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Abstract

In this work we introduce the obstacle-mass constraint problem for a multidimensional
scalar hyperbolic conservation law. We prove existence of an entropy solution to this prob-
lem by a penalization/viscosity method. The mass constraint introduces a nonlocal Lagrange
multiplier in the penalized equation, giving rise to a nonlocal parabolic problem. We deter-
mine conditions on the initial data and on the obstacle function which ensure global in time
existence of solution. These are not smoothness conditions, but relate to the propagation of
the support of the initial data.
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1 Introduction

Consider the Cauchy problem for a hyperbolic conservation law,

H(u) ⌘ @tu+ div f(u) = 0,

u(0, x) = u
0

(x),
(1.1)

under the restrictions

0  u(t, x)  ✓(t, x),

Z

Rd

u(t, x) dx = 1, t � 0. (1.2)

Here, ✓(t, x) is a given obstacle function, f is the flux function which is supposed smooth, the
Cauchy data u

0

is such that 0  u
0

(x)  ✓(0, x), with
R
Rn u

0

(x) dx = 1. In all that follows, every
solution u of the various problems we will consider will be nonnegative, this being a consequence
of f(0) = 0 and the properties of the hyperbolic operator H.

Even without the mass constraint
R
Rd u dx = 1, some sense must be given to the hyperbolic

problem (1.1) under the obstacle constraint u  ✓. This was done mainly by Lévi in a series of
works [8, 9, 10], in the case of a Dirichlet problem, in which a viscous approximation was introduced
with a penalization term enforcing a constraint of type u  ✓. However, such a solution, while
verifying u  ✓, does not conserve mass. This reduces the applicability of that approach to
problems where mass conservation is important, such as in porous media models with saturation
arising in petroleum engineering and crowd or tra�c dynamics (see, however, [3] for an application
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of an obstacle problem enforcing mass loss). More examples of domains where hyperbolic obstacle
problems may be applicable can be found in [5] and the references in [9]. Other references on
hyperbolic obstacle problems include [2, 11, 13, 14], although we could cite many others. For an
introduction to classical obstacle problems, we address the reader to the book of Kinderlehrer and
Stampacchia [7], and also Rodrigues [12].

One way to understand Lévi’s approach is to observe that (formally at least) a solution u to
the obstacle problem H(u) = 0, u  ✓ actually verifies

@tu+ div f(u) = �H(✓)��{u=✓}, (1.3)

where we define the positive and negative parts as v+ := ess sup{v, 0}, v� = (�v)+, and H is the
operator defined in (1.1). The motivation for the above equation (in the linear case) can be found
in Remark 4.12 in [14]. In fact, equation (1.3) means that u must solve the equation H(u) = 0
wherever u does not coincide with ✓. On the other hand, on the coincidence set {u = ✓} one must
have H(✓) = �H�(✓), which is to say, H(✓)  0. This property is related to the uniqueness of the
solution, and ensures that somehow information is not created in situations where u “emerges”
from the obstacle ✓, or, equivalently, that the information u carries is lost when u “disappears”
into the obstacle ✓.

It is clear that a solution to (1.1)–(1.2) does not exist (in general) if the obstacle ✓ is reached.
Indeed, in that case, there are two mutually exclusive e↵ects taking place: on the one hand, the
evolution equation H(u) = 0 naturally conserves the total mass; on the other hand, the presence
of the obstacle leads to mass loss. In this work we propose a mechanism designed to reconcile
these two contradictory aspects. One classical way in which an integral constraint like the unit
integral condition in (1.2) may be enforced, is to introduce a Lagrange multiplier into the equation
(1.1), see for instance Ca↵arelli and Lin [4] for a related problem. We take this approach here. In
that spirit, our problem may be posed as follows: we look for a pair (u,�), with �(t) a function of
t alone, such that u and � verify (see below for the precise definition)

@tu+ div f(u) = �(t)u,

u(0, x) = u
0

(x),
(1.4)

with

0  u(t, x)  ✓(t, x),

Z

Rd

u(t, x) dx = 1, t � 0. (1.5)

To our knowledge, this procedure is completely new for scalar conservation laws. We shall see
that, even while respecting the obstacle condition, the solution u conserves the total mass, which
is physically relevant for real applications. Formally, and in parallel with (1.3), the solution u
should verify

@tu+ div f(u) = �H(✓)��{u=✓} + u

Z

Rd

H(✓)��{u=✓} dx. (1.6)

Therefore, setting �(t) =
R
Rd H(✓)��{u=✓} dx and integrating on Rd one finds

d

dt

Z

Rd

u dx = �(t)
⇣Z

Rd

u dx� 1
⌘
,

giving
R
Rd u dx = 1 for t > 0, as long as

R
Rd u0

dx = 1.

The main goal in this work is to make precise the above formal reasoning. For that, we will
introduce a nonlocal parabolic equation containing a penalization term to enforce the constraint
u  ✓ (as in [9]), and a new, nonlocal Lagrange multiplier term designed to enforce the mass
constraint. As we will see below, this is not trivial to achieve. The first problem which arises is
the lack of global in time existence for a possible solution of the problem (1.4)–(1.5). The reason
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is explained in more detail in Section 2, but can be understood by pointing out that the Lagrange
multiplier term �u, introduced to make the mass of u grow, cannot fulfill its mission if u  ✓ only
takes the values 0 or ✓, which may happen for conservation laws (since solutions are in general
discontinuous). Therefore, there must always remain some mass of u strictly below ✓ and above
zero. This problem is solved here by finding appropriate conditions on the initial data and on the
obstacle only (which, importantly, involve no additional smoothness), as presented in Section 2.

In Section 3 we analyze the nonlocal parabolic problem which will serve as an approximation
to the full problem (1.4)–(1.5). This section follows a standard strategy, namely a fixed point
argument. We decided to present some details, since in the a priori estimates one must be careful
due to the presence of the penalization and, especially, the nonlocal term. Next, in Section 4 we
provide the key estimates which allow us in Section 5 to pass to the limit on the penalized nonlocal
parabolic equation. This is one of the main parts of the paper, where we obtain estimates for the
penalized problem which are independent of all parameters, and also where we prove (using the
assumptions of Section 2) that these estimates hold for arbitrarily large time intervals.

The uniqueness of solution is not established here. Nevertheless, we conjecture that a well-
posedness property is valid. Note that in [9], the uniqueness property is a delicate part of that
paper, as is usual in the theory of hyperbolic conservation laws. The di�culty in reproducing
usual uniqueness arguments (Kruzkov’s doubling of variables) is mainly due to the fact that a
solution to (1.4)–(1.5) actually consists of a pair (u,�) (see Definition 1.2 below). Note, however,
that in order to obtain our existence result, a careful and involved study of a nonlocal parabolic
problem is necessary, needing in particular completely new assumptions on the data and delicate
estimates. However, our method does not give an explicit or clear dependence of �(t) with respect
to u. For these reasons we chose to leave for future work the interesting question of wellposedness.

