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We prove the existence and uniqueness of weak and strong solutions of these
systems and localization properties of the solutions, including the waiting
time effect. Moreover important results on polynomial and exponential decay
and vanishing of the solutions in finite time are also presented. We improve
the results obtained by Chipot and Lovart [1], Corrêa, Menezes and Ferreira
[2], Raposo et al. [3] and Simsen and Ferreira [4] for coupled systems.
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1. Introduction

For the last several decades, various types of equations have been em-
ployed as some mathematical model describing physical, chemical, biological
and ecological systems. Among them, the most successful and crucial one
is the following model of a semilinear parabolic partial differential equation,
called the reaction-diffusion equation,

∂u

∂t
− a∆u− f(u) = 0, (1)

where f : R → R is a nonlinear function and a is a real function called the
diffusion coefficient.
In 1997, M. Chipot and B. Lovat [1] studied the existence and uniqueness of
the solutions for nonlocal problems

ut − a(l(u))∆u = f(x, t) in Ω× (0, T )
u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω

(2)

where Ω is a bounded open subset in RN , N ≥ 1, with smooth boundary
∂Ω, T is some arbitrary time and a is some function from R into (0,+∞).
In problem (2), a and f are both continuous functions and l : L2(Ω) →
R is a continuous linear form. This problem arises in various situations,
for instance, u could describe the density of a population (for example, of
bacteria) subject to spreading. The diffusion coefficient a is then supposed
to depend on the entire population in the domain rather than on the local
density, that is, movements are guided by considering the global state of the
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medium. The problem studied is nonlocal in the sense that the diffusion
coefficient is determined by a global quantity. In 2004, Corrêa, Menezes and
Ferreira [2] gave an extension of the result obtained by M. Chipot and B.
Lovat [1], considering a = a(l(u)) and f = f(x, u) continuous functions.
Indeed, in [2], the authors improved the results in [1, 5, 6] by considering
both stationary and evolutionary situations where the nonlinearity appears
not only in the operator u→ a(l(u))∆u, but also in the right-hand side where
one has the nonlinear function f . Recently, Simsen and Ferreira [4] studied
the reaction-diffusion problem

ut − a(l(u))∆u+ |u|p−2u = f(u) in Ω× (0, T )
u(x, t) = 0 on ∂Ω× (0, T )
u(x, 0) = u0(x) in Ω

.

They investigate the existence, uniqueness, continuity with respect to the
initial values, exponential stability of the weak solutions, continuity of the
solution and an important result on the existence of the global attractor.
The differential equations are very useful in many areas of science, but the
most interesting real life problems involve more than one unknown function.
In this case, we have the reaction-diffusion system

∂u

∂t
− A∆u− f(u) = 0, (3)

where u = (u1, . . . , um) is the vector of unknowns, f : Rm → R
m is a

nonlinear function, and A is an m×m real matrix of diffusion. In 1998, L.A.F.
Oliveira [7] considered the reaction-diffusion system where A is an m × m
real matrix and f : Rm → R

m is a C2 function. In particular, he studied
the exponential decay for some cases. Except for some publications on the
subject, such as the search for travelling-wave solutions and some problems in
ecology and epidemic theory, most authors assume that the diffusion matrix
A is diagonal, so that the coupling between the equations is present only in
the nonlinearity of the reaction term f . However, cross-diffusion phenomena
are not uncommon (see [2] and references therein) and (3) can be treated as
a system of equations in which A is not even diagonalizable.
Raposo et al. [3], in 2008, studied the reaction-diffusion coupled system in a
parallel way, via a parameter α = const > 0, of the form{

ut − a(l(u))∆u+ f(u− v) = α(u− v) in Ω×]0, T ]
vt − a(l(v))∆v − f(u− v) = α(v − u) in Ω×]0, T ]

,
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with a(ξ) > 0, f a Lipschitz-continuous function and l a continuous linear
form. They proved the existence, uniqueness and exponential decay of solu-
tions.
We consider, in our work, a nonlinear coupled system of reaction-diffusion
on a bounded domain with a more general nonlocal diffusion term working
on two linear forms l1 and l2.{

ut − a1(l1(u), l2(v))∆u+ λ1|u|p−2u = f1(x, t) in Ω×]0, T ]
vt − a2(l1(u), l2(v))∆v + λ2|v|p−2v = f2(x, t) in Ω×]0, T ]

. (4)

In our case, u and v could describe the densities of two populations that
interact through the functions a1 and a2. We assume that death in species u
is proportional to |u|p−2u by the factor λ1 ≥ 0 and that death in species v is
proportional to |v|p−2v by the factor λ2 ≥ 0 with p > 1. The supply of being
by external sources is denoted by f1 and f2. In this paper, we are concerned
with the proof of the existence and uniqueness of smooth global solutions for
system (4). The other aim of our work is to study some localization properties
and the asymptotic behavior when t→∞. We improve the results obtained
by Chipot and Lovart [1], Corrêa, Menezes and Ferreira [2] and Raposo et al.
[3]. To the best of our knowledge, these results are the first in this direction,
for a nonlocal coupled reaction-diffusion system.
This paper is organized as follows. Following the formulation of the problem
and the hypotheses on the data in Section 2, in Section 3, we prove the
global existence and uniqueness of strong solutions. Moreover, in Section
4, we present the localization properties of local solutions. To finalize this
study, we investigate, in Section 5, the asymptotic behavior of the solutions
for large t and the vanishing in finite time property.

