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Abstract. We study, by applying and extending the methods developed
in [8], [2], [6], [10], [14], [4] and [5], the Cauchy problem for a damped
coupled system of nonlinear Schrédinger equations and we obtain new
results on the local and global existence of H!-strong solutions and on
their possible blowup in the supercritical case and, in a special situation,
in the critical or supercritical cases.

Mathematics Subject Classification (2010). 35Q55, 33A05.

Keywords. Nonlinear Schrédinger Equations, Cauchy Problem, Blowup
of Solutions, Dissipation.

1. Introduction

The study of blowup of solutions for a damped nonlinear Schréodinger equa-
tion has been developed in the papers by M. Tsutsumi [14] and by M. Ohta
and G. Todorova [10]. More recently the problem was addressed by [4], for
the case of inhomogeneous damping. Stimulated by the relevance for phys-
ical applications there was also significant interest in exploring the blowup
phenomenon in a system of coupled nonlinear Schrédinger equations with
cubic nonlinearity, without [13, 12] and with [7] the linear coupling. Rather
complete list of the available results can be found in [7]. Two sufficient condi-
tion for the finite-time blowup have also been established for the supercritical
case of the coupled nonlinear Schrédinger equations one of which has gain
and another has dissipation, both balanced with each other [5].
In this paper we consider the system

tuy = —Au+ivyiu+kv— (gl\u|p_1+g|v|2)u,
ivy = —Av+ivav+ku— (glul® + gafolP~") v,
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with initial data ug,vo € HY(RV), 1 < N < 3, and % <p-—1,withp—1<
w5 if N =3, v1,72 € R describe gain (1,2 > 0) or dissipation (y12 < 0),
k € R is the linear coupling, g1,g2 > 0, g € R, u(z,t),v(x,t) € C, z € RV,
t > 0. The particular case p—1 =2, N > 3 and y; = —72, was considered in
[5] for the study of the possible blowup of H!-strong solutions.

System (1.1) may appear in various physical contexts. As a few exam-
ples we mention an optical coupler (N = 1) with passive and active arms [1]
and the self-phase modulation (described by ¢1 and gs) stronger than the
Kerr nonlinearity (p > 3). Alternatively the model describes propagation of
a pulse in an elliptically polarized medium [9] with dissipation where the two
polarization are linearly coupled. In two- and three-dimensional settings the
model can describe diffraction, focusing and filamentation of a transversely
polarized electromagnetic wave (see [3]) where the orthogonally polarized
components (they are described by w and v) are linearly coupled (or alter-
natively two beams are linearly coupled) and are subject to absorption or
gain (described by 71 2). In these cases the evolutional variable ¢ describes
distance along the propagation direction of the beam. Further, at N = 3 the
model describes a collapse of an unstable binary mixture of Bose—Einstein
condensates [11] subjected to the removal and adding atoms.

In this paper we first study the existence and uniqueness of H'-strong
solutions of the system (1.1) in the sense of T. Kato [8] (see also [2]) by apply-
ing some variants of Strichartz’s inequalities (cf. [10]) and some convenient
a priori estimates (Theorems 2.1 and 3.1). In the second part of the paper,
we extend the main result of [5] in the supercritical case (Theorem 4.1) and
give a new result in the critical case (Theorem 4.2).

2. Local existence in H'(RY)

In this section we will study the local existence in H'(RY) to the Cauchy
problem for the system (1.1) with initial data (ug,vo) € (H(RY))2. Recall
that we have + < p—1 < %5 (< +o0 if N = 1,2) and 1 < N < 3. The
case p— 1= % is called the critical case.

To prove the local existence of solution we apply Kato’s method (cf. [8],
[2]) by adapting the proof of theorem 4.4.6 in [2].

We start by writing system (1.1) in the form

{wt = Ho+G(p) + By,

2.1
80(0) = %o, ( )

where ¢ = (u> Po = (ZS) € (HY(RY))2,

v

o (A0
¥ = O_Asov
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o= (60 )= (""" )

itk By (u,v)
By = =
v ( k 1'72) 4 ( By (u,v) )’
Bi(u,v) =impu+ kv, By(u,v) =ku+ivev.
We decompose G 2 as follows:

and

i.e.