Finally, it would be interesting to determine wether the methods in our paper can be extended
to deal with more general (e.g., time dependent) mass constraints, hyperbolic systems of conserva-
tion laws, etc. Also, it would be of great interest for physical applications (even under smoothness
assumptions, to keep the analysis less involved) to extend the results of this work to a general
conservation law with space and time dependent flux function and source term.

1.1 Smoothness assumptions on the data

The initial data u
0

is taken in the space (L1 \ L1)(Rd), while the flux function f is taken in
(C1(Rd))d. In fact, to simplify the exposition, we also consider that u

0

has bounded variation,
that is, u

0

2 BV (Rd).
The obstacle ✓(t, x) is assumed to satisfy the following conditions: For all t � 0,

k@t✓(t)kL1
(Rd

)

 C, k@xi✓(t)kL1
(Rd

)

 C,

k@tt✓(t)kL1
(Rd

)

 C, k@xit✓(t)kL1
(Rd

)

 C, k@xixi✓(t)kL1
(Rd

)

 C,
(1.7)

For each compact set K, the function t 7!
Z

K

✓(t, x) dx is continuous, (1.8)

and
0 < ✓  ✓, (1.9)

for some constant ✓. For instance, conditions (1.7)–(1.9) are satisfied if ✓ � c 2 W 2,1(Rd+1) for
some constant c > 0 such that ✓ � c � ✓ > 0, and (1.8) follows by Sobolev’s Embedding Theorem
(i.e. W 2,1(R) ⇢ C1(R)). The proof of some estimates below require third derivatives of ✓ in space.
However, only first and second derivatives of ✓ appear in the final statement of all estimates. for
this reason, and to simplify the exposition, we assume without loss of generality throughout the
paper that the obstacle ✓ is a smooth function (at least W 3,1(Rd+1)). The general case follows by
standard regularization arguments. Note also that ✓ is not required to be bounded, at least when
the dimension d is high enough.
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1.2 Entropy solutions to the obstacle-mass constraint problem

Here we recall some standard facts and terminology from hyperbolic conservation laws.

Definition 1.1. A function ⌘ 2 C1(R) is called an entropy for equation (1.4), with associated

entropy flux q 2 C1(R;Rd), when for each u 2 R,

q0j(u) = ⌘0(u)f 0
j(u), (j = 1, . . . , d). (1.10)

Also, we call F (u) = (⌘(u), q(u)) an entropy pair, and if ⌘ is convex we say that F (u) is a convex

entropy pair. Moreover, F (u) is called a generalized entropy pair if it is the uniform limit of a

family of entropy pairs over compact sets.

The Kruzkov entropies are the most important example of generalized convex entropy pairs,
consisting of the following parametrized family

F (u, v) = (|u� v|, sgn(u� v)(f(u)� f(v)), (v 2 R).

Next, we present in which sense a function u(t, x) is a weak entropy solution of (1.4)–(1.5).

Definition 1.2. Let ✓ be a function defined on Rd+1

, which is called an obstacle, verifying the

conditions in (1.7)–(1.9). Let u
0

2 (L1 \ L1 \ BV )(Rd) with 0  u
0

(x)  ✓(0, x) a.e., andR
Rd u0

= 1. A pair (u,�) is called an obstacle mass conserving weak entropy solution of the

Cauchy problem (1.4)–(1.5) if for any T > 0:
(i) The function u is in L1((0, T ) ⇥ Rd) with u(t) 2 BV (Rd) for a.a. t 2 [0, T ], and the

Lagrange multiplier � is in L1(0, T ;R+).

(ii) For each nonnegative test function ' 2 C1
c ((�1, T )⇥ Rd), and any k 2 [0, 1]

Z T

0

Z

Rd

F (u(t, x), k ✓(t, x)) ·rt,x'(t, x) dxdt

+

Z T

0

Z

Rd

⇣
�(t)u(t, x)�H(k ✓(t, x))

⌘
sgn(u(t, x)� k ✓(t, x))'(t, x) dxdt

+

Z

Rd

|u
0

(x)� k ✓(0, x)|'(0, x) dx � 0.

(1.11)

(iii) For almost all t 2 (0, T ),
R
Rd u(t) dx = 1 and u(t, x)  ✓(t, x).

One observes that, as a consequence of Definition 1.2, the initial condition is assumed in L1(Rd)
strong sense:

ess lim
t!0

Z

Rd

|u(t, x)� u
0

(x)| dx = 0. (1.12)

2 Preliminaries

In this section we make some remarks motivating our method. To begin, we describe our approach
using a perturbed penalized problem.

2.1 An approach using a nonlocal penalization

For each " > 0, and all n 2 N we consider the following nonlocal perturbed parabolic problem

@tun," + div f(un,")� "�un," = nun,"

Z

Rd

(un," � ✓)+ � n(un," � ✓)+,

un,"(0, x) = u
0

(x),

Z

Rd

u
0

dx = 1,
(2.1)
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as an approximation scheme to solve the problem (1.4),(1.5). Indeed, the last term in (2.1) is the
usual term penalizing the mass of un," above ✓ (see [9]), ensuring in the limit that the solutions un,"

will stay below the obstacle ✓. Moreover, we have introduced in (2.1) the nonlocal penalization
term nun,"

R
Rd(un," � ✓)+, which implies the unit integral property. Indeed, integrating (2.1) on

Rd and on [0, T ], applying the properties of the family {un,"}, one finds

Z

Rd

un," dx� 1  n

Z t

0

⇣Z

Rd

un," dx� 1
⌘⇣Z

Rd

(un," � ✓)+ dx
⌘
ds

which, using Gronwall’s Lemma, yields
R
Rd u(t, x) dx = 1 for t � 0. The computation above will be

precisely described below. Still, this procedure alone does not ensure existence of solution outside
of some small time interval, as the next section shows.

2.2 Counterexamples to global in time existence

Here we present some heuristic arguments which show that under very general conditions, one
cannot hope that a limit u obtained by the penalized method (2.1) satisfies, at the same time,
u  ✓ and

R
Rd u dx = 1 except on a possibly small time interval. More precisely, we argue through

heuristic arguments that, in general we do not expect that problem (1.4),(1.5) has a global in time
solution (that is, on an arbitrary interval (0, T )), which preserves all the desired constraints.

Consider the case d = 1, f ⌘ 0, with u
0

(x) = �
(0,1)(x), and suppose the obstacle is given by

✓(t) = 1

2

+ e�t.

If t < ln 2, then u(t, x) = u
0

(x) is clearly the solution of (1.4),(1.5). But if t > ln 2, then the
only way that a possible solution of (1.4),(1.5) can satisfy the obstacle constraint and the unit
mass constraint is for its support to expand, in order to compensate for the loss of mass due to
the obstacle. And indeed, the goal of the Lagrange multiplier method is to allow for such a mass
growth. But in the absence of flux terms, a Lagrange multiplier can never create mass in regions
where u ⌘ 0. Therefore, in this case, we see that a solution to the obstacle problem with mass
conservation will not be global in time. In fact, no such solution exists for t > ln 2, since condition
(iii) in Definition 1.2 will be violated.