2. Statement of the problem

Let Ω ⊂ RN be a domain with smooth boundary ∂Ω. We consider the
problem of finding the couple (u, v) which satisfies the following conditions:

ut − a1(l1(u), l2(v))∆u+ λ1|u|p−2u = f1(x, t) in Ω×]0, T ]
vt − a2(l1(u), l2(v))∆v + λ2|v|p−2v = f2(x, t) in Ω×]0, T ]
u(x, t) = v(x, t) = 0 on ∂Ω×]0, T ]
u(x, 0) = u0(x), v(x, 0) = v0(x) in Ω

, (5)

where λ1, λ2 are nonnegative constants and p > 1. In what follows, we make
the following hypotheses:

4



Hyp1: v0, u0 ∈ L2(Ω);

Hyp2: ai : R2 → R is bounded with 0 < m ≤ ai(s, r) ≤M , s, r ∈ R, i = 1, 2;

Hyp3: ai : R2 → R is Lipschitz-continuous with |ai(s1, r1) − ai(s2, r2)| ≤
Ai|s1 − s2|+Bi|r1 − r2|, s1, s2, r1, r2 ∈ R, i = 1, 2;

Hyp4: li : L2(Ω) → R is a continuous linear form, that is, there exists a
positive function gi ∈ L2(Ω) such that

li(u) = lgi(u) =

∫
Ω

gi(x)u(x)dx, for all u ∈ L2(Ω), i = 1, 2; (6)

Hyp5: f1, f2 ∈ L2(0, T ;L2(Ω)).

Definition 1 (Weak solution). We say that the couple (u, v) is a weak solu-
tion of System (5) if

u, v ∈ L2(0, T ;H1
0 (Ω) ∩ Lp(Ω)) ∩ C([0, T ];L2(Ω)), (7)

ut, vt ∈ L2(0, T ;H−1(Ω)), (8)

d

dt

∫
Ω

uχ dx+ a1(l1(u), l2(v))

∫
Ω

∇u.∇χ dx+ λ1

∫
Ω

|u|p−2 uχ dx =

=

∫
Ω

f1χ dx, (9)

d

dt

∫
Ω

vψ dx+ a2(l1(u), l2(v))

∫
Ω

∇v.∇ψ dx+ λ2

∫
Ω

|v|p−2 vψ dx =

=

∫
Ω

f2ψ dx, (10)

for all χ, ψ ∈ H1
0 (Ω), where (9) and (10) must be understood as an equality

in D′(0, T ),
u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω×]0, T ] (11)

and
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω. (12)
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3. Existence and uniqueness of global solutions

This section is devoted to the proof of the existence and uniqueness of a
strong solution of System (5). We should point out that the main tools used
in proving the existence and uniqueness of the solution to this system are the
well-known Faedo-Galerkin method and Aubin-Lions lemma. For the sake
of completeness, we state the last one and for simplicity, when there is no
danger of confusion, we omit the domain in the norm’s index.

Lemma 2 (Aubin-Lions). Let B0, B and B1 be Banach spaces, where B0 and
B1 are reflexive, B0 ⊂ B ⊂ B1 and the immersion B0 ⊂ B is compact. Let

W = {w : w ∈ Lp0(0, T ;B0) and wt ∈ Lp1(0, T ;B1)}

be the Banach space with norm

‖w‖ = ‖w‖Lp0 (0,T ;B0) + ‖wt‖Lp1 (0,T ;B1) .

If p0, p1 <∞, then the immersion W ⊂ Lp0(0, T ;B) is compact.

Theorem 3 (Existence). Let p > 1 and 0 < T < +∞. If Hyp1-Hyp5
hold, then there exists a weak solution (u, v) of System (5) in the sense of
Definition 1.

Proof. Let {wn(x)}n∈N be a Hilbertian basis in H1
0 (Ω) and Sn the space

generated by w1,w2, . . . , wn, n = 1, 2, . . . .
Let

un(x, t) =
n∑
i=1

Uin(t)wi(x) and vn(x, t) =
n∑
i=1

Vin(t)wi(x)

be the weak solutions of the following approximate problem corresponding to
(5), where Uin(t) and Vin(t) are the solutions of the nonlinear ODE system
in the variable t:∫

Ω

(un)tw dx+ a1(l1(un), l2(vn))

∫
Ω

∇un.∇w dx+ λ1

∫
Ω

|u|p−2 uw dx =

=

∫
Ω

f1w dx for all w ∈ Sn, (13)∫
Ω

(vn)tw dx+ a2(l1(un), l2(vn))

∫
Ω

∇vn.∇w dx+ λ2

∫
Ω

|v|p−2 vw dx =
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=

∫
Ω

f2w dx for all w ∈ Sn, (14)

with initial conditions

un(0) = u0n =
n∑
i=1

U0inwi → u0 in L2(Ω), (15)

vn(0) = v0n =
n∑
i=1

V0inwi → v0 in L2(Ω). (16)

As is well known, System (13)-(16) has a local solution (un(t), vn(t)) in some
interval [0, tn[, 0 < tn < T . We claim that, for any T > 0, such a solution can
be extended to the whole interval [0, T ] by using the first a priori estimate
below.