Gi(p) = pG(u) + G(v,u),  Gap) = 92G(v) + Glu,v)
with the functions G(-) and G(-,-) defined as follows
G(u) = —|ulP~ u, G(u,v) = —glul?v .
Now we easily derive
o1 w1 — Jvz? uz| < e (o1 * + o2l + [ua|? + Jual?) (Jur — uz| + |v1 — v2])
and the same estimate for |[u1|? vy — [uz|? v2|. Moreover,
’|u1|p_1u1 - \uQ\p_lug‘ < c(Jur P+ uoP 1) Jus — ual
and similar estimate for ||v1 [P~ vy — [v2]P vy
With r = (p— 1) + 2 = p+ 1, we derive, for v’ such that % + % =1,
(u1,2,v12) € HY(RY)x HL(RYN),

|G (uz) — G(uy)|

< e (udllft + luell5t) llue — ullzr

L’
|G (uz, v2) = Glur,01)| paye < e (lunllZs + lluzllZs + [orll7a + [lo2]Z4)
X (Jlur = uafls + [lor = vallzs)
and similar estimates for G(v) and ||G(va, uz) — G(v1,u1)]|pa/s,

VG|, < ellullf " IVullzr

IA

VG (u,v ¢ [lol3s IV ullzs + 90 s ol ulls
¢ [l + ullfe) (IVullze + 190]24) |

o and VG (v, u)|| pass-

Mo

IN

and similar estimates for ||VG(v)|
Moreover, we have

||Bl(u2,?)2) - BQ(ulavl)HLQ
HVBl(uvv)HL2

and similar estimates for Bs.

Now we fix M, T > 0 to be chosen latter as in the proof of theorem 4.4.6
in [2] and, with r = max(2, p+1,4) = max(p+1, 4), we consider the admissible
pair (in the Strichartz’s sense, cf. [2, section 2.3])

w23

IA

¢ (llug — urllp2 + flva — vil[z2) ,

c(IVullzz +[Vo2)

A
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We introduce the space
X = {<p € (L°(~T,T; HY) ﬂLq(—T,T;Wl’T))2}
with the distance
d(p1,02) = llur — uollpa—rrnry + llur — vzl Lo (-7 1 12)

+ [lv1 — V2 Loy + V1 — vallLoe(—1,1sL2)

where @12 = ( Zii ) and the subset

E = {p € X[ ullsocrrws) + lul o rzm)
+ ol a(-rrwrry + [Vl Lo (-7 1) < M} ;

which is a complete metric space with distance d.
Now, with S(t) = e'2* and t € R denoting the Schrodinger group in L2,
we introduce, for ¢ € E, (ug,v) € (H'(RY))?,

H(p) = ( Z;Eg; ) : (2.2)
with the entries

Hi(p) = S(t)uo + i/OS(t —5) Gi(u(s),v(s)) ds

+ i/OS(t —5) B1(u(s),v(s)) ds , (2.3)

Ha(p) = S(t)vo + i/S(tfs) G2 (u(s),v(s)) ds

+ i/OS(t — 8) Ba(u(s),v(s)) ds . (2.4)

Now, reasoning as in the proof of theorem 4.4.6, we can prove, by the
previous estimates and applying Strichartz’s inequalities, that

H(p) € C(-T,T;; H') N LI(-T,T; W"") ,

and, for a convenient M and a sufficient small T > 0, H(u,v) € E and

d(@l»%@) ) for ©v1,P2 € E .

DN =

d(H(e1), H(pa)) <

The uniqueness in C([-T,T]; H*
theorem 4.4.6 (cf. [2]). We have:

~—

and the blowup alternative follows as in

Theorem 2.1. Let (ug,vg) € (H'(RN))2. Then, the Cauchy problem for sys-
tem (1.1) has a unique strong solution (u,v) € C ([0, Tinax); (H')*(RY)) with
ingtial data (ug,vo), defined on a mazimal time interval [0, Tynax)-



The Cauchy Problem for a Coupled Nonlinear Schrédinger Equations 5

3. Global existence for £k =0

In this section we prove the global existence of the particular case when the
linear coupling is absent, and the system obey sufficiently strong dissipation.
Given vy € R let us consider the semigroup (S, (¢))s>0 in L?(RY) defined
by
S,(t)=e"S(t) .