It is easy to produce similar counterexamples also in the case f 6= 0, using the linear advection
equation and obstacles depending on x, in such a way that the compactly supported profile of
u
0

, moving by advection in the positive x direction will “collide” with a static obstacle having a
decreasing profile.

The common thread of such counterexamples to global existence is the situation where the
support of the solution u is carried into regions where the obstacle has mass less than one. In
other words, we may say that if the support of u

0

is carried by the advection term into a region
Ut, where the integral of ✓ (on that region) is less than 1, then, since the introduction of a
Lagrange multiplier cannot make u grow outside Ut, there will be no Lagrange multiplier for
which

R
Rd u dx = 1, while verifying u  ✓.

Another way of summarizing this heuristic reasoning is to say that, some nonzero mass of u
must remain below the obstacle at all times, so that the Lagrange multiplier has something to act
on. Indeed, below we provide assumptions which ensure this property.

2.3 Assumptions on the data ensuring global well-posedness

In view of the previous discussion, some assumption on the data is needed in order to prevent
the kind of situation described above. This is not trivial to ensure: as we pointed out, heuristic
analysis suggests that some mass must remain below the obstacle at all times, so that the solution
has “room to grow” in case the mass loss from the obstacle constraint becomes too great. But
intuitively, this will always be the case for solutions of the penalized problem (2.1), due to the
presence of the viscosity term, which tends to smooth out the solutions. Indeed, it is known
that such a term will in general produce solutions with unbounded support, even for compactly
supported data. Thus, for each value of the viscosity parameter ", un," is expected to have
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some nonzero mass below the obstacle. The trick is to develop an assumption which is somehow
independent of ", and which ensures that the eventual limit of un," as n ! 1 and "! 0 still has
some mass below ✓.

The solution we propose is to consider an auxiliary function v� , whose properties depend only
on the data of the problem, having the property that, on the one hand, v�  un,", and on the
other hand, the integral of ✓ remains greater than one on the set where v� is positve.

Assumption 2.1. Suppose the initial data u
0

and the obstacle ✓ satisfy the following hypothesis.
There exist 0 < � < ✓, and � > 0, such that, for each t 2 [0, T ],

1 + � 
Z

{v�>0}
✓(t, x) dx  +1, (2.2)

where v�(t, x) is the unique entropy solution (see [6]) to the Cauchy problem for the homogenous
conservation law

@tv� + div f(v�) = 0,

v�(0, x) = v
0,�(x),

(2.3)

with v
0,�(x) = min(u

0

(x), �).

For convenience, we also consider the following viscous perturbed problem

@tv�," + div f(v�,")� "�v�," = 0,

v�,"(0, x) = v
0,�(x).

(2.4)

The existence, uniqueness and regularity assumptions on the family {v�,"}, follows from the well-
posedness theory for parabolic equations, see for instance [6].

Remark 2.2. 1. Note that Assumption 2.1 is a hypothesis on the initial data u
0

, and the obstacle
function ✓. Indeed, it states that the support of the solution of the conservation law (2.3) cannot
be carried into a region where the integral of ✓ is less than one. This is in agreement with the
heuristic analysis presented before.

2. If (2.2) is verified for some �
0

, then it is verified for all �
0

 � < ✓. This follows from the
classical comparison property for hyperbolic conservation laws.

3. If the set of points where u
0

is positive has full measure, then Assumption 2.1 is automatically
verified, since in that case the condition (2.2) is valid for every 0 < � < ✓. This follows from the
fact that each v

0,� will also be almost everywhere positive. From finite speed of propagation, the
solutions v� will have the same property. To see this, consider a ball B(r) of radius r > 0 centered
around an arbitrary point of Rd. Then we have that, for M large enough, t > 0, the solution
v�,"(t, x) on B(r) is influenced only by the values of v

0,� on B(r +Mt). Let c > 0 be such that
v
0,� � c on B(r + (M + 1)t). Since c is a solution to the conservation law (2.3), the classical
comparison property and domain of dependence arguments imply that, v�,"(t, x) � c > 0 on B(r).

4. It follows from Assumption 2.1 that the initial data u
0

has some mass below the obstacle
✓, which will be useful later. Indeed, suppose not, hence u

0

(x) = 0 or u
0

(x) = ✓. Therefore,
v
0,� = ��{u0>0} and so, we would have

1 < 1 + � 
Z

{v0,�>0}
✓ dx =

Z

{u0>0}
✓ dx =

Z

Rd

u
0

dx = 1,

which is a contradiction.

3 Well-posedness for the nonlocal penalized problem

In this section, we establish well-posedness results for the nonlocal penalized parabolic problem
introduced in (2.1). As we shall see, the analysis of this problem for each n and " is not trivial,
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due to the presence of the nonlocal term. The main technical tool will be the Banach contraction
principle.

For T > 0, define the space

W (0, T ) := {v : Rd ⇥ [0, T ] ! R : v 2 L2(0, T ;H1(Rd)), @tv 2 L2(0, T ;H�1(Rd))}.

One recalls that the space W (0, T ) is continuously imbedded into the space C([0, T ];L2(Rd)).
Moreover, for any v 2 W (0, T ) the limt!0

v(t) = v(0) is a well defined element of the space
L2(Rd).

Theorem 3.1. Given u
0

2 (L1 \ L1 \ BV )(Rd), for each n 2 N, " > 0, there exists a unique

solution

un," 2 L1(0, T ;H1(Rd)) \ C([0, T ];L1(Rd)),

of the nonlocal parabolic problem (2.1), in the sense that: For every v 2 H1(Rd), and for almost

all t 2 (0, T ),

h@tun,"(t), viH�1⇥H1 �
Z

Rd

(f(un,"(t))� "run,"(t)) ·rv dx

= n

Z

Rd

un,"(t) v dx

Z

Rd

(un,"(t)� ✓(t))+ dx� n

Z

Rd

(un,"(t)� ✓(t))+ v dx,

(3.1)

and limt!0

R
Rd kun,"(t)�u

0

kL2
(Rd

)

dx ! 0. Moreover, this solution verifies for almost all t 2 (0, T ),R
Rd un,"(t)dx = 1.

Proof. 1. The theorem will be proved using the Banach contraction principle. To this end, we
consider the approximate problem: given a function v 2 C([0, T ];L1(Rd)), find v 2 W (0, T ) such
that, for all w 2 H1(Rd), and for almost all t 2 (0, T ),

h@tv(t), wiH�1⇥H1 �
Z

Rd

(f(v(t))� "rv(t)) ·rw dx

= n

Z

Rd

v(t)w dx

Z

Rd

(v(t)� ✓)+ dx� n

Z

Rd

(v(t)� ✓)+ w dx.