Setting w = un(x, t) in (13), we obtain

1

2

d

dt
‖un‖2

L2
+ a1(l1(un), l2(vn))‖un‖2

H1
0

+ λ1‖un‖pLp =

∫
Ω

f1un dx. (17)

Using the Poincaré and Holder inequalities, we have that∫
Ω

|f1un| dx ≤ C‖f1‖2
L2

+
m

2
‖un‖2

H1
0

and using Hyp2, we can write Equation (17) as

d

dt
‖un‖2

L2
+m‖un‖2

H1
0

+ 2λ1‖un‖pLp ≤ C‖f1‖2
L2
. (18)

Integrating (18) over [0, t] and using the fact that un(0) → u0 strongly in
L2(Ω), we obtain

‖un‖2
L2

+m

∫ t

0

‖un‖2
H1

0
dt+ 2λ1

∫ t

0

‖un‖pLp dt ≤

≤ ‖un(x, 0)‖2
L2

+ C

∫ t

0

‖f1‖2
L2
dt ≤ C, (19)

where C is a constant that does not depend on t and n.
Setting w = vn(x, t) in (14) and applying the same arguments, we obtain

‖vn‖2
L2

+m

∫ t

0

‖vn‖2
H1

0
dt+ 2λ2

∫ t

0

‖vn‖pLp dt ≤
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≤ ‖vn(x, 0)‖2
L2

+ C

∫ t

0

‖f2‖2
L2
dt ≤ C, (20)

where C is a constant that does not depend on t and n.
By (19) and (20), we have:

(un) and (vn) are bounded in L∞(0, T ;L2(Ω)), (21)

(un) and (vn) are bounded in L2(0, T ;H1
0 (Ω)), (22)

(un) and (vn) are bounded in Lp(0, T ;Lp(Ω)). (23)

Then we can extend the solution to the interval [0, T ]. Now we need to pass
to the limit when n→∞. We have

(un)t = a1(l1(un), l2(vn))∆un − λ1 |un|p−2 un + f1 ∈ H−1(Ω).

Notice that −a1(l1(un), l2(vn))∆un defines an element of H−1(Ω), given by
the duality

〈−a1(l1(un), l2(vn))∆un, w〉 = a(l(un))

∫
Ω

∇un.∇wdx, for all w ∈ H1
0 (Ω).

Then
(un)t is bounded in L2(0, T ;H−1(Ω)). (24)

Due to the Banach-Alouglu corollary, from (21), (22) and (24), we can extract
subsequences umk = um and vmk = vm(which we denote by the same symbol)
such that

un
∗
⇀ u, vn

∗
⇀ v in L∞(0, T ;L2(Ω)), (25)

un ⇀ u, vn ⇀ v in L2(0, T ;H1
0 (Ω)), (26)

(un)t ⇀ ut, (vn)t ⇀ vt in L2(0, T ;H−1(Ω)). (27)

On the other hand, H1
0 (Ω)

c
↪→ L2(Ω) ↪→ H−1(Ω). From (25), (27) and

Aubin-Lions compactness lemma, we obtain

un → u strongly in L2(0, T ;L2(Ω)). (28)

Hence, passing if necessary to a subsequence, still denoted by (un), one has

un → u a.e in Ω× (0, T ).
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Since s 7→ |s|p−2 s is a continuous function, we obtain

|un|p−2 un → |u|p−2 u a.e in Ω× (0, T ). (29)

From (23) and observing that p′ = p
p−1

> 1 is the conjugate of p > 1, we
conclude that

(|un|p−2 un) is bounded in Lp′(0, T ;Lp′(Ω)). (30)

Therefore, from (29) and (30), we infer that

|un|p−2 un ⇀ |u|p−2 u in Lp′(0, T ;Lp′(Ω))

and this implies that∫ T

0

∫
Ω

|un|p−2 unw dxdt→
∫ T

0

∫
Ω

|u|p−2 uw dxdt, ∀w ∈ Lp(0, T ;Lp(Ω)).

To conclude the proof, we need to show that∫ T

0

a1(l1(un), l2(vn))

∫
Ω

∇un.∇w dxdt→

→
∫ T

0

a1(l1(u), l2(v))

∫
Ω

∇u.∇w dxdt.

For this purpose, it is sufficient to prove that

a1(l1(un), l2(vn))→ a1(l1(u), l2(v)) in L2(0, T ).

Since a is continuous, we will show that

l1(un)→ l1(u) in L2(0, T ).

In fact,∫ T

0

|l1(un)− l1(u)|2 dt =

∫ T

0

|l1(un − u)|2 dt ≤ C

∫ T

0

‖un − u‖2
L2
dt.

This last result is a consequence of the convergence in (28). For the second
equation the process is identical. Now we will verify the initial data. Indeed,
using the regularity result,

u ∈ C0(0, T ;L2(Ω)).
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In this form, it makes sense to calculate u(0). Let us consider θ ∈ C1(0, T ;R),
with θ(0) = 1 and θ(T ) = 0. As a result of the convergence in (27),∫ T

0

(u′n, η)θdt→
∫ T

0

(u′, η)θdt, η ∈ L2(Ω). (31)

Performing integration by parts in (31),

−(un(0), η)−
∫ T

0

(un, η)θ′dt→ −(u(0), η)−
∫ T

0

(u, η)θ′dt. (32)

Using the convergence in (26) and (32), (un(0), η) → (u(0), η) for all η ∈
H1

0 (Ω). But un(0) converges strongly to u0 in L2(Ω) and consequently weakly
in L2(Ω). Therefore (un(0), η)→ (u0, η) for all η ∈ H1

0 (Ω). From the unique-
ness of the limit, (u(0), η) → (u0, η) for all η ∈ H1

0 (Ω). Thus u(0) = u0. In
a similar manner we can conclude that v(0) = v0. Hence Problem (5) has a
solution.

Clearly, the regularity of (u, v) can be improved if we assume more regular
initial data.

Theorem 4. If u0, v0 ∈ L∞(Ω) and
∫ t

0
‖f‖L∞ dt ≤ C, then the weak solution

(u, v) of System (5) satisfies

u, v ∈ L∞(0, T ;L∞(Ω)).

Proof. If k > 0 and if we multiply the first equation by u2k−1 and integrate
in Ω, we obtain

1

2k

d

dt

∫
Ω

u2k dx+ (2k − 1)a1(l1(u), l2(v))

∫
Ω

|∇u|2u2(k−1) dx+

+λ1

∫
Ω

|u|p+2k−2 dx =

∫
Ω

f1u
2k−1 dx.