We need to apply Strichartz’s estimates (cf. [2]). We recall that a pair (q,r)

is admissible if
2
2 _ N(l N 1)
q 2 r

with2<r <28 2<r<ooif N=1,2<r <ooif N=2).
Using the same notation as in [2], [10], we define

(1) = /OS(t— $) f(s) ds

and
t

Pi(t) = /OtSW(t— s) f(s) ds = e'yt/o St —s)e " f(s) ds .
We have the following estimates (cf. [2], [10]):

For every admissible pair (g,7) and V¢ € L? there exists a constant
¢ > 0 such that, with LP = LP(R") and T' > 0,

1SC) fllzao,miery < cllfllees VoeL?, (3.1)

with ¢ independent of T,
’|©F}||Lq(07T;Lr) < CHfHL(I’(O,T;LT') ) (3.2)
HCI)}HLOO(O,T;LT‘) = ch”L‘?’(O,T;L”) ’ (3-3)

with ¢ independent of T, %—&— % =1, %—1— % =1.
Moreover, if 2 < r < 2% (or 2 <r < +o00 if N = 1) and 0,0 €1, +00]

are such that 3 + % =N(3—1), then

T

@ (3.4)

’JZHLG(O,T;L*) < CHfHLé’(O’T;Lr’)

with ¢ independent of T" and % + % =1.
Now, by using the Duhamel formula, we write the system (1.1), for the
local solution, in the integral form. In the case k = 0 for ¢t € [0, Tiyax) We have

u(t) = So(t) o+ / S,0(t=5) (—g1u(s) P~ u(s) — glo(s)Pus)) ds -
3.5

v(t) = S(t) vo + Z/O S5, (t=5) (=glu(s)|*v(s) — galv(s)["~ v (s)) ds.

Next we state a global existence result of the Cauchy problem for the
system (1.1) with k£ = 0:
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Theorem 3.1. Assume v1,72 < 0 and k = 0. Then, for any (up,vy) €
(H'(RN))? there exists v*(|[uoll a1, |vollm1) > O such that, for all 1,72 <
_7*7 Tmax = 400.

First we prove the following important result:

Lemma 3.1. Under the conditions of the Theorem 3.1, assume that there

exist constants € > 0 and 7 < 0 such that for v; <7, 1 = 1,2, we have, with
1_ 2 _

Wy = Up, Wy = Vo,

IE i(.)wg||w(0)+oo;m+l) <e, if p—1>2, (3.6)

2(p—1)(p+1)
—(N-2)(p-1)"

185:0) ol s 0,002y < € ifp—1<2. (3.7)

Then Tiax = +00.

where 0 =

Proof. Let 0 be defined by %—l—% = N(%—%) for2<r< 137]_\]2 (or2 <r < +oo
if N=1) (cf. (3.4)). We have

pr' =71, pb =9, é=é+%~ (3.8)
Applying (3.5) we derive for ¢ € [0,T[, T < Tmax,
@)l + (@)l <
< lluollzr + [[vollm
(3.9)

+ H(P'YI

\u|P*1uHL°°(0,T;H1) + ||(I)72

|v\P*1v||L°°(O,T;H1)
+ Hq)(v\lulz-‘r\vlz)uHL°°(O,T;H1) + H‘I’E/|2u\2+|v\2)vHLoo(o,T;Hl) '
Now we start with the case
Hp-1>2.
In this case we have
ul? <1+ ufP™t, o <14+ P,

and so we estimate

t
2 ey < s | 8- 9 us) ds
A .
et —1
< sup (e ———— ) |lullp=0,1;H) (3.10)
te(0,T) |71|

T HU||L<><> 0,T;H?
Pl (15

and similarly
1

HCI)32HL00(0’T;H1) < @ ”vHL“’(O,T;Hl) . (3'11)
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Hence, for |v;| large enough, it follows from (3.3) and (3.9)
llull Lo 0,511y + V]| Loo (0,1311) <
< 2 ([luoll ar + [lvoll )
+ CH|u|p_1uHLq’(o,T;ler") + CH‘U|p_1UHLLI’(O,T;L"") (3.12)

+ C|||“|p71(” + |V”|)HLq’(o,T;Lr')

+ [P H(u+ |Vu|)HLq,(O’T;U,) ,
with ¢ a constant independent of T'.

Now we estimate the typical term |||u[? Dv|[ 1o (o 1,y (D = %) in the
right-hand side of (3.12).