(3.2)

Moreover, limt!0

R
Rd kv(t)� u

0

kL2
(Rd

)

dx ! 0. That is, v is a weak solution to the equation

@tv + div f(v)� "�v = n v

Z

Rd

(v � ✓)+ dx� n(v � ✓)+,

v(0, x) = u
0

(x).
(3.3)

The proof that there exists a unique solution of (3.2) follows closely the one in [6, p.56], so we
omit it. Note that (3.2) is a standard (local) parabolic problem.

2. Now, let us consider the mapping

� :C
�
[0, T ];L1(Rd)

�
! W (0, T ),

v 7! v solution of (3.2).
(3.4)

Let R > 1. We want to show that, for T
0

su�ciently small, � is a contraction in the Banach space

E := {v 2 C
�
[0, T

0

];L1(Rd)
�
: sup
t2[0,T0]

kv(t)kL1
(Rd

)

 R}. (3.5)

Let v be the unique solution of problem (3.2). First of all, note that since u
0

� 0, we have v � 0.
This follows from the fact that v ⌘ 0 is a solution of the problem (3.2) and classical comparison
arguments (see, in particular, Lemma 3.2 below). To follow, we establish the estimate

Z

Rd

v(t) dx  en
R t
0

R
Rd (v�✓)+ dx ds. (3.6)
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Note that once (3.6) is proved, we find
R
Rd v(t) dx  entR, and so, for t  T

0

su�ciently small,
v 2 E. To prove (3.6), we introduce the smooth positive functions  ⇢ : Rd ! R for large ⇢, such
that

 ⇢(x) = 1 if |x|  ⇢/2,  ⇢ decays exponentially for |x| � ⇢,

|r ⇢| 
C ⇢

⇢
, |� ⇢| 

C ⇢

⇢2
,

for some constant C > 0. Take w =  ⇢ in (3.2) to find, after discarding the last term on the
right-hand side,

h@tv(t), ⇢iH�1⇥H1 �
Z

Rd

(f(v(t))� "rv(t)) ·r ⇢ dx

 n

Z

Rd

v(t) ⇢ dx

Z

Rd

(v(t)� ✓)+ dx.

(3.7)

Now, for ⇢ su�ciently large,
Z

Rd

f(v) ·r ⇢ + "rv ·r ⇢ dx 
Z

Rd

Mv|r ⇢|+ " v|� ⇢| dx  C(M + ")

⇢

Z

Rd

v ⇢ dx.

Hence integrating (3.7) on [0, t] (see [6, p.54]), we find

Z

Rd

v(t) ⇢ dx 
Z

Rd

u
0

 ⇢ dx+

Z t

0

⇣
C
M + "

⇢
+ n

Z

Rd

(v(s)� ✓)+ dx
⌘Z

Rd

v(s) ⇢ dx ds.

Using Gronwall’s inequality and
R
Rd u0

 ⇢ dx 
R
Rd u0

dx = 1, we obtain
Z

Rd

v(t) ⇢ dx  et
M+"

⇢ en
R t
0

R
Rd (v�✓)+ dx ds.

Then, passing to the limit as ⇢ ! 1 and applying the Monotone Convergence Theorem, we
conclude that Z

Rd

v(t) dx  en
R t
0

R
Rd (v�✓)+ dx ds. (3.8)

3. Next, let u and v be solutions of (3.2) associated with u and v, respectively. For convenience,
we introduce the regularized sign function sgn�(u) as the continuous function which is linear for
0  |u|  �, and equal ±1 otherwise. Also, we use the notations

I�(u) =

Z u

0

sgn�(v) dv, u � 0,

and
(u)+� = u sgn�(u)

+,

both of which are Lipschitz approximations of the positive part u+. Then, from (3.2) and taking
w = sgn�(u� v)+ ⇢, we find

h@tI�(u� v), ⇢iH�1⇥H1 =

Z

Rd

(f(u)� f(v)� "r(u� v)) ·r(sgn�(u� v)+ ⇢) dx

+ n

Z

Rd

u sgn(u� v)+�  ⇢ dx

Z

Rd

(u� ✓)+ dx

� n

Z

Rd

v sgn(u� v)+�  ⇢ dx

Z

Rd

(v � ✓)+ dx

� n

Z

Rd

((u� ✓)+ � (v � ✓)+) sgn�(u� v)+ ⇢ dx.

(3.9)

Now, observe that for each � � 0, the algebraic inequality holds,

((u� ✓)+ � (v � ✓)+) sgn�(u� v)+ � 0,
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which allows us to neglect the last term in (3.9). Moreover, regarding the remaining terms in
(3.9), we find after integrating by parts,

Z

Rd

(f(u)� f(v)� "r(u� v)) ·r(sgn�(u� v)+ ⇢) dx

=

Z

Rd

(f(u)� f(v)) ·r(u� v) sgn0�(u� v)+ ⇢ dx+

Z

Rd

(f(u)� f(v)) · sgn�(u� v)+r ⇢ dx

� "

Z

Rd

|r(u� v)|2 sgn0�(u� v)+ ⇢ dx� "

Z

Rd

r(u� v) sgn�(u� v)+r ⇢ dx

M

Z

Rd

(u� v)+ sgn0�(u� v)+|r(u� v)| ⇢ dx+
CM

⇢

Z

Rd

(u� v)+�  ⇢ dx

+ "

Z

Rd

(u� v)+ sgn0�(u� v)+|r(u� v)||r ⇢| dx+
"C

⇢2

Z

Rd

(u� v)+�  ⇢ dx.

Now, the first and third terms of the last expression are functions of time, which tends to zero
with � (for each fixed t), hence we denote them by o(�, t). We have used the fact that the function
(u(t)�v(t))+ sgn0�(u(t)�v(t))+ tends to 0 with � for almost every x 2 Rd and Lebesgue’s Theorem.
Thus we find Z

Rd

(f(u)� f(v)� "r(u� v)) ·r(sgn�(u� v)+ ⇢) dx

 o(�, t) +
C(M + ")

⇢

Z

Rd

(u� v)+�  ⇢ dx.

Also, from (3.9),

n

Z

Rd

u sgn�(u� v)+ ⇢ dx

Z

Rd

(u� ✓)+ dx� n

Z

Rd

v sgn�(u� v)+ ⇢ dx

Z

Rd

(v � ✓)+ dx

 n

Z

Rd

(u� v)+�  ⇢ dx

Z

Rd

(u� ✓)+ dx

+ n

Z

Rd

v sgn�(u� v)+ ⇢ dx

Z

Rd

(u� ✓)+ � (v � ✓)+ dx

 n

Z

Rd

(u� v)+�  ⇢ dx

Z

Rd

(u� ✓)+ dx

+ n

Z

Rd

v dx

Z

Rd

(u� v)+ dx.