Then

1

2k

d

dt
‖u‖2k

L2k
≤ ‖f‖L2k

‖u‖2k−1
L2k

⇔ ‖u‖2k−1
L2k

d

dt
‖u‖L2k

≤ ‖f‖L2k
‖u‖2k−1

L2k
.

Simplifying the factor ‖u‖2k−1
L2k

and integrating in t results in

‖u‖L2k
≤ ‖u0‖L2k

+

∫ t

0

‖f‖L2k
dt.

Making k → ∞, we then obtain the estimate for u. With the same process
we can obtain the estimate for v.
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In fact, if the conditions of the last theorem are valid, then the solution
is a strong solution in the sense that ut,∆u ∈ L2(0, T ;L2(Ω)).

Theorem 5. Suppose that u0, v0 ∈ L∞(Ω) ∩ H1
0 (Ω) and

∫ t
0
‖f‖L∞ dt ≤ C.

Then System (5) admits a strong solution (u, v).

Proof. Multiplying the first equation by ∆u and integrating in Ω, we have∫
Ω

ut∆u dx−
∫

Ω

a1(l1(u), l2(v))(∆u)2 dx+ λ1

∫
Ω

|u|p−2u∆u dx =

=

∫
Ω

f1∆u dx.

Applying Green’s theorem to the first and last terms of the left-hand side,
we obtain ∫

Ω

∇ut · ∇u dx+

∫
Ω

a1(l1(u), l2(v))(∆u)2 dx+

+λ1(p− 1)

∫
Ω

|u|p−2|∇u|2 dx = −
∫

Ω

f1∆u dx,

and hence

1

2

d

dt

∫
Ω

|∇u|2 dx+

∫
Ω

a1(l1(u), l2(v))(∆u)2 dx+

+λ1(p− 1)

∫
Ω

|u|p−2|∇u|2 dx = −
∫

Ω

f1∆u dx.

Integration in [0, t] leads to

1

2

∫
Ω

|∇u|2 dx+

∫ t

0

∫
Ω

a1(l1(u), l2(v))(∆u)2 dxdt+

+λ1(p− 1)

∫ t

0

∫
Ω

|u|p−2|∇u|2 dxdt =
1

2

∫
Ω

|∇u0|2 dx−
∫ t

0

∫
Ω

f1∆u dxdt.

By Cauchy’s inequality and the lower bound of a1, we conclude that

1

2

∫
Ω

|∇u|2 dx+m

∫ t

0

∫
Ω

(∆u)2 dxdt+ λ1(p− 1)

∫ t

0

∫
Ω

|u|p−2|∇u|2 dxdt ≤

≤ 1

2

∫
Ω

|∇u0|2 dx+ C

∫ t

0

∫
Ω

f 2
1 dxdt+

m

2

∫ t

0

∫
Ω

(∆u)2 dxdt.
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Simplifying,∫
Ω

|∇u|2 dx+m

∫ t

0

∫
Ω

(∆u)2 dxdt ≤ C

(∫
Ω

|∇u0|2 dx+

∫ t

0

∫
Ω

f 2
1 dxdt

)
.

Using the same arguments for v and the hypothesis of the theorem, we can
prove that

∆u,∆v ∈ L2(0, T ;L2(Ω)).

Recalling the first two equations we can now show that

ut = a1(l1(u), l2(v))∆u− λ1|u|p−2u+ f1 ∈ L2(0, T ;L2(Ω))

and
vt = a2(l1(u), l2(v))∆v − λ2|v|p−2v + f2 ∈ L2(0, T ;L2(Ω)).

Next we prove the uniqueness of strong solutions.

Theorem 6 (Uniqueness). Let p > 1 and 0 < T < +∞. If Hyp1-Hyp5 hold,
then there is at most one strong solution to Problem (5).

Proof. Let (u1, v1) and (u2, v2) be two solutions of System (5). Then{
(ui)t − a1(l1(ui)l2(vi))∆ui + λ1|ui|p−2ui = f1

(vi)t − a2(l1(ui)l2(vi))∆vi + λ2|vi|p−2vi = f2
, i = 1, 2.

Subtracting, integrating in Ω and multiplying the first equation by r = u1−u2

and the second equation by s = v1 − v2, we obtain

1
2
d

dt
‖r‖2L2

+ a1(l1(u1), l2(v1))‖r‖2H1
0

+ λ1(|u1|p−2u1 − |u2|p−2u2, u1 − u2) ≤

≤ |a1(l1(u2), l2(v2))− a1(l1(u1), l2(v1))|
∫
∇u2 · ∇r dx,

1
2
d

dt
‖s‖2L2

+ a2(l1(u1), l2(v1))‖s‖2H1
0

+ λ2(|v1|p−2v1 − |v2|p−2v2, v1 − v2) ≤

≤ |a2(l1(u2), l2(v2))− a2(l1(u1), l2(v1))|
∫
∇v2 · ∇s dx.

