] =0, [fr] = (T35 = m0)) - .
[no x Pe] = (u - Ang)[ulh-, € €Ty, (1.8)

h,e — 0, |{] — oo,
h(£,0) =ho(&), £e€€y, 1=1,2,3,

where P = LTL/L,

V. = L7TV is the transformed gradient w.r. to z; V is the gradient w.r.to & V, = AV in
Qq,

n(X) = Any(€)/[Ano(£)],

no: the exterior (w.r. to ;) normal to Iy,



T, = —q + vSy(u) is the transformed stress tensor;
Su(w) = Vyw + (V,w)T is the transformed rate-of-strain tensor.
We notice that the vector field
L L ~
P&, 1) = Efzh + L7 (u- Vi) 7h=hy — CH(2,1)]o=x-

is divergence free: V- ®(£,t) =0, £ € Q;, i = 1,2.

The next step is to separate the determination of w,q, h from that of e. We notice that
(1.6), (1.7) imply
( w(hy — ®) 4+ o trotProtPh = rotJ, V-h(£,t)=0, £€QUQ3,

rotPh({,t) =0, V-h=0, &€y,

Eﬂno
|2Tn0|2
\h’(é.vo) :h0(£)> £€QIUQ21

(1.9)

uh-N1=0, [h) = ( —n)[hmo], €€Ty,

where J = 1 £7'u x h in Q.
Equations (1.6), (1.9) constitute the main problem for u, ¢, h that is solved in Sections 2
and 3. After this it is possible to reconstruct e(¢,t) satisfying (1.6), (1.7).

Theorem 1. Assume that Ty € W21+3/2, 1 €(3/2,2) and the vector field u*(&,t) in (1.5)
vanishes for large |£]: |£| > R and satisfies the inequalities

o gy < el G lyasanys G o) < el Dl (110)
Then for arbitrary ug € WQZH(Ql), hg € WQ/\H(QZ-), i = 1,2, A = 1 — 1, satisfying the
compatibility and orthogonality conditions

Voug(€) =0, €, (S(ug)no)r =0, €Ty,
VhO(g) :07 geﬁiv L= 1721 TOth(](é) :07 56927 (111)
[Mh’o : ’I'L(]] = 07 [h’OT] — 07 g S FO)

| w©dc =0, [ woeni@a=o, =123 (1.12)
Ql Q1
with n,;(§) = e; X &, €j = (§jk)j k=123, and the smallness condition

lsollyyz 41, + 21:2 hollyyi41(q,) < € < 1 (1.13)

the problem (1.5), (1.9) has a unique solution u € W;HJH/Z(Q%), Vq € WQI’I/Q(Q%F), hg €
W22+’\’1+/\/2(Q§~), where Q% = Q; x (0,T), T > 0. The solution is defined in an infinite time
interval t > 0 and satisfies the inequality

2
le™ullysenrsiagy + 1™Vl ) + 2_; leRllyzonrinagy
= (1.14)

2
< c([[uollyirr(g,) + > 1Rollyps1(q,), B = const > 0.
i=1



It follows that I'y = XTy tends to a limit ', as ¢ — 0o, and ' is located in a neighbor-
hood of T'g. Since X (-,t) € W21+3/2(F0), there is no loss of smoothness of the free boundary
Ty for ¢ > 0.



2 Linear problems

The proof of Theorem 1 is based on the analysis of the following non-homogeneous linear
problems:

v — V20 4+ Vp=Ff(Et), V.vo=f, £€Qi, t>0,
T(v,p)n =d(&,t), § €T, (2.1)
v(&,0) =vo(§), €€,
pH(&t) + o trotrotH(E,t) = G(&,t), V-H(Et) =0, &€,
rotH (&, t) = rotl(&,t), V- -H(Et)=0, &€y,
(nH -mo)l =0, [H;]=a(t), €Ty,
H(¢,0) = Ho(§), £e€QUQy.
roth(€) = k(€), V-h=0, €€ Uy,
h-mol =0, [h]=a, €Ty, (2.3)
h-n() =0, ¢e€b.

Theorem 2. 1. Assume that Ty € W§/2+l, l € (3/2,2), f € Wzl’l/Z(QlT) f is given in
the whole space R3, compactly supported and belongs to WQZH’O(RT), Ry = R3 x (0,7), f =
VF + f, F, f € W2 (Ry), d e WV H2(Gy), Gr =Ty x (0,T), vo € W),
and let the compatibility conditions

Vev(§) = f(£,0), £€F, v(S(vo)no)r =d;(&,0), €6, (2.4)

be satisfied. Then the problem (2.1) has a unique solution v,p such that v € W22+l’1+l/2(Q%)

Vp € WQZ’Z/Q(Q%F), pleer, € W21+1/2’l/2+1/4(GT), and the solution satisfies the inequality

)

||vHWzl+2’1+l/2(QlT) + ||VPHW2LZ/2(Q1T) + Hp||W2l+1/2’l/2+1/4(GT)
< o) (I gy + 1 sy + I1Fllyossiage, 25
+ Hf/HWQO’Hl/Q(RT) + HdHW21+1/2,l/2+1/4(GT) + HU()HW21+1(91)>.

The constant c¢(T) in (2.5) is an increasing functions of T.
2.If f =0, f =0, d =0 and the initial data satisfy the conditions (1.12), then the
solution is defined for all t > 0 and

o oty o
lle UHW21+2*1+Z/2(Q1T) + |le p||W2l,z/2(Q%) + |le p||W2l+1/2,l/2+1/4(GT) (2.6)
< clvollwi+i(q,y A €0,0), b>0.

The condition V - vo(§) = f(£,0), & € Q can be understood in a weak sense as
Jr (woly) — F(y,0)) - V(y) + f'n)dy = 0 for arbitrary smooth 5 such that n|r, = 0.