From (3.8) we derive
H|u|p_1DUHLq’(0’T;LW) > c HU'HLG(Q T;L™) HDUHL‘I(O,T,W““) . (3-13)

Next, we fix 0 < t < T. By using the estimate (3.4), from the Duhamel
formula (3.5) we deduce by (3.6)

lullzeo,e2my < 153.() wollLe(o,e2m)
+ ||(I)|u\7’ 1uHLe(O,t;Lr) + H(I)’\Yzi|2u+|v\2uHL"(O,t;Lr)

3.14
S £ + CH|u|p71uHL§/(07t;L7‘/) ( )

+ CH|“|2“HL5’(0¢;LW) + CH‘”P“HL@’(M;LT’) :

Now, we remark that, for D, = {x € RV | Ju(z)| > 1 a.e.}, with x,
the characteristic function of D,,, and for each t,

H|u|2u’ L = HXDu ‘UlQU + (1 - XDu) |U|2
< P~ | o+ 1= ) Tl | 0
and
10 =xp )l < [[0=xp, )2z
< Hun% lull -
< I g 2 Jul - -
Since 0/ = % < 0, it follows that
H|u|2u||Lé’(O,t;LT’) < c|||u|p71u”L9 o407y T T 1] Hu”L"(OtU)

IN

c Hu”Izﬁ(O’t;Lr) + m ||UHL9(O,t;L7") )

with ¢ a constant independent of t.

The same conclusion can be obtained for the term |||v|2v|\L§/(0 bL)

Therefore, putting together all the terms, we obtain, for || and |vy2| big



8 J.-P. Dias, M. Figueira and V.V. Konotop

enough,

llull Lo 0,657y + lvlloo,m) <

(3.15)
< 4de + C1(||u||Le(07t;er-) + ||U||L9(0,t;er»))p ,

with ¢; a constant independent of ¢.
On the other hand, and using again the Duhamel formula and the
Strichartz’s estimates we derive

”u”L‘I(O,t;leT) + HU”L‘I(O,t;Wl’T) <

IN

|57 uOHLq 0wy T HSW(')’UOHL‘Z(OJ;WLT)

+ H(I)W\P 1u||L‘1 0,e;wtr) T ’|‘I>?5IP‘1U||L“(0,t%Wl'T)

¢ (|luoll e + l[vollar) (3.16)

i [ P + elllof

IN

(0,6 WL+ ”Hm'(o,t;Wlm’)

T T o X
+ CH(|’U|2 + |ul )vHLq/(O,t;W“J) ’

Next we proceed as before to estimate the last two terms on the right-
hand side, more precisely (with D, = {z € RV | [v(z)| > 1 a.e.}):

[[of? D“HLQ’(O,t;LT’) - ||XD1, [o[*Du + (1=xp,) |v|2DuHLq/(0,t;L“)

IN

H|U|p_lD“HLq’ 0607y T H(l_XD ) ‘UlQDuHL‘I’(OtU’)

IA

—1
915 [l zrco vy + 7 Bl

Then, for |y1| and |y2| large enough, it follows from (3.16)
[ull Lao,ewrry + [0l Lago,e;wrry <

< 2 (luollzr + llvoll ) (3.17)

—1
+ c2 (HUHLe(O,t;LT) + ||U||L9(0,t;Lr))p

(Nl zago,eswrry + [0l Lagosswrry)

with co a constant independent of t.

Now, let ¢y = max(ci,cp) and choose € such that 23772 ¢qeP~1 < 1.
By the continuity of the functions ¢ — |[u|zeo.¢;.r) + VllLo0,4:0m) and t —
llull Lago,e:w 1y + [Vl Lo (o,¢;w1.7) it follows from (3.15) and (3.17) that

lullzeco,r;zry + lvllLeo,riry < 8¢

and

[ull Lao, 5wy + [0l Lago,mswrry < 2¢0 (Jluollm + llvolla) -
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The conclusion follows now from (3.12) and (3.13).