Adding and using the fact that (|u1|p−2u1 − |u2|p−2u2, u1 − u2) ≥ 0 and
(|v1|p−2v1 − |v2|p−2v2, v1 − v2) ≥ 0, we have
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1

2

d

dt
(‖r‖2

L2
+ ‖s‖2

L2
) +m(‖r‖2

H1
0

+ ‖s‖2
H1

0
) ≤

≤ |a1(l1(u2), l2(v2))− a1(l1(u1), l2(v1))|
∫

Ω

∇u2 · ∇r dx+

+|a2(l1(u2), l2(v2))− a2(l1(u1), l2(v1))|
∫

Ω

∇v2 · ∇s dx.
From the properties of li, it follows that

1

2

d

dt
(‖r‖2

L2
+ ‖s‖2

L2
) +m(‖r‖2

H1
0

+ ‖s‖2
H1

0
) ≤

≤ (A1|l1(u2)− l1(u1)|+B1|l2(v2)− l2(v1)|)‖u2‖H1
0
‖r‖H1

0
+

+(A2|l1(u2)− l1(u1)|+B2|l2(v2)− l2(v1)|)‖v2‖H1
0
‖s‖H1

0

≤ (A1|l1(u2 − u1)|+B1|l2(v2 − v1)|)‖u2‖H1
0
‖r‖H1

0
+

+(A2|l1(u2 − u1)|+B2|l2(v2 − v1)|)‖v2‖H1
0
‖s‖H1

0

≤ C1(‖u2 − u1‖L2 + ‖v2 − v1‖L2)‖u2‖H1
0
‖r‖H1

0
+

+C2(‖u2 − u1‖L2 + ‖v2 − v1‖L2)‖v2‖H1
0
‖s‖H1

0
.

Thus

1

2

d

dt
(‖r‖2

L2
+ ‖s‖2

L2
) +

m

2
(‖r‖2

H1
0

+ ‖s‖2
H1

0
) ≤ M(t)

2
(‖r‖2

L2
+ ‖s‖2

L2
),

with

M(t) =
C2

1

4m
‖u2‖2

H1
0

+
C2

2

4m
‖v2‖2

H1
0
∈ L1(0, T ).

Now defining y(t) = (‖r‖2
L2

+ ‖s‖2
L2

),

dy

dt
≤M(t)y, y(0) = 0.

Hence y(t) = 0 and consequently u1 = u2 and v1 = v2.

4. Localization properties

In this section, we study some localization properties of solutions for these
systems. We assume that all the hypotheses of the existence and uniqueness

13



theorems are fulfilled.
Take x0 ∈ Ω, ρ0 ∈]0, dist(x0, ∂Ω)] and define

Bρ ≡ Bρ(x0) = {x ∈ Rn : |x− x0| < ρ} ⊂ Ω,

Sρ ≡ Sρ(x0) = ∂Bρ(x0).

The first property we study is stable localization. In what follows, we assume
that

u(x, 0) = 0 and v(x, 0) = 0 a.e. in Bρ0 . (33)

Definition 7 ([8]). A function ρ(t) : [0, t+[→ [0,+∞[, ρ(0) ≤ ρ0, is called a
rate at the point x0 if for each t ∈ [0, t∗[,

u(x, t) = 0 a.e. in Bρ(t)(x0) = {x : |x− x0| < ρ(t)} ⊂ Ω.

Definition 8 ([8]). A function u(x, t) is said to have the property of stable
localization if for some x0 ∈ Ω there exists a strictly positive rate ρ(t), at
the point x0, defined on the whole of [0,∞[, such that

lim inf
t→∞

ρ(t) > 0.

We introduce the local energy functions for u:

bu(ρ, t) = ||u(·, t)||2L2(Bρ), bu(ρ) = sup
0≤τ≤T

bu(ρ, τ),

Eu(ρ, t) =

∫ t

0

∫
Bρ

|∇u|2 dxdτ, Eu(ρ) = sup
0≤τ≤T

Eu(ρ, τ),

Du(ρ, t) =

∫ t

0

∫
Bρ

|u|p dxdτ and Du(ρ) = sup
0≤τ≤T

Du(ρ, τ).

The local energy functions for v are defined analogously. By sup we mean
ess sup. We set

b = bu + bv, E = Eu + Ev and D = Du +Dv.

Without loss of generality, we always assume that

bu(ρ) + Eu(ρ) +Du(ρ) + bv(ρ) + Ev(ρ) +Dv(ρ) ≤M3, ρ ≤ ρ0, t ≤ T (34)

14



Some steps are very similar for both functions, so, in those cases, we only
present the theory for u and, if there is no danger of confusion, we omit the
index u. Since E and D are monotone and non-decreasing in ρ and t, the
following weak derivatives exist:

Eρ(ρ, t) =
∫ t

0

∫
Sρ
|∇u|2 dsdτ, Dρ(ρ, t) =

∫ t
0

∫
Sρ
|u|p dsdτ

Et(ρ, t) =
∫
Bρ
|∇u|2 dx, Dt(ρ, t) =

∫
Bρ
|u|p dx

Eρt(ρ, t) =
∫
Sρ
|∇u|2 ds, Dρt(ρ, t) =

∫
Sρ
|u|p ds.

Theorem 9 (Stable localization). Let (u, v) be a solution of Problem (5) in
Bρ0 × (0, T ), (Bρ0 ⊂ Ω) with 1 < p < 2 and assume that

u(x, 0) = 0, v(x, 0) = 0, f1(x, 0) = 0, f2(x, t) = 0, (x, t) ∈ Bρ0 × [0, T ].
(35)

Then
u(x, t) = 0 and v(x, t) = 0 for a.a. (x, t) ∈ Bρ ×R+, (36)

where ρ is defined by the formula in (45).

Proof. If we multiply the first equation of (5) by u and integrate in Bρ for
ρ ≤ ρ0, we obtain

1

2

d

dt

∫
Bρ

u2 dx+

∫
Bρ

a1|∇u|2 + λ1|u|p dx =

∫
Sρ

a1u∇u · n ds.

Integrating in ]0, t[ and since we assume (33), we conclude that

1

2

∫
Bρ

u2 dx+

∫ t

0

∫
Bρ

a1|∇u|2 dxdτ +

∫ t

0

∫
Bρ

λ1|u|p dxdτ =

=

∫ t

0

∫
Sρ

a1u∇u · n dsdτ.