Therefore, integrating (3.9) on [0, t] yields

Z

Rd

I�(u� v) ⇢(t) dx 
Z t

0

o(�, s) ds+

Z t

0

C(M + ")

⇢

Z

Rd

(u� v)+�  ⇢ dx ds

+ n

Z t

0

Z

Rd

(u� v)+�  ⇢ dx

Z

Rd

(u� ✓)+ dx ds+ n

Z t

0

Z

Rd

v dx

Z

Rd

(u� v)+ dx ds.

Now, we apply the Monotone Convergence Theorem to take � ! 0, and use Gronwall’s Lemma to
get Z

Rd

(u� v)+ ⇢(t) dx  n

Z t

0

⇣Z

Rd

v dx
⌘⇣Z

Rd

(u� v)+ dx
⌘
ds

⇥ en
R t
0

R
Rd (u�✓)+ dx ds+t

C(M+")
⇢ .

Then, taking ⇢! 1 (again by monotone convergence), we obtain the estimate

Z

Rd

(u� v)+(t) dx  n

Z t

0

⇣Z

Rd

v dx
⌘⇣Z

Rd

(u� v)+ dx
⌘
ds en

R t
0

R
Rd (u�✓)+ dx ds. (3.10)
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Now we use the estimate (3.8) of
R
Rd v dx in (3.10) to find

Z

Rd

(u� v)+(t) dx  n

Z t

0

Z

Rd

(u� v)+ dx ds en
R t
0

R
Rd (u�✓)++(v�✓)+ dx ds

or Z

Rd

(u� v)+(t) dx  nt sup
0tT0

ku� vkL1
(Rd

)

ent sup0tT0
(kukL1(Rd)+kvkL1(Rd))

 ntku� vkE e2Rnt.

Recall the definition of the Banach space E in (3.5). By symmetry, we find an estimate equal to
the previous one, but with (v � u)+ instead of (u� v)+. From |a| = a+ + (�a)+, we have

Z

Rd

|u� v|(t) dx  2ntku� vkE e2Rnt. (3.11)

4. If R > 1, we deduce from (3.11) that there exists a T
0

> 0, such that for t  T
0

the map
� defined in (3.4) is a strict contraction. The first part of the Banach Contraction Principle tells
us that, the sequence defined by uk = �(uk�1) with u0 2 E converges strongly in E towards some
un," 2 E. Each uk verifies equation (3.2) with uk�1 in place of v. Taking w = uk in (3.2) gives

1

2

Z t

0

@t(u
k)2 dx ds+ "

Z

Rd

|ruk|2 dx ds+
Z

Rd

div f(uk)uk dx

 n

Z

Rd

(uk)2 dx
⇣Z

Rd

(uk�1 � ✓)+ dx
⌘

 nR

Z

Rd

(uk)2 dx,

since uk�1 2 E. Integrating on (0, t), t  T
0

and applying Gronwall’s lemma gives

uk 2 L1(0, t;L2(Rd)), uk 2 L2(0, t;H1(Rd)), t  T
0

,

uniformly in k. This allows us to conclude that the limit un," is in W (0, t) and so solves the
problem (3.1), at least for some time T

0

. Since functions in W (0, T
0

) are actually continuous on
[0, T

0

] with values in L2(Rd) (see [6, p.54]), the initial data u
0

is indeed assumed.

5. Finally, we show global in time existence. For this it will be su�cient to prove thatR
Rd un,"(t) dx = 1 for almost all t 2 [0, T

0

). In (3.1) take  ⇢ as test function to obtain easily

d

dt
hun,"(t), ⇢i 

C(M + ")

⇢

Z

Rd

un,"(t) ⇢ dx+ n

Z

Rd

un,"(t) ⇢ dx
⇣Z

Rd

(un,"(t)� ✓)+ dx
⌘

� n

Z

Rd

(un,"(t)� ✓)+ ⇢ dx

and so Z

Rd

un,"(t) ⇢ dx 
Z

Rd

u
0

dx+
C(M + ")

⇢

Z t

0

Z

Rd

un,"(s) ⇢ dx ds

+ n

Z t

0

Z

Rd

un,"(s) ⇢ dx
⇣Z

Rd

(un,"(s)� ✓)+ dx
⌘
ds

� n

Z t

0

Z

Rd

(un,"(s)� ✓)+ ⇢ dx ds.

(3.12)

Since un," 2 E, we have un,"(t) 2 L1(Rd). Now, we return to (3.12) and take ⇢! 1 applying the
Dominated Convergence Theorem to find

Z

Rd

un," dx 
Z

Rd

u
0

dx+ n

Z t

0

Z

Rd

un," dx
⇣Z

Rd

(un," � ✓)+ dx
⌘
ds

� n

Z t

0

Z

Rd

(un," � ✓)+ dx ds.
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Then, it follows that
Z

Rd

un," dx� 1  n

Z t

0

⇣Z

Rd

un," dx� 1
⌘⇣Z

Rd

(un," � ✓)+ dx
⌘
ds

 nR

Z t

0

⇣Z

Rd

un," dx� 1
⌘
ds,

and consequently,
R
Rd un,"(t) dx = 1, for almost all t  T

0

. Furthermore, since u 2 E, we may
suppose, actually, that

8 t  T
0

,

Z

Rd

un,"(t) dx = 1. (3.13)

This completes the proof of Theorem 3.1.

The next lemma compares the solution of the nonlocal problem (2.1) with the solution of the
homogenous conservation law (2.4) with initial data v

0,� . The key point is that, this comparison
property is independent of n.

Lemma 3.2. Let un," be a solution of (2.1), and let v�," be a solution to the Cauchy problem for

the viscous homogenous conservation law (2.4). Then, un," � v�,". In particular, this comparison

property holds for all n.

Proof of the lemma. We drop the subscripts n, " from un," and �, " from v�," during the proof.
Subtract (2.1) from (2.4), multiply by (v�," � un,")+, and integrate on Rd to get (with w =
v�," � un,")

d

dt

Z

Rd

(w+)2 dx  �
Z

Rd

div(f(v)� f(u))(w)+ dx+ "

Z

Rd

�ww+ dx

� n

Z

Rd

uw+ dx

Z

Rd

(u� ✓)+ dx+ n

Z

Rd

(u� ✓)+w+ dx.

By the maximum principle, we have v�,"  ✓, and so, if un," � ✓, then necessarily un," > v�," and
thus w+ = 0. Therefore, we have

d

dt

Z

Rd

(w+)2 dx  �
Z

Rd

div(f(v)� f(u))(w)+ dx� "

Z

Rd

rwrw+ dx

 M

Z

Rd

|w||rw+| dx� "

Z

Rd

|rw+|2 dx

= M

Z

Rd

|w+||rw+| dx� "

Z

Rd

|rw+|2 dx.

Integrating on [0, t] for t  T , using a weighted Young inequality and Gronwall’s lemma, we
conclude that

R
Rd(w+)2 dx = 0 and so v  u on [0, T ]. This proves the lemma.