Il p—1<2.
4

Notice that, since §; < p — 1, the condition p — 1 < 2 implies N > 2,
which means in our case N = 3. The proof follows the same steps used in
the previous case p — 1 > 2. The first estimate (3.12) remains true with p — 1
replaced by 2 and when the admissible pair (g, 7) corresponds now to 7 = 4.
The estimate (3.13) is now

12 Dol o . arsy < €llullZso,rinny 1DVl oo, zawnay

and the estimates (3.15) and (3.17) are obtained following the same scheme.
For example, to estimate ||u(| (0,414, just like in (3.14), we use the assump-
tion [|S5,(+) uol|£8(0, 400,04y < € and we must only estimate

1 1 1 1 3
—1 _ o
Pl 545 =3(3-3) = 5
using the decomposition u[P~'u = x, [ufP~'u+(1—x, ) |ulP~'u. With the
corresponding estimated (3.15) and (3.17) we conclude in the same way. O

Now we can pass to the

Proof of Theorem 3.1. Assume first p—1 > 2. We will prove that (3.6) holds.
Since we have [|S(t) uo||pr+1 < ¢|lugl|g1, t > 0, we derive

—+oo
0 0 0 c 0
155 w0l (0,4 00; Lr 1) :/ "M HS(t) uol| 7o dt < o [[uol| 7 -
0 Al
Therefore
L\
So U ) < cllu
1S tolleoresiirny < 0|H1<|%9> i o

and the same conclusion holds for S,,vo. Similar estimates prove (3.7) in the
case p — 1 < 2. Hence, the assumptions in Lemma 3.1 are satisfied and so
Theorem 3.1 is proved. O

4. Blowup results

In this section we will study the possible blowup of the local in time H'-
strong solutions (u,v) of the Cauchy problem for system (1.1) with initial
data (ug,vo) € (H*(R™))? such that
|z|uo, |zjve € LA(RY) .

In the following we perform formal calculations which can be justified

by suitable regularisations that allow us to prove that
|£L" ’LL(.’E, ')a |5E| U(v ) € C([Ov Tmax); L2) .

The main ideas are based in the seminal work of R.T. Glassey [6], in

[10], [7] and in the previous paper [5] when the case p — 1 = 2 is studied.
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We start by proving some preliminar estimates to the local solution
(u,v) € C([0, Tinax); (H')?).
It is easy to derive, for ¢ € [0, Tinax) and with [ - dz = [ - dz,

2dt/|u‘2 x*’yl/|u|2d:ﬁ+k1m/vud$,

3 dt/|v|2 x = 72/\11|2da: + kIm/uvda:,
and so,

d
& Jut? 4102y e = 20 [ e + 270 [l

4.1
,y/(|u|2 + ‘7}|2) d{L‘ , ( )

with v = maX(|’71|a |’Y2D .

IN
N

Then we obtain

Q) = [u@®)ll7e +llv(®)z2 < *(lluollzz + [lvollZ:) - (4.2)
We define the energy

E(t) = %/|Vu(t)\2dz + %/|Vv(t)|2dx + k Re/u(t)a(t) dx
HPlde — Z% / lo(8)[P+! da (4.3)

—7/\u ) |o(t)|? da .

From the system (1.1) we deduce

dE
— = 71/|Vu|2dx + 72/|Vv\2da:

dt
— 7191/|u\p+1dx — Yo gg/|v|p+1dx (4.4)

— (71+'yg)g/|u|2 |v|2dx + k(y1+72) Re/u@daj .

We need the following result:

Lemma 4.1. Assume p—1 > +. Then the solution (u,v) € C([0, Tymax); H')
of system (1.1) with initial data (ug,vo) € (H*)? verifies the inequality
t
E(®) < EO) + % [ (IVulls + Vol + Jullh + olih) dr
0

+ & Q(0) ™"
with
max{1791792}7 Zf (’71+’Y2)9 > 0 ;

G = max{1,|g|+g1,|gl+g2}, if (1+12)g<0, N=1,2,
orif (m+2)g<0, p-1>2, N=3,
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and
@
~ 2 ’
c3 = q |k| + gl

if (m+72)9>0,

i (ntr2)g <0, N=1,2,
orif (m+y2)g<0, p~1>2, N=3.
Proof. If (y1+72) g > 0 it follows from (4.4) that

t
B(t) < E(0) + &7 / (I9ulZ + [90[2s + lulZHh + Jol2th) dr

+ K]y / Q(r)dr

¢z = max{l, g1, g2}, and, since Q(7) < €277 Q(0), we obtain the result with
T3 = | i (v1+72) g < 0, we remark that (recall that p—1 > %)

1 1
/\u|2 lv|?dz < §/|u|4 dx + 5/|v|4 dx
1 " 1l o 1
<5 [Pt + 5 [Pltide + 5 [ (julf o) de

for N = 1,2 and assuming p — 1 > 2 for N = 3. The result now follows from
(4.4) as before. O