Changing the notation, we have

1

2
b(ρ) +mE(ρ, t) + λ1D(ρ, t) ≤ I. (37)
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Now we evaluate I in the following way:

|I| ≤ M

∫ t

0

∫
Sρ

|∇u| |u| dsdτ

≤ M

(∫ t

0

∫
Sρ

|∇u|2 dsdτ

) 1
2
(∫ t

0

∫
Sρ

|u|2 dsdτ

) 1
2

≤ M (Eρ)
1
2

(∫ t

0

∫
Sρ

|u|2 dsdτ

) 1
2

. (38)

Next, we apply the multiplicative inequality

‖u‖L2(Sρ) ≤ C
(
‖∇u‖L2(Bρ) + ρ−δ‖u‖Lq(Bρ)

)θ × (‖u‖Lq(Bρ)

)1−θ
, (39)

with

θ =
n(2− q) + q

n(2− q) + 2q
< 1, 1 < q < 2, δ = −

(
1 +

2− q
2q

n

)
and we use

‖u‖Lq(Bρ) ≤‖u‖
2(q−p)
q(2−p)
L2(Bρ)‖u‖

p(2−q)
q(2−p)
Lp(Bρ) = ‖u‖

(2−p)
2

L2(Bρ)‖u‖
p
2

Lp(Bρ), p < q =
4

4− p
< 2.

In our notation, we have

‖u‖Lq(Bρ) ≤ b
(2−p)

4 D
1
2
t

and (39) takes the form

‖u‖L2(Sρ) ≤ C
(
E

1
2
t +ρ−δb

(2−p)
4 D

1
2
t

)θ (
b

(2−p)
4 D

1
2
t

)1−θ
. (40)

Recalling (38), we have successively

|I| ≤M (Eρ)
1
2

(∫ t

0

∫
Sρ

|u|2 dsdτ

) 1
2

≤ C (Eρ)
1
2

(∫ t

0

(
E

1
2
t +ρ−δb

(2−p)
4 D

1
2
t

)2θ (
b

(2−p)
4 D

1
2
t

)2(1−θ)
dτ

) 1
2
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≤ Cρ−δθK1 (Eρ)
1
2 b

(2−p)(1−θ)
4

(∫ t

0

(Et+ Dt)
θ ( Dt)

(1−θ) dτ

) 1
2

≤ Cρ−δθK1 (Eρ)
1
2 b

(2−p)(1−θ)
4

(∫ t

0

(Et+ Dt) dτ

) 1
2

≤ Cρ−δθK1 (Eρ)
1
2 b

(2−p)(1−θ)
4 (E+ D)

1
2

≤ Cρ−δθK1 (Eρ)
1
2
(
b+E+ D

) 1
2

+
(2−p)(1−θ)

4 ,

with K1 = max(1, b
(2−p)θ

4 (ρ0)) max(1, ρδθ0 ).
Substituting the last inequality in (37), we obtain

b+ E +D ≤ Cρ−δθK1

(
Eρ

) 1
2
(
b+E +D

) 1
2

+
(2−p)(1−θ)

4

or (
b+ E +D

) 1
2
− (2−p)(1−θ)

4 ≤ Cρ−δθK1

(
Eρ

) 1
2 .

If we set

ν =
(2− p)(1− θ)

2
< 1,

then
E

1−ν ≤ ρ−2δθ(CK1)2Eρ (41)

or, in a more complete notation,

E
1−ν
u ≤ ρ−2δθ(CK1)2(Eu)ρ. (42)

Similarly,

E
1−ν
v ≤ ρ−2δθ(CK2)2(Ev)ρ. (43)

Adding these two inequalities, we have

(Eu + Ev)
1−ν ≤ ρ−2δθK3(Eu + Ev)ρ ⇔ E

1−ν ≤ ρ−2δθKEρ (44)

and integrating this inequality in ]ρ, ρ0[, we obtain

ρω0 − ρω ≤
Kω

ν

(
E
ν
(ρ0)− E

ν
(ρ)
)
, ω = 1 + 2δθ.

Thus E
ν
(ρ) = 0 if the function ρ(t) satisfies

ρω(t) = ρω0 −
Kω

ν
E
ν
(ρ0). (45)
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This result implies that if the global energy(
bu(ρ0) + Eu(ρ0) +Du(ρ0) + bu(ρ0) + Eu(ρ0) +Du(ρ0)

)
is not large, then ρ(t) > 0 and there exists a cylinder Bρ ×R+ where u and
v are zero a.e..

Now we investigate the waiting time property in the sense of the following
definition.

Definition 10 ([8]). Given x0 ∈ Ω, let

ρ0 = sup{ρ > 0 : u(x, 0) = 0 a.e. in Bρ(x0) ⊂ Ω}.

We say that u(x, t) has the generalized waiting time property if, for
some t∗ > 0, the function ρ(t) ≡ ρ0 is a rate at the point x0 on the interval
[0, t∗].

In this case, we assume that for 0 < ρ0 < R,∫
Bρ0

|u0|2 dx = 0,

∫
Bρ0

|v0|2 dx = 0, x ∈ Bρ0 , (46)

f1(x, t) = 0, f2(x, t) = 0, (x, t) ∈ Bρ0 × [0, T ] (47)

and, in addition,∫
Bρ

|u0|2 dx+

∫
Bρ

|v0|2 dx+

∫ T

0

∫
Bρ

|f1|
p
p−1

dxdτ+

+

∫ T

0

∫
Bρ

|f2|
p
p−1

dxdτ ≤ ε (ρ− ρ0)
1
ν
+ , (48)

where ν is defined in the previous theorem.
We assume that

sup
t∈[0,T ]