4 Uniform estimates for the penalized nonlocal problem

In this section, we prove estimates for solutions of (2.1) independently of n. They will allow not
only the necessary compactness properties on the sequence (un,") but also give a more precise
characterization of the limit of un," as n ! 1, " ! 0. So, in Theorem 4.1 we prove an estimate
which ensures that, in the limit, the solution of the obstacle-mass constraint problem will indeed
stay below the obstacle. For this, we need the result in Lemma 4.2 (whose proof is found at the
end of this section), which states that the solutions un," retain some mass below the obstacle,
uniformly in n. Recall from the discussion in Section 2, that Assumption 2.1 was especially
designed to ensure this type of property.

Then, in Theorem 4.3, we establish uniform (in n and ") estimates for un," in W 1,1((0, T )⇥Rd).
These estimates will allow us in the next section to obtain existence of a solution for problem (1.4)-
(1.5), using the vanishing viscosity method.
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4.1 Main estimates independent of n

Theorem 4.1. Let T > 0 be arbitrary. Suppose u
0

satisfies the hypothesis (2.2),
R
Rd u0

dx = 1,
and let {un,"} be the family of solutions of the nonlocal parabolic problem (3.1). Then, there exists

a constant ↵ > 0 depending on T , u
0

and ✓, but not on n (given by Lemma 4.2 below), such that

for all " > 0 su�ciently small, and a.a. t 2 (0, T )
Z

Rd

(un,"(t)� ✓(t))+ dx  C✓

↵n
, (4.1)

where C✓ only depends on ✓ but not on n or ", and

kun,"(t)kL1
(Rd

)

 et
C✓
↵ . (4.2)

To prove Theorem 4.1, we consider the following key result:

Lemma 4.2. Under the same conditions of Theorem 4.1, there exists a constant ↵ > 0 depending

on T , u
0

and ✓, but not on n, such that the estimate is valid:

inf
0tT

Z

{un,"<✓}
un,"(t) dx � ↵. (4.3)

We also have

Theorem 4.3. Suppose the initial data u
0

is in (L1 \BV )(Rd) with
R
Rd u0

dx = 1. The solution

un," of the nonlocal penalized parabolic problem (4.5) with regularized initial data satisfies

un," 2 W 1,1((0, T )⇥ Rd), uniformly in ", n.

More precisely, for each n 2 N, and " > 0, and almost all t 2 (0, T )

k@tun,"(t)kL1
(Rd

)


�
C TV(u

0

) + C✓(t)
�
et

C✓
↵ ,

krun,"(t)kL1
(Rd

)


�
TV(u

0

) + C✓(t)
�
et

C✓
↵ ,

with ↵ as in Theorem 4.1, and C✓ depending on ✓ but not on n or ".

Remark 4.4. Let us comment briefly on the results of Lemma 4.2 and Theorem 4.1. The estimate
(4.3) states that, for t 2 [0, T ], the function un," retains some mass below the obstacle ✓, uniformly

in n, and it is the most delicate estimate in this work. The key property (2.2) in Assumption 2.1 is
used to prove the estimate (4.3) only, which in turn ensures the property (4.1). This last estimate
ensures that as n ! 1 the mass above the obstacle ✓ of the solutions un," vanishes.

Also, although a smoother initial data is required for Theorem 4.3, when passing to the limit
n ! 1, " ! 0 this requirement can be eliminated in a completely standard way. We omit this
straightforward procedure (found, e.g., in [6]) for the sake of clarity.

Now we prove Theorems 4.1 and 4.3, leaving the proof of Lemma 4.2 to the end of this section.

Proof of Theorem 4.1. We prove the estimate (4.1). Multiply equation (2.1) by sgn�(un," � ✓)+

and integrate over Rd to find after some manipulations

d

dt

Z

Rd

I�(un," � ✓)+ dx+

Z

Rd

div(f(un,")� f(✓)) sgn�(un," � ✓)+ dx

+ "

Z

Rd

sgn0�(un," � ✓)+|r(un," � ✓)|2 dx

= n

Z

Rd

un," sgn�(un," � ✓)+ dx

Z

Rd

(un," � ✓)+ dx

� n

Z

Rd

(un," � ✓)+ dx�
Z

Rd

(H(✓)� "�✓) sgn�(un," � ✓)+ dx.
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The second term on the left-hand side tends to zero as � ! 0, by a (classical) calculation similar
to the one after (3.9) above, while the third is non-negative. Set

'(t) =

Z

Rd

(un," � ✓)+(t) dx.

We have that

1�
Z

Rd

un," sgn(un," � ✓)+ dx =

Z

Rd

un," dx�
Z

Rd

un,"�{un,">✓} dx

=

Z

Rd

un,"�{un,"✓} dx �
Z

Rd

un,"�{un,"<✓} dx

(4.4)

and from (4.3),
R
Rd un,"�{un,"<✓} dx � ↵. Therefore, we have

'0(t)  n'(t)
⇣Z

Rd

un," sgn(un," � ✓)+ dx� 1
⌘
�

Z

Rd

(H(✓)� "�✓) sgn(un," � ✓)+ dx

 �n'(t)

Z

Rd

un,"�{un,"<✓} dx�
Z

Rd

(H(✓)� "�✓) sgn(un," � ✓)+ dx

 �↵n'(t)�
Z

Rd

(H�(✓)� "�✓) sgn(un," � ✓)+ dx.

Thus, for appropriate C✓ not depending on n or ",

�
e↵nt'(t)

�0  C✓e
↵nt

) '(t)  C✓

Z t

0

e↵n(s�t) ds  C✓
1� e�↵nt

↵n
 C✓

↵n
,

which proves the estimate (4.1), or rather, a slightly more precise version of (4.1) ensuring that
'(t) ! 0 as t ! 0.

We will now use (4.1) to prove the pointwise estimate (4.2). We follow the same procedure

as in Lemma 3.2, by proving that (un," � et
C✓
↵ )+ vanishes. We omit the details of this standard

computation. This concludes the proof of Theorem 4.1.

Proof of Theorem 4.3. First of all, we note that it is easy to see, using classical arguments similar
to [6, p.61], that for each ", n the function un," satisfies

un," 2 L2(0, T ;H2(Rd)), @tun," 2 L2(0, T ;H1(Rd)),

as long as f is a C1 function and the initial data u
0

is in H1(Rd). This allows us to write the
equation (3.1) in strong form,

@tun," + div f(un,")� "�un," = nun,"

Z

Rd

(un," � ✓)+ dx� n(un," � ✓)+,

un,"(0, x) = u
0

(x).
(4.5)

Now, we obtain a uniform estimate of krun,"kL1
(Rd

)

. to this end, di↵erentiate (4.5) in the direction
xi, i = 1, . . . , d 1 to get after summing and subtracting terms,

@t@i(un," � ✓) + @i div(f(un,")� f(✓))� "@i�(un," � ✓)

= n@iun,"

Z

Rd

(un," � ✓)+ dx� n@i(un," � ✓)+ � @iH"(✓).

1
The following calculation should actually be performed using discrete derivatives and then passing to the limit

on the discretization, but we omit these details, which may be found in any PDE textbook.