Theorem 3. 1. Assume that T'g € W2l+3/2, k=rotK (¢ t), a=[A], K, A are compactly
supported vector fields from ﬂ¢:1,2W22+’\’1+A/2(QiT), A=1-1, and

K. ]=a, AW .ng¢)=A® .ny=0, ¢eT,. (2.7)



Then the problem (2.3) has a unique solution h € W22+/\’1+/\/2(QT,-), 1= 1,2, and it satisfies
the inequality

2
};Wmmﬁmmﬁww<c§;ukwm&mpﬂ@m+HAM@HNH%%Q (2.8)
1= 1=

2. Let k be a square integrable function of & € R3,
V kW =0, €€, k-ng=0, €Ty,
kE? =0, and a = 0. Then the problem (2.3) has a unique solution from Ni—1 2 W3 () and
Z ||h||W21(Q¢) < clkllLy ) (2.9)
i=1,2

Theorem 4. 1. Assume that the data of the problem (2.2) possess the following properties:
G e W22+>\’1+)\/2(Q%1), HO c W21+/\(Qj), ] _ 172’ lc W22+)\’1+/\/2(Q%«), ac W23/2+)\’3/4+)\/2(GT),
moreover, a = [A] with AW ¢ W22+/\’1+)‘/2(QiT) satisfying (2.7), finally, let the compatibility
conditions
V-G t)=0, &€,
V-Hy) =0, £€€QUQe, rotHy(&) =rotl(£,0), &€ Qo (2.10)
[WHo-no] =0, [Hos]=a(0)=[A(£0)], £eTo

hold. Then the problem (2.2) has a unique solution H & W22+/\’1+)‘/2(Q§~), i=1,2, and

2 2
Z HHHW22+>\:1+A/2(Q%) S C<”G”W2>‘v>‘/2(Q%J + Z HHOHWQH"A(QZ)
=1 ) =1 (2.11)
+ ||£HW22+)\,1+)\/2(Q%) + ; ||A||W22+A,1+A/2(QiT)>
2. Moreover, if £ =0, a =0, G = 0, then the solution is defined for all t > 0 and
3 3
z; HeatHHWQzJFA,HA/Q(Q%) < CZ; HHOHWZH)‘(QO)’ a € [0,a), a>0. (2.12)
1= 1=

We give the main ideas of the proof of Theorems 2 - 4, starting with the first statement
of Theorem 2. The first step is the reduction of (2.1) to a similar problem with f = 0. Since
f, F, f" are given in R? and compactly supported, we can define an auxiliary vector field

wi(&.) =V [ B0
satisfying the equation V - w; = f. It is clear that

leﬂwgﬂo(RT) < CHwaQ“FA»O(RT)- (2.13)



In addition, since
wi =V [ (VE(E =) Pln.t)+ B¢ = n)f (0.1)dn,

we have
w1l ,ms) < c(IFllp,ms) + 1 |Lam®s)), ¥t € (0,T).

Applying this inequality to the time derivative w; and to the finite difference A;(—h)wq; =
wi(§,t —h) —wi4(€,t), we obtain

lwillyzetariz g,y < clFyorrrzg, ) + 1 oz g,)- (2.14)

For the difference v1 = v — w; and p we get the problem

Vi — vV3v, 4+ Vp = f1&t)=f—wis+ vV3wi,
V-v1 =0, €€y, t>0,

T(vi,p)no = di(§,t) = d — vS(wi)ng, & €T,
v1(£,0) = v1(§) = vo —wi(§,0), €€,

It is analyzed by repeating the arguments in [9, Theorem 2|, which leads to the proof of
the first statement of Theorem 2.

We notice that the reduction of the problem (2.1) to (2.14) is made in [9] in a different
way that has required some additional smoothness of I'g.

We pass to the second statement of Theorem 2. The exponential decay of the solution can
be established using the energy inequality. By elementary calculation it is easy to verify that

(2.15)

d .
g | venas=0 G [ wen modc=o. i=123

which implies
/ o(ede =0, [ (&0 m(€de—0. (216)
Ql Q1
By the energy relation and the Korn inequality, we have

1d
5&”’0("75)”%2(91) +0llv( )70 <0, b>0

and, as a consequence,

b
€ tHv”LQ(Ql) S ”vOHLQ(Ql)’

T (2.17)
1/2
(| ol 0,)"* < clvollaay. <

The solution of the problem (2.1) satisfies the local (in time) estimate

||U|| 2+l 1+l/2(Qt S CH/UHLQ(Qt,Lt)a Qs,t = Ql X (Sat)a

—1/2,¢)

that is proved in the same way as (4.6) in [10] (cf. the proof of (2.26) below). From this
estimate and (2.17) it is easy to deduce

”eﬁt’vHW22+1,1+1/2(Q1/2’T) < C”UOHLQ(S‘M)'



This inequality and (2.5) (for T'= 1) imply (2.6).

The first part of Theorem 3 is proved in [5| even in a more complicated case when Qg is
a bounded domain and Q = Q; UTg U Qs is multi-connected. The formula (3.18) in [3| (the
representation of the solution of (2.3)) remains valid also for our case, since the functions
f, F, f" are compactly supported (but the last term in this formula drops out, because R? is
simply connected). The same is true for the estimates (3.15), (3.17) that imply (2.8).

The second statement of the theorem is proved in [11|. The estimate (2.9) is obtained
using the representation formula for the solution: h = h’ + V¢,

/ . 1 k(n)dn
o) = Mmt/gl € —n|’

VZp(€) =0, £€Q U, [¢]=0, |

%

M@Tzo] = —[ulh'-ng, €T

We pass to the first statement of Theorem 4. First of all, the problem (2.2) is reduced to a
similar problem with ¢ = 0, @ = 0. We extend £ into the whole space R? so that the extended
field £* satisfies

1€y zon0/2 gy < Il yzennonvaga (2.18)

and we solve the problem (2.3) with k = rotK, K = £*+ A. By (2.8) and (2.18), the solution
hy satisfies

,21:2 Hh1HW2)‘+2’>‘H/2(Q§1) < C(||£||W22+>"1+)‘/2(Q%) + ‘21:2 ”A(i)HW22+)\+1+)\/2(Q§~))' (219)
For h = H — h; we obtain the problem
phi(€,t) + o trotroth(€,t) = g(€,t), V-h(&,t) =0, &€y,
roth(&,t) =0, V-h(t)=0, &€y,
[h-mo]l =0, [h;]=0, {eTly,
h(§,0) = Ho(§) — hi(§,0) = ho(§), €€ Q1 Uy,

(2.20)

where g = G — pthy s — o~ 'rotroth;. It has been studied in [12,11,5], in particular, in [5] the
estimate

2
‘212 Hh"wgﬁ‘kal"')‘/Q(Q%ﬂ) S C<”gHW;aA/2(Q%ﬂ) + Zl HhOHWQhL)‘(Q,L)) (221)
=1, 1=

is obtained. Together with (2.19),this estimate implies (2.11).
Now we obtain the inequality (2.12) under the assumptions of the second part of Theorem
4. Let H be the space of the vector fields 1 € W), i = 1,2, satisfying the conditions

V-p(€)=0, £€€Q;, =12 rotp=0, &€y,
[,mbno]:O, [dJT]:Ov fGFO,

The equations rotyy =0, V-1 =0 in 9 imply

P(§) = Ve(§), &€y,

(2.22)



where ¢ is the solution of the Neumann problem

0
V() =0, §€, pmyt =V m, €Ty, p(&) =0, |¢ oo,

Since V¢ decays at infinity as |z| =2, it belong to La(Q2).
In particular, the solutions of a homogeneous problem (2.20) satisfy (2.22).