∫
BR

|u|2 + |v|2 dx+

+

∫ T

0

∫
BR

|∇u|2 + |∇v|2 + |u|p + |v|p dxdt ≤MR <∞ (49)

and that the parameters MR, ν, R , ρ0 satisfy

G = MR − C5

(
MR

ν

) 1
1−ν

(R− ρ0)−
ν

1−ν − C6ε (R− ρ0)
1
ν = 0, (50)

where C5 = C5(b(R)) and C6(p, n) is a constant in embedding inequality.
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Theorem 11 (Waiting time effect). Let (u, v) be a local weak solution of
Problem (5) in BR×]0, T ] with 1 < p < 2 and suppose that (46)-(50) hold.
Then

u(x, t) = 0 and v(x, t) = 0, (x, t) ∈ Bρ0 × [0, T ]. (51)

Proof. Repeating the arguments of the proof of Theorem 9 for ρ0 ≤ ρ ≤ R,
we arrive at the inequalities

bu + Eu(ρ, t) +Du(ρ, t) ≤ C1(Eu)
1

1−ν
ρ + C2ε (ρ− ρ0)

1
ν
+ , (52)

bv + Ev(ρ, t) +Dv(ρ, t) ≤ C3(Ev)
1

1−ν
ρ + C4ε (ρ− ρ0)

1
ν
+ . (53)

Adding the last two inequalities, we obtain

b + E(ρ, t) + D(ρ, t) ≤ C5E
1

1−ν
ρ + C6ε (ρ− ρ0)

1
ν
+ (54)

and, using the properties

Eρ ≤ Ψρ, Ψ = E + D =

∫ t

0

∫
Bρ

(∣∣∇u2
∣∣+
∣∣∇v2

∣∣+ |u|p + |v|p
)
dxdτ,

sup
τ∈[0,t]

∂

∂ρ
Ψρ(ρ, τ) = sup

τ∈[0,t]

(∫ t

0

∫
Sρ

(∣∣∇u2
∣∣+
∣∣∇v2

∣∣+ |u|p + |v|p
)
dsdτ

)
=

=

(∫ T

0

∫
Sρ

(∣∣∇u2
∣∣+
∣∣∇v2

∣∣+ |u|p + |v|p
)
dsdτ

)
=

∂

∂ρ

(
sup
τ∈[0,t]

Ψ(ρ, t)

)
,

we can rewrite (54) in the form

W (ρ) ≤ C5W
1

1−ν
ρ + C6ε (ρ− ρ0)

1
ν
+ , (55)

where

W (ρ) = sup
t∈[0,T ]

Ψ(ρ, t) =

∫ T

0

∫
Bρ

(∣∣∇u2
∣∣+
∣∣∇v2

∣∣+ |u|p + |v|p
)
.

Let us now consider the problem

φ(ρ) = C5φ
1

1−ν
ρ + C6ε (ρ− ρ0)

1
ν
+ , ρ0 ≤ ρ ≤ R. (56)
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This problem has a solution of the form

φ(ρ) = MR (R− ρ0)−
1
ν (ρ− ρ0)

1
ν (57)

if the parameters MR, ν, R , ρ0 satisfy

G = MR − C5

(
MR

ν

) 1
1−ν

(R− ρ0)−
ν

1−ν − C6ε (R− ρ0)
1
ν = 0.

For fixed parameters MR, ν, ρ0 it is sufficient to choose R sufficiently large
and ε sufficiently small. It is easy to verify that φ(ρ) is an upper bound for
W (ρ) and, since φ(ρ0) = 0 and due to the monotony in ρ of W , the proof is
completed.

5. Asymptotic behavior for large t

We terminate with the study of the asymptotic behavior of the solutions
when t→∞. For this purpose, we introduce the global energy function

b(t) =
1

2

∫
Ω

u2 + v2 dx.

Theorem 12 (Exponencial decay). If f1 ≡ f2 ≡ 0 and λ1 = λ2 = 0, then
function b, with (u, v) a solution of Problem (5), satisfies

b(t) ≤ b(0)e−αt

for α a positive constant which depends on m and Ω.

Proof. Multiplying the first equation by u, the second by v, integrating in Ω
and adding these two equations, we obtain

d

dt
b(t) +

∫
Ω

a1(l1(u), l2(v))|∇u|2 dx+

∫
Ω

a2(l1(u), l2(v))|∇v|2 dx = 0.

By the lower bound of ai and applying Poincaré’s inequality, we conclude
that

d

dt
b(t) + 2Cmb(t) ≤ 0.

So
b(t) ≤ b(0)e−2Cmt.

Thus the claim is proved with α = 2Cm > 0.
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Theorem 13 (Polynomial decay). Suppose that p > 2 and that (u, v) is
solution of Problem (5).

i) If f1 ≡ f2 ≡ 0, then b satisfies the estimate

bµ−1(t) ≤ b(0)µ−1

1 + tC(µ− 1)b(0)µ−1
,

where µ = p
2

and C depends only on N , p and Ω.

ii) If f1 6≡ 0 or f2 6≡ 0, there exists K > 0 and B > 0, depending only on
N , p and Ω, such that

‖fi‖L2 ≤
K

(Bt+ 1)
2µ−1

2(µ−1)

, i = 1, 2 (58)

implies that

b(t) ≤ b(0)

(Bt+ 1)
1

µ−1

.

Proof. Multiplying the first equation by u and integrating in Ω,

1

2

d

dt

∫
Ω

u2 dx+

∫
Ω

a1(l1(u), l2(v))|∇u|2 dx+ λ1

∫
Ω

|u|p dx =

∫
Ω

f1u dx. (59)

By Holder’s theorem,∫
Ω

|u|p dx ≥ C

(∫
Ω

u2 dx

)µ
, µ =

p

2
≥ 1.