Now we define the variance
Y(t) = Ya(t) + Ya(t) ,

)= [P luPds,  Ya(t) = [laf 1o o
and let

Vit) = 4Im/(Vu-x)ﬂ dx , Va(t) = 4Im/(Vv~:E)@ dzx .

with

We derive from (1.1)
Y{(t) = Vi(t) + 2 Yi(t) + 2k Im/|x\2fuﬂ dzx |

Y5 (t) = Va(t) + 272Ya(t) + 2k Im/m?m dx |

and so
Y'(t) = Vi(t) + Va(t) + 2 Y1(t) + 292Ya(t) . (4.5)
To compute the record derivative we take the derivative of V;(t), i = 1,2:

Vi(t) = 4Im/(Vut cx)Tu dx + 4Im/(z~Vu)ﬂt dz

—4N Im/utﬂ dx — 81m/(x~Vﬂ)ut dx ,
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and

4N Im/utﬂ dx = 4N[/|Vu|2dx - gl/lul”“dfﬁ

—g/|u|2|v|2dx+ kRe/vudx} ,

-8 Im/(z -Va)uy doe = 8Re/(x V) [-Au — g |ulP~ u — glv]? u] d

+ 8k Re/(x~Vﬁ)v dr — 8’Y1Im/(x'Vﬂ)u dx

= 8/|Vu|2dx - 4N/|Vu|2dx
N
2o [lrtide - g [ Vi) o de

+ 8kRe/(x-Vﬂ)dx+ 871Im/(x-Vu)ﬂda:.

+

Then

Vi(t) = 8/|Vu|2d$ + 4Ng¢y 1:[; /|u\p+1dx - 4Ng/\u|2 |v|? da
p
— 4g /(x Vul?) |v)|? de + 4kNRe/UU dx (4.6)

+ 8k Re/(x-Vﬂ)v dx + 871Im/(a:~Vu)ﬂdx.
Similarly,
1—
Vit) = 8/|Vv|2dx + ANg, TZ;/IUIPde - 4Ng/|u|2 (o2 dz
p
— 4g /(x -V|?) [u|? dz + 4kNRe/ui dx (4.7)
+ 8k Re/(z-Vf)u dx + 8721m/(x-Vv)@ dx .
By (4.5) we derive

Y(t) = VI(t) + VA(E) + 20 YT () + 292 Y3 (1)
= V{(t) + V5(t) + 27 Vi (t) + 272 Va(t)
+ b = 7) i [ o o do + 49F Va(®) + 493 Valt)
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and so we obtain, from (4.6), (4.7):

Y'(t) = 8/|Vu|2d:c + 8/|Vv|2dx + 4N91?/|u\p+1 dx

1—
+ 4Ngo _’_I; /|U|p+1 dx — 4Ng/|u|2 |v]? da

b (4.8)
+ 167 Im/(x -Vu)u dx + 16721m/(:c -Vo) U dx

+ 4k (y1 — 12) Im/\x|2vﬂ dr + 4732 Yi(t) + 4793 Ya(t) .

. 4
Now, we will assume p—1> .

Since p — 1 > % we can choose § such that

0<d<N and -1> %
Rearranging the terms in the right-hand side of (4.8), we derive by (4.3)
16
Y'(t) = ~ NE(®) 5/5 N) [|Vul]® + |Vol*] dx

AN (4
s o (7 17) o furna + o frtad
+ (i - 4) Ng/\u|2 lv|> dz + 16y, Im/(:c Vu)udr  (4.9)
+ 16fyglm/(x~Vv)5 dx + 4k (71— 72) Im/|x|2vﬂ dx

— 8Nk Re/m + 47 Yi(t) + 473 Ya(t) .

First we assume N = 3. If g > 0, and since p — 1 > % (we keep the
notation with IV by technical reasons) we choose § such that

4
2<d<N and p—1>—.