For arbitrary 1 € H[()l) we define the function ®(¢), £ € 4, as the solution of the Dirichlet
problem

VER(E) =0, (€)= (), €€l (2.23)

We multiply the first equation in (2.20) (with g = 0) by ¥ — V®, ¢ € H(()l), integrate over
1 and make use of the boundary condition ¥, — V,®|p, = 0. After easy calculation (as in
[5]) we obtain
/ pH ;- p(€)de + ot / rotH - rotypdt =0, Vo € HY. (2.24)
R3 o
Setting ¥ = H ({,t) in (2.24) we obtain the energy relation
ld 2 -1 2
S WHHC )7,y @e) + a7 rotH||7,q,) =0,

which implies, in view of (2.9),

1d
5 G IVEH DI, o) + allVEH ()7 0, <0, a>0,
eIViH ()| 1y @0) < IVEH Ol Ly0,)) (2.25)

T
2 2 1/2
([ 0,00 < el Holiyay. o<
Moreover, H satisfies local in time estimate

”H”W22+)\,1+/\/2(Q 5) < Cp_lHHHLz(Qz—1)7 (2'26)

t—1/

that is proved by the same arguments as (4.6) in [10]. We reproduce a simple proof of (2.26).
Let x,(7), p € [0,1/2], be a smooth monotone function of 7 equal to one for 7 >t — 14 p
and to zero for 7 <t — 1+ p/2 such that [x},(7)] < cpt, |X;(7')\ < ¢p~2 The vector field
H, (&, 1) = x,(m)H(&,7) is a solution of the problem

((1H - (6,7) + o trotrotH (¢, 7) = pH (€, 7)X,(T),
V-H,&1)=0, £€Q, 7€ (t—1,1),
rotH,(&,7) =0, V-Hy¢&1)=0, €€ (2.27)
wH, ngl =0, [H,;]=0, ¢e€Tly,
| H,(6,t—1)=0, £e€Q U

By (2.11),

—1-A
Z HH”W22+)"1+A/2(Qt—l+p,t) S Z HH”W;NQ( i )’
i=1,2

; —14p/2,
i=1,2 t—1+p/2,t

10



We estimate the last norm of H by the interpolation inequality

, < _ —\/2 i
Z I lypornge )< ‘meHHHWQM,W/Z(Q;_HP/ZJ) + a0 H g, o)
1= s i= ,

and set cp~17*/29 = ¢, which leads to

—(14-1/2)2
'21:2 ||H||W22+>\Y1+A/2(Qt71+p7t) <€ '21:2 ”HHWQQH’HA/Q(QFHP/ZQ+C(61)p (1+2/2) HHHL2(Qz_1+p/2)'
=1, =1,

This is equivalent to

2
N(p) <28V N (p/2) + cle) | H | Ly, 1, )

where N()\) = p(1+3/2)? > im12 ||H||W22+A,1+>\/2 If 20432)%¢ < 1/2, then after some

iterations we arrive at

(Qt—14p,t)

N(p) < 2C(€I)HH”L2(Qt—1,t)'

Setting p = 1/2 we obtain (2.26). From (2.25) and (2.26) we conclude, as in the preceding
theorem, that

t
3 1 Hllygeniearg, , y < lhollia
=1,

and obtain (2.12).

11



3 Nonlinear problem

In this section we outline the main steps in the proof of Theorem 1. We write the problem
(1.6), (1.9) in the form

wi(&,t) — vV2u + Vg =V, - Tyr(Lh) + 1 (u, q, h),

V-ou=Ily(u), £€Q, t>0,

I S(u)ng = l3(u), (3.1)
—q+vng-Su)ng(§) = lu(u,h) — [n-Ty(Lh)n|, & €Ty,

u(§,0) = uo(§), &€,

prhy 4+ o trotroth = ls(h, ),

V-h=0, (e,

roth = rotlg(h,u), V-h=0, §&¢&Q, (3.2)
[wh -ng] =0, [hy]=1:(h,u), €Ty,

h(§,0) = ho(§), £€ U UQs,

where
lLi(u,q) = v(Vy = V)u+ (V= Vu)g,
Lbu)=I—-AV-u=V- -Lu,p), L=I—-A"u, €c,
U3(u, h) = Io(IloS (w)no(y) — TLS, (u)n(X)),
la(u,h) =v(ng - S(u)ng —n - Sy(u)n),
l5(h,u) = a 'rot(roth — ProtPh) + 1 ® + pyrot (L u x h), €€ O, (3.3)
lﬁ(h, u) (I P)h f S QQ,
T

lo(h,u) = (‘?AA"Q —no)[h-no] = [A(h,u)], ¢ €Ty,

@ _ (ATARG(y)  ng(y) O
AW = ( AT In 3|2)(n ), i=1,2,

A=LT, ng € WETH(R3) is the extension of ng € WQIH/Q(FO) into R? such that |[nj| # 0, and

lIg=g—n(n-g), Ilg=g—mno(ng-g).