13



After multiplying by sgn(@i(un," � ✓)) and integrating on Rd we find
Z

Rd

@t|@i(un," � ✓)| dx+

Z

Rd

�
@i div(f(un,")� f(✓))� "@i�(un," � ✓)

�
sgn @i(un," � ✓) dx

= n

Z

Rd

@iun," sgn @i(un," � ✓) dx

Z

Rd

(un," � ✓)+ dx

� n

Z

Rd

|@i(un," � ✓)+| dx�
Z

Rd

@iH"(✓) sgn @i(un," � ✓) dx.

The second integral on the left-hand side actually gives a nonnegative contribution [6, p.64], as well
as the last term on the right-hand side, and so may be neglected. Therefore, using the estimate
(4.1) and integrating on [0, T ] we get

Z

Rd

|@i(un," � ✓)| dx 
Z

Rd

|@i(u0

� ✓(0))| dx

+
C✓

↵

Z T

0

Z

Rd

|@iun,"| dx dt+
Z T

0

Z

Rd

|@iH"(✓)| dx dt.

Finally, writing |@iun,"|  |@i(un," � ✓)|+ |@i✓| we find

Z

Rd

|@iun,"| dx 
Z

Rd

|@iu0

| dx+
C✓

↵

Z T

0

Z

Rd

|@iun,"| dx dt

+

Z T

0

Z

Rd

|@iH"(✓)| dx dt+
Z

Rd

|@i✓(0)|+ |@i✓| dx.

Since the last term can be bounded by a constant C✓(t) independent of " or n, (recall the smooth-
ness assumptions on ✓, (1.7)) we find after applying Gronwall’s inequality that

krun,"(t)kL1
(Rd

)


�
kru

0

kL1
(Rd

)

+ C✓(t)
�
et

C✓
↵ ,

for some (possibly larger) constant C✓, independently of " and n. Thus,

run," 2 L1(0, T ;L1(Rd)) uniformly in n, ". (4.6)

Next, we obtain a uniform estimate of k@tun,"(t)kL1
(Rd

)

. Di↵erentiate the equation (4.5) in t
(after adding and subtracting terms with ✓, as done previously), multiply by sgn @t(un," � ✓) and
integrate on Rd. The flux and viscosity terms both vanish or have the convenient sign, as in the
previous estimate. We find

d

dt

Z

Rd

|@t(un," � ✓)| dx  n

Z

Rd

@tun," sgn @t(un," � ✓) dx

Z

Rd

(un," � ✓)+ dx

+ n

Z

Rd

un," sgn @t(un," � ✓) dx

Z

Rd

@t(un," � ✓)+ dx� n

Z

Rd

|@t(un," � ✓)+| dx

+

Z

Rd

|@tH"(✓)| dx.

So, using (4.1) and
R
Rd u sgn @t(u� ✓) dx  1,

d

dt

Z

Rd

|@t(un," � ✓)| dx  C✓

↵

Z

Rd

|@tun,"| dx+

Z

Rd

|@tH"(✓)| dx.

Therefore, we obtain
Z

Rd

|@t(un," � ✓)| dx 
Z

Rd

|@t(u0

� ✓(0))| dx

+
C✓

↵

Z T

0

Z

Rd

|@tun,"| dx dt+
Z T

0

Z

Rd

|@tH"(✓)| dx dt
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and Z

Rd

|@tun,"| dx 
Z

Rd

|@tu0

| dx+
C✓

↵

Z T

0

Z

Rd

|@tun,"| dx dt

+

Z T

0

Z

Rd

|@tH"(✓)| dx dt+
Z

Rd

|@t✓|+ |@t✓(0)|dx.

Now, using the equation one obtains
Z

Rd

|@tu0

| dx  Mkru
0

kL1
(Rd

)

+ "k�u
0

kL1
(Rd

)

. (4.7)

As in [6, p.68], we consider a smoothing of u
0

such that "k�u
0

kL1
(Rd

)

 Ckru
0

kL1
(Rd

)

for some
universal constant depending only on the dimension d. Thus

k@tun,"kL1
(Rd

)

 Ckru
0

kL1
(Rd

)

+
C✓

↵

Z T

0

k@tun,"kL1
(Rd

)

dt

+

Z T

0

k@tH"(✓)kL1
(Rd

)

dt+ k@t✓kL1
(Rd

)

+ k@t✓(0)kL1
(Rd

)

and finally

k@tun,"(t)kL1
(Rd

)


�
Ckru

0

kL1
(Rd

)

+ C✓(t)
�
et

C✓
↵ .

This concludes the proof of Theorem 4.3.

4.2 Proof of Lemma 4.2

The idea of the proof is the following: as discussed in Section 2, Assumption 2.1 is designed
to ensure that the support of un," always travels into regions where the integral of ✓ is greater
than one. In view of this, and the fact (established in (3.13)) that the total mass of un," is one,
necessarily un," cannot have all its nonzero values above ✓, otherwise Assumption 2.1 would be
violated. Therefore, un," must retain some mass below ✓, which is the claim in (4.3). We now
make precise this statement, using a contradiction argument.

1. Suppose (4.3) is false. Then, there are sequences "j ! 0, tj 2 (0, T ], nj ! 1, such that

Z

Rd

uj�{uj<✓}(tj) dx <
1

j
, (4.8)

where uj 2 L1(Rd) is the solution unj ,"j of equation (2.1) (in the sense of Theorem 3.1), at time
tj (so, uj(x) = unj ,"j (tj , x)). Upon extraction of a subsequence (which here, and in what follows,
we do not relabel), we may suppose tj ! t⇤ for some t⇤ 2 (0, T ] as j ! 1. Observe that due to
Remark 2.2 we ensure that t⇤ > 0. Thus, if we set wj(x) := uj(x)�{uj(x)<✓(tj ,x)} 2 L1(Rd), then
(4.8) gives wj ! 0 as j ! 1 in L1(Rd), since uj is nonnegative.

Let vj 2 L1(Rd) denote the (smooth) solution of the viscous problem (2.4) with viscosity
parameter " = "j , at time tj . That is, vj(x) = v�,"j (tj , x) in (2.4). According to the comparison
Lemma 3.2, we have vj  uj , and so vj�{uj<✓(tj)}  wj for a.e. x 2 Rd. From wj ! 0 in L1(Rd)
we obtain

vj�{uj<✓(tj)} ! 0 in L1(Rd) (4.9)

as j ! 1.