Substituting this last inequality in (59) and ignoring the second term, we
obtain

1

2

d

dt

∫
Ω

u2 dx+ C

(∫
Ω

u2 dx

)µ
≤
∣∣∣∣∫

Ω

f1u dx

∣∣∣∣ . (60)

If f1 ≡ f2 ≡ 0, adding the last inequality to the similar inequality for v, we
arrive at the following differential inequality for b:

b′ + Cbµ ≤ 0.

Integrating, we obtain

bµ−1 ≤ b(0)µ−1

1 + Ct(µ− 1)b(0)µ−1
.
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If f1 6≡ 0, then we can write (60) as

1

2

d

dt

∫
Ω

u2 dx+ C

(∫
Ω

u2 dx

)µ
≤
(∫

Ω

f 2
1 dx

) 1
2
(∫

Ω

u2 dx

) 1
2

. (61)

Adding (61) to the equivalent for v, we arrive at a new differential inequality
for b:

b′ + C1b
µ ≤ C2(t)b

1
2 .

Here C2(t) = C max{‖f1‖L2 , ‖f2‖L2} and introducing the function g(t) = b
1
2

and using (58), we can write the last inequality in the form

g′ +
C1

2
g2µ−1 ≤ K

(Bt+ 1)
2µ−1

2(µ−1)

.

Now we consider the ODE

h′ +
C1

2
h2µ−1 =

K

(Bt+ 1)
2µ−1

2(µ−1)

. (62)

If the constants satisfy

K < Cb(0)
2µ−1

2 , B = (b(0)
2µ−1

2 −K)(µ− 1)b(0)−
1
2 ,

then

h =
b

1
2
0

(Bt+ 1)
1

2(µ−1)

are solutions of this equation and are upper bounds for the functions g.
Reverting to function b, we get the desired estimate.

Theorem 14 (Vanishing in a finite time). Suppose that 1 < p < 2 and that
(u, v) is solution of Problem (5).

i) If fi ≡ 0, i=1,2, then (u, v) vanishes in a finite time, that is,

u(x, t) ≡ 0 and v(x, t) ≡ 0 in Ω for t > t∗,

where t∗ depends only on ‖u0‖L2, ‖v0‖L2, p and Ω.
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ii) If f1 6≡ 0 or f2 6≡ 0, then there exist ε′ > 0 and t′ > t∗ such that

‖fi‖L2 ≤ ε

[
1− t

tf

] 2µ−1
2−2µ

+

, i = 1, 2, (63)

with tf ≥ t′, µ defined by (65) and where 0 < ε < ε′ implies that (u, v)
vanishes in a finite time.

Proof. Multiplying the first equation by u and integrating in Ω,

1

2

d

dt

∫
Ω

u2 dx+

∫
Ω

a1(l1(u), l2(v))|∇u|2 dx+ λ1

∫
Ω

|u|p dx =

∫
Ω

f1u dx

or
1

2

d

dt

∫
Ω

u2 dx+ C

∫
Ω

|∇u|2 + |u|p dx =

∫
Ω

f1u dx. (64)

By the multiplicative inequality,∫
Ω

u2 dx ≤
(∫

Ω

|∇u|2 dx
)θ (∫

Ω

|u|p dx
) 2(1−θ)

p

≤

≤
(∫

Ω

|∇u|2 dx+ |u|p dx
)θ+ 2(1−θ)

p

, θ ∈]0, 1[.

Therefore ∫
Ω

|∇u|2 dx+ |u|p dx ≥
(∫

Ω

u2 dx

)µ
,

where
µ =

p

pθ + 2(1− θ)
< 1. (65)

Substituting this last inequality in (64), we have

1

2

d

dt

∫
Ω

u2 dx+ C

(∫
Ω

u2 dx

)µ
≤
∫

Ω

f1u dx. (66)

If fi ≡ 0, i = 1, 2, adding the last inequality to the equivalent inequality for
v, we arrive at the following differential inequality for b:

b′ + Cbµ ≤ 0.

23



Integrating, we obtain

b1−µ ≤ b(0)1−µ − Ct(1− µ),

whence

b = 0 for t ≥ t∗ =
b(0)1−µ

C(1− µ)
<∞

and the same occurs for u and v.
Now suppose that f1 6≡ 0 and write (66) as

1

2

d

dt

∫
Ω

u2 dx+ C

(∫
Ω

u2 dx

)µ
≤
(∫

Ω

f 2
1 dx

) 1
2
(∫

Ω

u2 dx

) 1
2

. (67)

Adding (67) to the homologous inequality for v, we arrive at a new differential
inequality for b:

b′ + C1b
µ ≤ C2(t)b

1
2 .

Here, C2(t) = C max{‖f1‖L2 , ‖f2‖L2}. Using (63) and introducing the func-

tion g(t) = b
1
2 , we can write the last inequality in the form

g′ +
C1

2
g2µ−1 ≤ ε

2

[
1− t

tf

] 2µ−1
2−2µ

+

.

Now we consider the ODE

h′ +
C1

2
h2µ−1 =

ε

2

[
1− t

tf

] 2µ−1
2−2µ

+

. (68)

The solutions of this equation are upper bounds for the functions g. It is
easy to verify that if h(0), ε and tf satisfy

C

2
h(0)2µ−1 − h(0)

2(1− µ)tf
− ε

2
≥ 0, (69)

then the functions

h = h(0)

[
1− t

tf

] 1
2−2µ

+

are solutions of (68).
For a given h(0), we can always choose ε and tf such that (69) is true and
hence the claim is proved.
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6. Conclusions

We studied a nonlinear system of parabolic equations. The existence
and uniqueness of strong global solutions was proved and we derived some
localization and asymptotic properties of the solution. The application of
the Euler-Galerkim finite element method to this problem is in progress.
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non linéaires, Dunod, 1969.

[12] B. Lovart, Etudes de quelques problèmes paraboliques non locaux, Ph.D.
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