We solve the problem (3.1), (3.2) in a finite time interval (0,7") with 7" > 1 fixed later. As
in |7,8], the solution is sought in the form

u=u+u", q:q/+q", h=h+h". (3.4)
As the first step, we define u" (£,0) = ug(€) and h"(€,0) = hy(€) satisfying the conditions
/ ugdé = | wupdé =0,
Ql Q1

(3.5)
01 Q1
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V- -ho(§) =V -hg=0, £€QUQy, rothy(&)=rotls(ug,ho) =0, &€y,

(3.6)
[tho - mo] =0, [ho ] = l7(uo, ho) =0, €€l

(we have used the compatibility conditions (1.11)). It is obvious that we can set u, = 0,
hy = 0, uy = ug, hy = hg and define (v, ¢/, h’) as the solution of the problem

(u, — VU +V¢ =0, V-u' =0, £€Q, t>0,
T(u',q')ng =0, & €Ty,
u/(£,0) = up(8), &€,
phi(€,t) + o trotroth! (€, 1)
roth'(£,t) =0, V-h/'(1)
[uh'-mo] =0, [h]=0, &€To,
R(€,0) = hi(£), €€ QU

V-RW(E1) =0, &€, (3.7)

-0,
=0, §€QQ,

The functions (u(, hy{) satisfy the compatibility and orthogonality conditions (1.11), (1.12);
in addition,

||U6HW21“(91) + '21:2 ”hloHWQIJr)\(Qi) = HUOHWQIH(QI) + '21:2 ||h0||W21+>‘(Qi)' (3.8)
=1, =1,

By theorems 2 and 4, (u', ¢, h') are defined for ¢t > 0 and

Heﬁtu/HW22+5,1+z/2(Q1T) + Heﬁtvq/HWé”/Q(Q;) + Z Heﬁth/HW22+,\,1+A/2(Q@

=12 (3.9)

< cll[uollyyrsio,y + X IRollyrerg,)
1=1,2

(in what follows we mean by [ the minimal of positive exponents defined in Theorems 2 and
4). It follows that

eﬁT(Hu’(~,T)||W21+l(QI) + Z Hh,('>T)||W21+>‘(Qi)) < C(HuOHWQlJFl(Ql) + Z ”hOHW21+>‘(Qi))‘
i=1,2 i=1,2

We fix T such that )
ce BT < =

5 (3.10)
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For (u”, q, h") we have the problem

u:(ﬁ, t) — DAVEITRNNER Vo

= vu/_i'_u"TM(A\T(u/ +u YW+ )+l +u ¢+ h+ R,
Veu =l +u'), €€, t>0,

HOS(uH)nQ =l3(u + uN),

—q +vng-S(u)ne(€) =L +u’ B +h")

+ [ Ty (AT (W + ") (W + B )n], € € To,

u'(€,0) = ug(€) =0, €€,

,ulh;’ + a;lrotroth” =I5(h' + R u + u”),

V-h'=0, e,

roth” =rotlg(h' +h" u' +u"), V-h"=0, ¢eQy,
wh” -ngl=0, [h]=1:(0+h" v/ +u"), €ely,
h'(£,0) =hg(§) =0, £€0UQ,

solved by iterations, according to the scheme

U;;wrl,t(fa t) — VVQU;;H—I + VQ;’/!L-Fl

= Vo Tor (AT (' ) (B 4 Fu)) L+ 6+ g B Ry),
Vot = b +u,), £€Q, t>0,

HOS(u;;H)nO =l3(u + u;;l),

- q;;1+1 +vng - S(“:nﬂ)nO(f) = ly(u + u,,, b + h,,)

+ [n - Tar(AT (W + ) (B + hoy)n), € €T,

U 1(£,0) = ug(§) =0, €€,

ulh’;,n—l-l,t + aflrotroth;;wl =15(h + h;/n, u + u;;l),

V-h, =0, &e,

roth;;lﬂ = rotlg(h' + h;;b,u’ + u;;l), V- h;;LH =0, &€,
[Mh:rL+1 “mo) =0, [hITIrH—LT] =l;(h' + h;/mul + ’u’:n)7 § €T,
By (6,0) = ho(§) =0, €€QUQy, m=1,..

As the zero approximation, we take ug =0, qg =0, hg = 0.

(3.11)

(3.12)

The solvability of the problem (3.13) is established on the basis of Theorems 2,4 and the
estimates of nonlinear terms in (3.3). Applying Theorem 2, we should think of u,, = v’ + u,;/n
as of vector fields extended from € into R® with preservation of class (which reduces to
inequalities (1.10)). The estimates of f = la(uy,) and F = L(u,,) are obtained in Section 4.
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Let u,, = u' + u;;l, gm = ¢ + q;'m h, =h+ h,;/n, Ap = A(un),

Yiu g h) = llulyzin gy + 1Vl gp) + Nl g, + ~212 hzeroray
1
Vo = Yt s o) Vi =Y (Wt i) Yoo = Y (2t G i),
No = N(uo, ho) = l[uoly+1(q,) + Z [Rollwio,):
=1,

U(e,t) = /0 w(e, P)dr, Un(Et) = /0 (€, 7)dT, A = Alun),

Z(uaqah’) = HllHWZZ’l/Q(Q%) + HZQHWQZJFLO(Q%) + HLHWgal/Q"'l(Q%)
+ ||l3|| l+1/2,l/2+1/4(G ) + Hl4” l+1/2,l/2+1/4( )

+ 212W5H A2 ) —i— L6 || WIM2(Q2) + Hl7H A3/20/243/4 —i— 2]:2”AH ZEAIHA2 (i 3
1= (3

(3.13)
The following theorem is proved in Section 4.

Theorem 5. Let u € WQHZ’HZ/Q(Q%), h e WQH/\’H)‘/Q(Q%), 1 = 1,2 satisfy the condition
. <
fgp) |U( ,t)HW22+z(Ql) <0 < 1. (3.14)

Then

Z(u,q,h) +[|AV - Ty (ATh)|| Wi/ (L)
< 0(51Y(U7 q, h’) + Y2(U7 q, h’) + Y3(ua q, h) + Y4('U,, q, h))

T
+[n - Ty (A h)"|’W21+1/2’1/2+l/4(GT) (3.15)

If Y}, is finite and U, satisfies (3.14), then the problem (3.13) has a unique solution, and
Y7;;+1 < C(Z(uma qm hm) + ”Amv ) TM(A\?nh’ )H ”/2 QL)
o Tag Al si1720721008 )+ N ) (3.16)
< e(61Y + Y2 +Y2 4V + eN(ug, ho)).

It follows that
Ym+1 < Cl(élym + Ym2 + Ym3 + Ym4 + (6 + 61)N0)

and
Ym+1 < 201(6 + 51)]\70, (317)
provided that
Y., < 2c1€1 Ny, (318)
201¢1 + 4c1e1 Ny + 8¢32 NG + 16¢163 NG < 1, (3.19)

€1 = € + 6;. The functions (ul,ql,hl) that are the solution of (3.13) with uy = 0, ¢, = 0,
hg = 0, satisfy the inequality

" "

Y(uy,q,ht) <c(@Y +Y24Y3 1Y) < (1 + €)No.