1
If g < 0 we must assumepfl > 2. In the case p — 1 > 2 we choose §j = 2
and so the term (3 —4) Ng [ |u|? |v|? dz in (4.9) can be canceled Ifp—1=2
we choose § = M : we easily check that 6 <N, p—1=2> 3 4 and we have

AN (4 8

= _ p+1 p+1 °_ 21,12 _

) <6+1 p) [gl/|u| da:+gz/|v| da?} + (5 4>Ng/|u [v|*dz
— (Y2 /\|d+/||d + 4N /||||d
= Nia ) |9 [lul e + g2 [lufde N—|—2 ul” |v|*dx



and

N

< 2|g|[lullZs oll7s
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lg]

‘Qg/w fof? da
<
V9192

Collecting all these cases and taking in account that

(gullullzs + gallvll7s) -

16711m/(x~Vu)ﬂ dx + 16721m/(x~Vv)@ dx <

=

16

< SN=0) (IVul3z + [V01) + 726 1

(lz ullZz + [z v]72)
and

4k (11 — ) Im/|x|2vﬂ dr < A7 Y ()
it follows from (4.9)

1 1
Y'(8) + o (I Vullfe + [ V0la + ullf5 + Ilollfih ) <

16 (4.10)
< Y () + 5 NE(t) + 4Nk Q(t) ,
with
9 9 16

a = a7,k N) =47 + 49kl +~ - (4.11)
and

co = co(y,k,N) (4.12)

. (4 4 4 4 4
{0555 22) o)
if ¢g>0,

inq 2(N—-2) 1 (p—3) 1 ( 3)}
min -2), —— -3), — -
pt1 P py1 2P

if g<0 and p—1>2,

2
T min{17 g1 + gmv g2 + g@}
5 Va2 Va1

if —./9192<9g<0 and p—1=2.
By applying Lemma 4.1 we derive, from (4.10), the following inequality
Y7 () + o (I Vullfa + 9012+l + oL ) <
< aY(t)+ ? NE(0) + cq e (4.13)
+ e / (Il + V0l + el + ol ) dr
with

16

~ 4~
c3 = ?N’ng, Cq :4N(|I€|+6Cg)Q(O) .
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Next, we show that the inequality (4.13), which holds for N = 3, is also
verified for N = 1,2, up to some few changes in the constants.

The critical point is to dominate the term (§ —4) Ng [ |u|? [v[*dz in
(4.9).

Assume now N = 2. Since p—1 > % = 2, we have

/|u|2|v|2dx < §/|u|P+1 dr + §/|U|p+1dl' + 5/(|u\2+|v\2) da
and we choose § = § < 2 such that

4
—1> —
p 5y

and

(8—4> | < min{4 ( —1—i) A ( —1—4>}
2 g p+1glp 52’p+192p 5o .
It follows that (4.13) holds with constants ¢y and ¢4 given by

4 4 4 4 4
2) = mind — (2 — &), —— - =), — B -
c2(7,k,2) mln{52 (2—102), Pl (p 52), PRl (p 52)}

and

cm%hmF(km(iam)+2(j;2>qumm

Finally:

Assume N =1. We have p—1 > % = 4 and we choose 6 = §; < 1 such
that p — 1 — % > 0. By the Gagliardo—Nirenberg inequality we derive

lullzs < ellVule ullzz < el VulZe + e(e) ullzs

e > 0 to be chosen.
Thus

8
(- 4) 1ol 1 e <
1
4
< (5 = 2) lole (19l + I90lE2) + cCe) (s + o)
and we choose € such that

4 2
(51—2> lgle < 5(1—51)'

Once again we obtain (4.13) with the constants

2 4 4 4 4
1) = mind = (2-61), — gi(p-1- =), — go(p-1— =
CQ(’}/,]C, ) mln{ 51 ( 51)7 p+1 g1 (p 51>7 p+1 gQ(p 51)} B

t

and the term ¢4 e®* is now replaced by c4(7,k,1) €57 with

<m%nn=40k+;au0mm+da¢mw
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Now, let

t rs
o) = [ [ (IVule + V0l -+l + ol ) drds.
0J0

From (4.13) we obtain
¢

Y(t)+cap(t) < F(t) + cl/O/OSY(T) drds + 03/0 p(T)dr (4.14)

with
8 N
Y(0) +Y'(0)t + 3 NE(0)t* + ij(vrz) (2" —2~t—1), if N>1,
F(t) =
8 04(1) .
Y Y(0)t+ = E(0)t* + ——— (¥ —6~t —1 f N=1.
(0) +Y(0) +3 (0) +3672 (e"—6~t—1), i
Next, we introduce the functions
M(t) = sup F(r) + 1, t>0, (4.15)
T€[0,t]
t2 C3
G(t) = M(t) [c12 +exp(c—2t) - 1} . (4.16)

We can now state a blowup theorem for the supercritical case:

Theorem 4.1. Assume p — 1 > % and let us assume the Cauchy problem

(1.1) with initial data (ug,vo) € (H')? and let be (u,v) € C([0, Tmax); (H)?)
the corresponding local solution. Assume that (|z|ug,|z|ve) € (L?)? and, if
N =3, we have
p—122 if (n+72)9<0,
p—1>2 if g<0,
p—1>2 if —\/q1g2<9g<0.
Assume also that there exists To > 0 such that
F(To)+1<0, (4.17)
G(Ty) < 1. (4.18)
Then the solution (u,v) blows up in finite time with Tmax < Tp.
Proof. Let us define
Ty = sup{t € [0, Ty]| Y(r) < M(Ty), 7€ [0,4]} .

It follows, from (4.14), (4.15), (4.17), that, for ¢ € [0, TY],
T? t
Y (1) +eaplt) < F(1) + eM(To) "2 + e / o(7) dr
0
T2 t
< M(Tp) -1+ clM(TO)7O + Cg/p(’r) dr (4.19)
0

t

< M(To)—i-Cg/()p(T)dT.
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Applying Gronwall’s inequality we obtain
M (T,
oty < M) eXp(CP’t) :
¢

Using this estimate, back in the right-hand side of (4.15), we derive
Y(t) < F(t) + G(To), te[0,11],

and by (4.18), Y (T1) < M (Tp). Then Ty = Tj. Hence, Y (Tp) < F(Tp)+1 < 0,
which is absurd since Y > 0. O

We have now two important remarks:

Remark 4.1. As can be seen by an adaptation of the proofs in Lemma 1 and
Lemma 2 in [5], where the particular case p—1 = 2 is considered, the blowup
assumptions (4.17) and (4.18) are satisfied, for a certain Ty > 0, if the initial
energy E(0) (cf. (4.3)) is sufficiently negative or if the initial variance Y (0)
is sufficiently negative (depending of the initial data, 7;, ¢ = 1,2, and k).

Remark 4.2. The blowup result of Theorem 4.1 can be extended to higher
dimensions if p — 1 > % with the same proof in the case N = 3.

Now, we consider a special case of the Cauchy problem for system (1.1),
which includes the critical case, although require the absence of the linear
coupling:

Theorem 4.2. Assumingk =0, vy =7y =0c>0andg>0andp—12> %
(critical and supercritical cases), let (u,v) € ([0, Tmax); (H')?) be the local
solution for the Cauchy problem for system (1.1) with initial data (ug,vo) €
(HYY2, (zug,xvg) € (L?)2. Then, if E(0) < 0, the solution blows up in finite
time, that is Thax < 400.

Proof. We have in this case, by (4.4),

dE [
iy /\Vu|2dx +/|Vv\2d:v —gl/\u|p+1daz - gg/\v\p+1dx

- 2(7g/|u|2 |v]? da

[ 2 2
o /\Vu|2dx +/|VU\2dz - i/|u|p+1dx - gz/|u|p+1d1}
L p+1 p+1
2112 2g1 p+1
— 20g [ |u|*|v]*dx + o —g1 ) [ |[uPTdx
p+1
+ U( - gg>/|v|p+1 dx .

Since ? —1 < 0, we derive, with v = |11| = |72l, % < 2~ FE and so

e~ tE(t) < E(0) < 0.
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Now, from (4.6) and (4.7) we deduce
(Vi) + Va(t)) — 20 (Vi(t) + Va(t)) =

1—
= 8/|Vu|2 dx + 8/|V11|2 dx + 4N¢1 1+1]77 /|u|p+1d9:

1—
+ 4Ng —p/\v\pﬂdx - 4Ng/\u|2 |v|? da
1+p

491 p+1
16E(t)+1+p(N(1 p)+4)/|u| da

49,

+
1+p

(N(1—p)+4) [ |v[PTde — 4Ng/|u|2 lv|? dx .

Sinceg >0and p—12> % we derive
d
%[672[”(‘/1 + Vg)] < efzgtE(t) .

Finally, from (4.5) we have
Yi(t) =20Y1(t) =Vi(t),  Y3(t) —20Ya(t) = Va(t)

and so
%(e‘“Y (t) = e (Vi +Va) .
Therefore,
j*;(ef%ty(f)) = %[6’2‘”(‘/’1 +V)] < e tE() < By < 0,
and the conclusion follows. O
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