2. We have vj(tj) ! v(t⇤) in L1(Rd) as j ! 1, with v solving (2.3). Indeed, according to
standard results concerning the vanishing viscosity approximation of hyperbolic conservation laws
and the continuity in time of the viscous approximations (see, for instance, [6]), we have

kvj(tj)� v(t⇤)kL1
(Rd

)

 kvj(tj)� vj(t
⇤)kL1

(Rd
)

+ kvj(t⇤)� v(t⇤)kL1
(Rd

)

! 0

15



as j ! 1. Also, we have �{uj(x)<✓(tj ,x)}
⇤
* ⇠ in L1(Rd), for some ⇠ 2 L1(Rd). Thus, (4.9) gives

v(t⇤)⇠ = 0 a.e. on Rd. Therefore,

⇠ = 0 a.e. on {x 2 Rd|v(x, t⇤) > 0}, (4.10)

which we abbreviate to {v(t⇤) > 0}. Now, observe that a sequence of nonnegative functions
weakly converging to zero also converges strongly in L1

loc

. Since �{uj<✓(tj)} � 0, we conclude from

�{uj<✓(tj)}
⇤
* ⇠ and (4.10) that actually

�{uj<✓(tj)} ! 0 strongly in L1

loc

({v(t⇤) > 0})

and a.e. on {v(t⇤) > 0}, as j ! 1.

3. Let BR denote the ball of radius R > 0 centered on the origin. Let � > 0 to be chosen later.
According to Egorov’s Theorem, There exists a set J� ⇢ ({v(t⇤) > 0} \ BR) such that |J�|  �
and �{uj<✓(tj)} ! 0 uniformly on V� := ({v(t⇤) > 0} \BR) \ J� as j ! 1. Since �{uj<✓(tj)} only
takes the values 0 and 1, this means that for su�ciently large j, we must have uj(x) > ✓(tj , x)
a.e. on V�. Therefore,

Z

V�

uj(x) dx >

Z

V�

✓(tj , x) dx =

Z

{v(t⇤)>0}\BR

✓(tj , x) dx�
Z

J�

✓(tj , x) dx. (4.11)

Now, from (2.2) in Assumption 2.1, we deduce that for large enough R,
Z

{v(t⇤)>0}\BR

✓(t⇤, x) dx > 1 + �/2,

and, by the L1 continuity property (1.8),
Z

{v(t⇤)>0}\BR

✓(tj , x) dx > 1 + �/2

for su�ciently large j. On the other hand, from Lebesgue’s theorem and (1.8), we see that since ✓
is locally integrable, we have

R
J�
✓(t⇤, x) dx ! 0 when � ! 0. Therefore, we choose � small enough

such that Z

J�

✓(t⇤, x) dx  �

8
.

Again using (1.8), we find for su�ciently large j

Z

J�

✓(tj , x) dx 
Z

BR

|✓(tj , x)� ✓(t⇤, x)| dx+
�

8

 �

8
+
�

8
=
�

4
.

We conclude from (4.11) and from the unit integral property (3.13) that

1 �
Z

V�

uj(x) dx > 1 +
�

2
� �

4
= 1 +

�

4
,

which is a contradiction. Thus (4.8) cannot hold and so (4.3) is proven. This concludes the proof
of Lemma 4.2.

5 Solvability of the obstacle-mass constraint problem

In this section, we establish existence of an entropy solution for problem (1.4)–(1.5), in the sense
of Definition 1.2, by the vanishing viscosity method. The main result of this paper is the following:
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Theorem 5.1. Let u
0

2 (L1\BV )(Rd) with
R
Rd u0

dx = 1, and let ✓(t, x) be an obstacle function.

Suppose that u
0

, ✓ verify (1.7)–(1.9) and Assumption 2.1. Then, there exists an entropy solution

to the hyperbolic obstacle-mass constraint problem (1.4)–(1.5) in the sense of Definition 1.2.

Proof of Theorem 5.1. 1. First, for " > 0 and n 2 N we consider the nonlocal penalized viscous
problem (2.1), which we repeat here for convenience:

@tun," + div f(un,")� "�un," = nun,"

Z

Rd

(un," � ✓)+ � n(un," � ✓)+,

un,"(0, x) = u
0

(x),

Z

Rd

u
0

dx = 1.

For ' 2 C1
c ((�1, T ) ⇥ Rd) and ⌘ an entropy (assumed C2 without loss of generality), multiply

(2.1) by '⌘0(un," � k✓) and integrate in (0, T )⇥ Rd =: ⇧T . We obtain

�
ZZ

⇧T

⌘(un," � k✓)'t dxdt+

ZZ

⇧T

⌘0(un," � k✓)'@t(k✓) dxdt

�
ZZ

⇧T

⌘0(un," � k✓)
�
f(un,")� f(k✓)

�
·r' dxdt+

ZZ

⇧T

⌘0(un," � k✓)' div f(k✓) dxdt

�
ZZ

⇧T

"�⌘(un," � k✓)' dxdt�
ZZ

⇧T

"�(k✓) ⌘0(un," � k✓)' dxdt

�
Z

Rd

|u
0

(x)� k ✓(0, x)|'(0, x) dx

= �
ZZ

⇧T

" ⌘00(un," � k✓) |r(un," � k✓)|2 ' dxdt

+

ZZ

⇧T

⇣
nun,"

Z
(un," � ✓)+ dx� n(un," � ✓)+

⌘
⌘0(un," � k✓)' dxdt.

Neglecting the negative terms on the right-hand side, it follows that in the sense of distributions

@t⌘(un," � k✓) + div
⇣
⌘0(un," � k✓)

�
f(un,")� f(k✓)

�⌘
� "�⌘(un," � k✓)

 nun," ⌘
0(un," � k✓)

Z

Rd

(un," � ✓)+ dx� ⌘0(un," � k✓)
�
H(k✓)� "�(k✓)

�
,

(5.1)

which incidentally motivates the precise formulation in Definition 1.2.

2. Now, we define for almost all t 2 (0, T ), �n,"(t) := n
R
Rd(un,"(t) � ✓(t))+ dx. According to

the estimate (4.1), we have that �n,"(t) is uniformly bounded for a.a. t 2 (0, T ). Thus (if necessary
taking a subsequence), �n,"(t) converges weak-star in L1(0, T ) to some �(t).

3. Now, with the inequality (5.1) in hand, and the estimates collected in previous sections,
it is a standard matter to pass to limit and obtain an entropy solution. Indeed, using standard
compactness results (see, e.g., the totally similar procedure in [6, p.70]), the family (un,") has a
subsequence (which we do not relabel) converging a.e. on ⇧T and in L1

loc

((0, T ) ⇥ Rd) to some
u 2 L1((0, T )⇥ Rd). The gradient estimate in Theorem 4.3 ensures that u(t) 2 BV (Rd) for a.a.
t 2 (0, T ). Note that Theorem 4.3 requires that the initial data is smooth enough, so we use a
mollification of u

0

depending on ". The procedure to obtain u
0

in the limit is exactly the same as
in [6], so we omit it for the sake of simplicity. Moreover, from item 2 we see that the first term on
the right-hand side of (5.1) converges to u�(t)⌘0(u � k✓) weak-star in L1�

(0, T ) ⇥ Rd
�
, which is

enough to pass to the limit on (5.1). Thus (u,�) is a solution of problem (1.4)–(1.5) according to
Definition 1.2. This completes the proof of Theorem 5.1.
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