15



If
Co S 261, (320)
then (3.18) holds for m = 1 and, as a consequence, for all m =1, ...,

By estimating the differences (w41 — Um, Gm+1 — @ms Rm+1 — Um), as in [5], we show that

"

the sequence (u,,, g, h,,) is convergent to the unique solution of (3.12) and
Y(u',q" h") < 2c1e1No. (3.21)

Hence the problem (3.1), (3.2) is solvable in the time interval (0,7"), and the solution satisfies
the estimate
Y(u7 q, h’) < CN(U'Oa hO) (322)

Now we extend the solution into the time interval ¢ > 0. In the Eulerian coordinates,
(v, p, H) satisfy the relations

vi+(v-V)o—-V -T(v,p) =V -Ty(H) =0,
V-v(x,t) =0, xe€y, t>0, (3.23)
v(z,0) =vo(x), =€

We verify that these relations imply
/ w(z, )dz = 0, / w(at) - my(@)de =0, i=1,2,3, (3.24)
Q¢ Q¢
If n =e; or n =mn;(z), then

d
pr Qltv(:r,t)-nd:L':/Qlt(thr(v.V)v).ndx:/Q (V- (T(v, p) + Tar (H))mdz

1t

= / (T(v,p) + Ty (HY))n -ndS = | Ty (HP)n - ndS
Ft Ft
=— V- -Ty(H) -ndz+ lim Ty (H)n -ndS = 0.
Qo R—oco Jiz|=R

Hence the conditions (3.24) hold, i.e.,
[ utenas=o. [ un m©ds=- [ u m@Ed i-123 (325
951 1921 Q;

We proceed by constructing the solution of (3.12) step by step, for ¢t € (T, (j + 1)T),
j =1,.... Assume that the solution is found for ¢ < kT and that

N; = N(u(&, jT),h(&,5T)) <€, j=1,2,..,k, (3.26)
Ui = sup ”U||W2+l <d < 1. (3.27)
t<kT 2

We consider the problem (...) in the time interval (kT (k+1)T") taking (w(§, kT), h(¢,kT)) =
(vi(€), hr(€)) as the initial data. The solution is sought in the form (...) where (v/, ¢’, h’) and
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(w',q", hN) are found as the solutions of the problems

(W (&,t) — vV +V¢ =0, V-u/' =0, €€, t>kT,
S(u')ng =0, ¢&eTy,
pihy 4+ oy trotroth’ =0, V-h' =0, &€,
roth' =0, V-h'=0, €£¢€Q,,
[uh'-mol =0, [h]=0, &€To,
u' (& kT) = up(§), €€ Qi, h(§ET) = hi(§), €€ Uy,

(3.28)

() (&) — vV + V¢ =V, Tu(AT(w) (W + )+ LW +u”, ¢ +¢ W +h"),
Veu =l +u'), e, t> kT,

HOS(uN)no =l3(u + u”),

—q 4 vng- S )ng(€)

=L +u B+ )+ [n- Ty (AT (w) (R + h')n], €eTy,

ulhg + aflrotroth” =1Il5(h' + h”, u + u”),

roth” =rotlg(h' +h" v/ +u"), V-h' =0, ¢€Q,,

wh' -mgl =0, (A=l +h" v +u"), £eTy,

w' (&, kT) = up(€), €€, h'(EKT)=hy(€), E€MUN

(3.29)
with ), = uy —u,, hj = hy —h;, and with (u, h,) possessing the properties

Q1 Oy Q1

Voug = (I — A(we)V-ug,  (S(uy)no)r = Is(uy), (3.30)
Vohp(§) =0, £€MUQ, rothy (&) = rotls(uy, h),
[:u’h;cl : ’I’lo] =0, [h’;,ﬂ'] = l7(uk7 hk)7

g [l 1+, + ‘_21:2 1 llyyrer ) < ele+80) (lunllyie g, + 121:2 1hkllyreaq,)- (3:31)
The construction of (u;, h;;) is carried out with the help of the following theorem.

Theorem 6. For arbitrary X\,1 € R3, r € Wl(), d € ng_l/z(Fo), ac W21/2+’\(I‘0) such
that d; = 0, a, = 0, and £ € W} (D), there exist w € W} TH(Q) and g € W) TMNQ,),
1= 1,2, satisfying the relations

deE =\ . = | —
Ql w(g) § Y Ql w nl(g)dé. l? ? 17 27 37 (3'32)

Vow=r(), e, v(S(ug)ng). =d(§), &eTly,

V-g(§) =0, £€Q Uy, rotg(§) =roth(§), &€,

g -mol =0, [g.]=al(é), &eTy, (3.33)
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and the inequalities

w10y < O+ 1+ Irllgy + el otz (3.34)
3 lalluzoay < llelgoy + lelyyeog,) (3.35)

Proof. We set . )
w=W()+ ZCiEi + Zdz’m(f),
i=1 i=1
with W satisfying

~VEW(E)+ VP =F, V-W(E)=r(), &€,

T(W,P)ng(§) =d(§), €Ty, (3.36)

where F' is the constant vector such that

(W|F = | Vr(§)de— | d(£)dS.
0y Ty

Then the problem (3.36) has a solution satisfying the estimate

W ls1ny < gy + el sz )

(the regularity of the boundary T'g: Ty € VV23 /2t s sufficient for this). The constants ¢; and
d; are chosen so that (3.32) holds and

ol o1y < W lygetiay, + I+ 1) < e+ 1+ Il + ooz )

The vector field g(&) can be defined as g(§) = g*(&,0) where g* is the solution of

TOtg*(g,t) = T0t<£*(€7t) + a*(f,t)), V- g*(ﬁ,t) =0 § € Ql U Q27

[g5] = a*(§), &€y, (3.37)

JANS W22+)"1+)‘/2(RT) is the extension of £ € W, *(Qy) into Ry vanishing for large €| and
satisfying the inequality
||£*||W22+>\,1+>\/2(RT) < CH£|’W21+>\(92), (3.38)

whereas a* is the extension of a such that a*(§,t) =0 for £ € Q9, a* - ng =0 for £ € Ty and
Ha*”WEHJH/Q(QlT) < c||aHW21+A(FO). (3.39)

By (2.8),

S Il < ¢ 3 197 Tz gy < € yonioreg,
i=1,2 i=1,2 (3.40)

+ Ha'*|’W22+>\,1+A/2(Q%)) < C(||£HW21+>‘(Q2) + ||aHWZ}/2+>‘(Fo)>’
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q.e.d.
Thus, we have constructed (u;;, h;) satisfying (3.30) and (3.31).
The functions (u/, ¢’, h’) satisfy the inequality similar to (3.9) and, as a consequence,

Njiq = N(ujyq, b)) < coe TN (ug, hy) = e TN, (3.41)
To solve (3.29), we make use of the estimate of nonlinear terms
ZH) < (6, YR 4 (v EN2 4 (y ()3 4 (y Rty (3.42)

where Z(*) and Y(¥) are the expressions defined in (3.13) and calculated in the cylindrical
domains QZT,(!@ )T The inequality (3.42) follows from the estimates obtained in Section 4
and from the remark at the end of the section.
Repeating the above arguments, we prove the existence of a unique solution of the problem
(3.29) and the estimates
Y(k)(u,q, h) < eN(ug, hy),

1
Niy1 < ZNk-

The same estimates are true for ¢t € (7, (5 + 1)T), j < k.
If 3 is so small that €7 < 4, then

k k
-y D2e2B)1/2 < (37 N2e20)2 < Ny, (3.43)
j=1 J=1

which yields a uniform estimate for Uy:

k
U, < C(Z Y(j)Qerﬁ)l/2 < ¢eNy < ce.
j=1

This shows that ¢; is small for small e. Letting ¥ — oo in (...), we obtain the inequality
equivalent to (1.14). This completes the proof of Theorem 1.

In conclusion, we outline the scheme of reconstruction of e(¢, t) satisfying (1.7), (1.8) with
u, h, ¢ found above. We follow the approach in [4]. Let e;(§,t) be a vector field such that

V. el(&a t)
[no X 7361]

0, £€Q1UQo,
U, [no-e1] =0, zely.

(3.44)

(1)

(in fact, we can set e; = 0 in Q9 and define e’ as the solution of

AV egl) = 0, f c Ql, ng X 'Pegl) = lII, ng - egl) — (), é‘ c F0)~
Since I'y is close to I'g, such a vector field can be constructed. Next, we solve the problem

rot€ = —pu(hy — ®) —rotPe;, V-Pl€=0, yeQ, [E]=0, yel,. (3.45)
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By Proposition 1 in [3] (proved by Dr. N.Filonov) the equation V- h({,t) =0, £ € Q3 UQ
and [ng X Pey] = ¥ on Ty imply (u(he(z,t) — ®(z,t)) + rotPey) - ng = 0, £ € Ty, so the
problem (3.45) is solvable. The solution is expressed by the formula

1 p(he(z,t) — ®(2,t)) + rotPe;(z,t)
:f,'l(f,t)——47r7“0t/Q €= 2]
V-PIWVZE )=V - P&, €€R3 [Z]=0, [no-PVZ]=0, ¢£el,.

dz,

Now we set
Pe = a;'ProtPh — (L 'u x h), y € Q, (3.46)

which implies
Pe=E+Pey+Vx1, € (3.47)

with a certain single-valued x;. Finally, we set
Pe=E+Pei+Vxa+ Ct)Vw() =&+ Vxa+ Ct)Vw(E), £ € Qo, (3.48)

where w and 9 are solutions to the problems

V- PileQ(gﬁt) = 07 Yy e 927 X2(§7t) = Xl(&?t% é- € PO: (349)

V-PlVwE) =0, €€Qy w(t)=1, €Ty w—0, [£— . (3.50)

For determination of C(t) we should impose on e(?(¢,t) a normalization condition, for
instance, fFo e®? . nydS = 0, which coincides with I, E® .ndS = 0. Since

I:/ ng - VwdS # 0,
1)

we have

C(t) = =1 [ (£2)+ Vxa(€:) - ma)is. (351)
0
We pass to the estimates. The vector field egl) can be constructed so that
le lwz ) < cl®llyarmgyy et g < @z g, (3.52)
vVt > 0. Applying the first inequality to the finite difference egl)(f, t—h)— egl)(f, t), we easily
deduce from (3.52) the estimate
ﬁte?)”%“”(czé@) + ”eﬁtegl)“w;/ (0,004 (1))

(3.53)
R T
2

Bt
o T le ‘I'"W;/"’(o,oo;w;/?(ro))'

@
Let ®1(&,t) = u(hi(z,t) — ®(2,t)) + rotPei(z,t). By the Calderon-Zygmund theorem,

IVELlLymsy < cl|®1llr,(ms), (3.54)
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in addition,

D IVEwawsy < ¢ D 1@l (3.55)
i=1,2 i=1,2

As for the Lo-norm of £1, it can be estimated only in a finite domain, for instance, in Q* =
suppu”™. We have

€1l o) < el Pl po(r3)- (3.56)

Applying (3.55) and (3.54) to the finite differences A;(—h)VE; and Ay (—h)E1, we conclude
that

Bt Bt Bt
Z He vngWZ’\’)‘/Q(Qoo) + He 81”W20”\/2(Q§0) <c Z He (I)lHWQA’)‘N(Qoo)’ (3.57)
i=1,2 i=1,2
where Q% = Q7 x (0, 00).
We proceed with the estimate of Z keeping in mind that P — I has a compact support
OF. Let

2.0 = 2.0~ [ 2.0

We have

PIVZ - VZdy=— | P& VZdn+ P& -nZdS (3.58)
Q* Q* oa*

Due to the Poincare inequality
1Z Loo07) < IV ZI|Ly00)
we deduce from (3.58)
IVZ| 1y04) < cll€llwgx-
Moreover, in view of the equation

VZ=V-(I-PHVvZz-V -Pl&g

and the estimate
HI - ,P_lHW?lH(Qi) <cb, =12

we have
ID*Z| ey < c(IVELLyms) + 1€1l Lo (00))
and
> ID*Zlwp ) < oY IVELllwa @) + I€1llwp @)
=12 i—1,2
< ¢( Z IVELllwa ) + 1€l La0x))-
i—1.2

By virtue of this and the preceding inequality applied to A;(—h)Z, there holds
Bt 12 Gt
21:2 1€ D22l xn iy + 1€V Z o2 g
i=1,

< C( Z HeﬁtvngWZ)")\/Q(Q&)) =+ ||€ﬁt81HW20,)\/2(Q;o)),
i=1,2

(3.59)
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hence

pt pt Bt .
T 1€ lyparguy + 1" Elygar gy S ¢ 3 I il (360)
=1, =1,

Now, using formulas (3.46) - (3.48) for e and (3.51) for C(t), we obtain

Bt Bt
e Vell e g, + le™ellyon:

Q%
< ¢(||ePtve
< c(lle 2HW2A,A/2

Q%)

G SV

Q% Qoo,l))’

Bt 192 Bt Bt
He D XlHWQA’)‘/z(Q}m) + ||€ VXIHWQO,)\/Q(QCIXJ) < C('212 ||e ‘I’lHWQA,A/z(QgO)
=1,

+ IIeﬂtV%HWQA,w ) ||€ﬁt‘1’2||wg,x/2

(Qc1>o (Q(xnl))’

ﬁtDQ Bt
le™ D™xallyanr2 gz ) + €7V X2l 0072

(Q% (Q%)

Bt Bt 3.61
<c(|le X1HW21/2+)\,0(GOO) + e XIHWQ/\/Q(O,T;W;/Q(FO) (3.61)

Bt 12 Bt
D™l gy + €7 VXl

(Qéo))’
st
) T e Vxally e

(Q%

Bt Bt
He CHW2>‘/2(R+)§C(”6 82||W2>\/2(

0,00;W4 (922 (0,T;Wy (92))

H@’BtveHWQ)\,A/2 ) + HeﬁteHWQO,A/Q

Q%
< C(Heﬁtvg ”W/\,/\/Q
2

Q%)

) + Heﬁtf:HWzo,A/z

(Q% (Q%)

Bt 12 Bt
T D™l gz ) + €7 VX202

Q% (Q%o))’

where ®9 = al_lprotph—ul (L~ tuxh). Using the results of the next section for the estimates
of ®; and ®-, one can show that e possesses a finite norm

E Bt Bt
— He veHWQA’)\/Z(QéO) + H@ eHWQO’A/Q(Q’;O)’
i=1,

that is estimated by the data of the problem.
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4 Estimates of nonlinear terms

In this section the proof of Theorem 5 is presented. We estimate all the non-linear terms in
(3.3).

We start with some auxiliary inequalities for the product of two functions u(x), v(x) given
in a domain D C R™. We shall use the relations

levllwymy < llellygeoylollysrzen gy + 1l 3200 olhwgoy)

< CHUHWZZ(D)H'UHWQl(D): if 20>n.

(4.1)
||UUHW2l(D) < C||U|\W2l(D)”U||W;/2+n(p), n>0, or
levlhwg) < ey el ey if A <n
In addition, there holds
HUUHWQI(D) < c(sup |U(95)|H”HW21(D) + sup \v(w)IHUHw;(D))- (4.2)
D D

We proceed by estimating the nonlinear terms in (3.3) under the assumption that the
inequality (3.12) holds. The elements of the matrix A are homogeneous quadratic functions
of the elements of the matrix £ = I + VU, hence

sup ||l — A Loy < csup ||U 1 < ¢bq,
t<¥ I ||W21+ ) t<¥ | ”W22+ ()

B (4.3)
sup [y 1) < e
We estimate the term (I — A)Vg. By (4.1) and (3.12),
I = 4)9all g0 gy < esp T = Albyyy [Valygoqgy, < il Vallygogyy  (44)
We also need to estimate
0~ A)Vally 02y, = 1T~ AVValagy) + I~ A)Vall o g
where
1/2
sy = ([ o | 18em D) ™ Aehr = (et 1)~ (e
(we assume that 7' > 1). Since
h
[A(=h)(I = A)| < C/ [Vu(§,t —7)ldr < ch sup [Vu(E,7)], (4.5)
0 Qi n
we obtain
I = A)Vallyo0r2 g1 ) < C(Sslzlf) 1= AllVallyoz gy + wup V(S D)lIVallL,q) o
T .

011Vl o2 gn + Il yzz gr) IValyrogan,)
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We proceed by estimating the norm of
(V2 =VHu=((A-I)V-AV+V-(A-1)V)u
We have
1(V2 = 92)ull o,

) S 051||V-AVu||W21,o( (A—I)VUHW21+1,0

Q4 oy Tl

< C(SIH’U'HW22+Z,O(Q%),

Q1)

in addition, we need to estimate ||(V2 — v2)UHW0,l/2 . Since
2

(QF)
[A{(=h)(A = I)V - AVu| 1,(0,) < c(01]|A(=h) AVl (q,)
oA
+ 1 Ad(=h)(A = D)Vuly1 ) + | ; EdTV - AVu| L,
[A{(=h)V - (A = I)Vul 1,0, < cl|A(=h)AVully1q,),
it holds
1AH(=R) (V3 = V2)ul|Ly(,) < ehil|Ac(=h) D?ul| 1,0, + ch sup Uz @ lwllwzo gy
and
2 2
(Ve =V )UHWQOJN(QlT) < C((SlHUHW21/2(O7T;W22(Ql) + ?E’FF) HUHWQH'?(Ql)Hu”wgvo(QlT))‘

The inequality
20l 00 < eBtllulzinog gy, (4.7

is proved in the same way as (4.4 ), whereas
T
1) lyrsa gy < 10— ATl + 10— Al gy + IVl sz gy - (48)

The first norm in the right hand side is estimated as in (4.7), the second is treated as in (4.5),
and the last one is estimated with the help of

A=) (Va0
h
< )Vl 0 st a6, 0)] 500 V] | a1t = )00 :
1 1
IVl g2 gy < 500 [ DIl gy + ol gy sup V&0 (49
T T

We pass to the estimates of I3(u) and I4(w). At first we consider the expression
S(u)ng — Su(u)n = (S(u) = Su(u))n + S(u)(ng —n).

Let nf € WiTH(R3) be the extension of ngy € W21/2+l(1"0) in R® and n* = Anj/|An}|. We
have

1S (u)rg — Su(w)nll;,1/2400 ) < c[|[S(u)ng — Su(u)
2 T

*
(G n ”WQI-H’O(Q%-‘)

< e((|(S(w) = Su())” [yyrstoor, + [S(w)(0 —1)lyssto 1) < c&HuHW;H,O(QIT(). |
4.10
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Moreover, from

0
I15; (S (@m0 = Su(u)n)l Ly (ar) < 1S(w)n0 = Sulw)nll (3 + [1Su(w)nll Ly
+ 15 (us) (no = ) Loer) + 1Su(w)ntll Ly Gy,

where S/ (u) = (A7 TVu) + (A; TVau)T, it follows that

(S(u)no — Su(u)n)l| Ly 6y < (01l VurllLyer) + up IVulllVull Ly 6r));
T

12
ot

12 (S(wyng — Su(wm)]|

i,0,A/2—1/4
ot W24 Gr)

< 6(51 |’V’ILHW2(),>\/271/4

(Gp) T (1 +sup V) ZL}I; Vul[|[Vul r,cr))
T T
and 5
||a(5(u)no - Su(u)n)HWzo,A/%l/zx(GT)

< 6(51||VUHW§,A/2—1/4

ory + (1 30D VU5 [Vul Tl )

Qr

Similar estimates hold for ng - S(u)ng —n - S,(u)n and
IIpS(u)ng — ISy (u)n = (I — np ® ng)S(Vu)ng — (I —n@n)S,(Vu)n.
From (4.10), (4.11) is is easy to deduce
||l3(u)||W21/2+l,1/4+l/2(GT) + Hl4(u)||W21/2+l,1/4+l/2(GT)

< C(él”uuwf“*l“/?(cz,}) + HUH?/VQHZ’I/Q(QIT) + HUH?/VQI“J”(Q;))'
The next step is the estimate of I5(u, k), lg(u, h) and A®. By (4.1),
I = PIRllyzen0gy) < €D 17 = Pllygon gl gy, < chilllyzinngy

in addition,

IPblsiapy 10 = Pl < il apy + 50w A1Vl gp
T

We proceed by estimating the Wg 2

Py = LI L+ LTL; (the formula

crc+c'c £rc
= t * L - Ltu 5 € QQ)

P L 12

leads to the same result). We have

1A{(=h)Pill o) < cllAH=h)Lill Ly + I1£7 Ad(=h)L]| Ly )
< clllAd(=h)Vullry) +h sup [Vul[Vulrq,),

Qt—h,t
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(4.11)

(4.12)

(4.13)

(4.14)

-norm of P;h in the cylinder Q) where L = 1 and



hence

[(Ai(=R)P)ih]| o) + IPAU(=R)R] 1,00
SC(Sgp’h”(HAt(_h)quLz(Qﬂ+h sup [Vaul[|Vaulry ) +h sup \Vull|hell £, 00))
1

t—h,t Qt—h,t

which yields

8 (4.15)
+sup [Vul[[VullL,qr)) + esup [Vaulllhdl,o1)-
QT QT
In addition, it holds
[(A¢(=R)P)hil| Ly, + (P — DAW(=h)hel| Ly 0,)
h
< A (Ml e+ e [ Vst = r)drl
and, as a consequence,
H(I — P)htHWS"\/Q(QZ )= ((51”h” 0, 1+,\/2( ) + sup ‘VU ‘HhtHLQ Qz ) (4.16)

Qr

Together with (4.13)-(4.15), this inequality yields the desired estimate of the norm of (I —P)h,

that is controlled by the right hand side of (3.13). The same is true for the W)‘ A2
lg, rot(L~'u x h), ® (the last two terms are of a lower order).
Since the expression

- norms of

AT An* n*
[An*[2  [n*|?

has the same properties as I — £, I — P, the norm

ATAnB‘ n;
ITange ~ gz

is also estimated as ||(I — P)h||,, 2NN (1 ) above.

We proceed by estimating the norms of V- Ty (k) and n-Ty (h)n, where n = Ang/|Ang|,
h = ATh = Lh. We start with finding a bound for Lh in terms of h.
We have

||E||W22“v°(Q1T) = Cfgg ||£||W22+A(Ql)||h||W22+A»0(Q1T) < CHhHWQ?HvO(QlT):
I(EmMLap < ey + 500 IVl
T
h
| A=) Lol Ly < e /0 V(- t —7)drh ).

which implies

Bl < ellbalhygorsgyy + 1Vel@psup o). @1)
T
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Hence _
IBlyzensenn gy, < cllbllyzonrosgyy + IVulap swlh(E D). (418)
T

We continue the estimate of V,, - T (h):

HAV ’ TM(hHW;‘)(Q%ﬂ) < CHthHV[/QlaO(QlT) < Cfgg HhHWQH)‘(fh)”h||W22+>"O(Q1T)’ (4~19)

1A(=R)Tar () 1501 < el A(=h) VR 1,0 Sup [B] + |2 (=h) Rl o) VR y@1)
1

< 1A (=Rl 1Bl gy -
[(AH (=) AV Tas (B)]| ) < ch sup [Veufsup R VA Lygo,).

Qi—ht 951

from which it follows that

|AV - TM(h)”WS’Z/z(QlT) < C(HhHW22+A,1+>\/2(Q1T) iilg ||h||W21+>\(Ql)

(4.20)
+sup lellwr+iqy sup 1Pl rex @) IVRI Lo g)1m)):
and the norm of h is estimated by (4.18).
Finally, we estimate || - TM(h)n||W21+1/z,z/2+1/4(GT). By (4.1),
I TRl ovs0 ) < el Tag By cono g,
< AT (B)ly3+2010y) < <50 [l g Bl r0,gp o

o - -
15 (7 Taa(R)n) a6y < c(sup [hlllhell 1z (6r) + up RVl Ly @)
T

Gr
IAU(=R)Tar (R)ll Ly (ro) < el A(=R)hell oo Sup IR + [Pt £y o) Sup |Ai(—h)h|,
0 0

[(Ai(=h)ny) - TM(ﬁ)n“L2(F0) < csup B A (—=h) V|| 1y (rg)

0

(A=) Tas ()l sy < ch sup [Vulsup B[ Ve, ro).
Qint 0

which implies
. h < _ 2 _
||’I’L TM(h)nHWQO,l/2+1/4(GT) ~ C(Zl;}; |hH|ht”W20,A/2 1/4(GT) + ng ‘h‘ HV’U,HW;,AM 1/4(GT)

Rl oGy Iy are=1/a g gogpaen gy + sup V| sup bVl Ly cr)

Gr Gr

(4.22)
) is controlled by the right hand side of (3.15).

Remark. We have estimated all the nonlinear terms in (3.3) in the time interval (0,7),
but the same estimates hold for t € (kT,(k + 1)T'), provided that the condition (3.14) is
satisfied for ¢t < (k+ 1)T.

It is clear that Hn-TM(E)n\|W21+1/2,z/2+1/4(GT
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