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Abstract. In this paper we discuss the consequences of the distributional approach to dislocations
in terms of the mathematical properties of the auxiliary model fields such as displacement and dis-
placement gradient which are obtained directly from the main model field here considered as the

linear strain. We show that these fields cannot be introduced rigourously without the introduction
of gauge fields, or equivalently, without cuts in the Riemann foliation associated to the dislocated
crystal. In a second step we show that the space of bounded deformations follows from the distribu-

tional approach in a natural way and discuss the reasons why it is adequate to model dislocations.
The case of dislocation clusters is also addressed, as it represents an important issue in industrial
crystal growth while from a mathematical point of view, peculiar phenomena might appear at the
set of accumulation points. The elastic-plastic decomposition of the strain within this approach is

also given a precise meaning.

1. Introduction

In linear thermoelasticity, it is usually said that strain (E?), displacement (u?) and rotation (ω?)
become “infinitesimal”, and hence, that the reference and actual configurations coincide. In the
absence of defect lines, the strain is everywhere compatible and hence single-valued rotation and
displacement fields can be integrated from the strain field provided the domain be simply connected.
However, when disclinations or dislocations are present, rotation and displacement become multiple-
valued and hence, take their values on a domain called a Riemann foliation.

Let Ω be the actual configuration (the domain) and ΩL := Ω \ L with L the line defects, be the
domain without dislocations and disclinations. In general, a multivalued function from ΩL to RN

consists of a pair of single-valued mappings with appropriate properties:

R→ ΩL and R→ R3,

where F is the associated Riemann foliation [26, 27]. In the present case of meso-scale elasticity, we
will limit ourselves to multivalued functions obtained by recursive line integration of single-valued
mappings defined on ΩL. Reducing these multiple line integrals to simple line integrals, the Riemann
foliation shows to be the set of equivalence classes of paths inside ΩL from a given x0 ∈ ΩL with
homotopy as equivalence relationship. In particular, mappings of the following kind exist:

ΩL
P←− R ω?,u?

−→ R3

where R := {(x,#Γ) for every x ∈ ΩL and every curve Γ joining x0 to x, with #Γ the equivalence
class of all curves homotopic to Γ in ΩL} while P is the projection of R onto ΩL, in such a way that
P(x,#Γ) = x.

The Riemann foliation can be univoquely associated to the actual configuration if cuts are in-
troduced in order to select one particular branch of the displacement and rotation. However, this
approach causes major theoretical difficulties and will not be used in the sequel.

For this reason the distributional approach was introducded in [26, 27]. This approach does not
consider rotation and displacement as model variables, and does not need the prescription of a refer-
ence configuration. Instead, it is based on the strain, itself defined from (single-valued) well-defined
measurable quantities, namely the stress and the temperature distributions inside the body. The lin-
ear thermo-elasticity stress-strain-temperature relationship takes the following form (this assumption
being generally valid in single-crystal growth):

E? = (C?)−1σ? + β?(T ? − T0), (1.1)

where σ? denotes the stress field, (C?)−1 and β? stand for the 4th- and 2nd-order compliance and
thermal dilation tensors, and T0 is the reference temperature.
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Moreover, the main model field being the strain E?, the distributional approach consists in assuming
that E? has a locally integrable norm, which is consistent with the strain singularity as created by
dislocations and disclinations. Then, derivatives of E? are taken in the distributional sense, thereby
defining the Frank tensor ∂̄ω? := −E? × ∇, and the Burgers tensor ∂̄b? := E? +

(
(x− x0)× ∂̄ω?

)
,

which both are order-one distributions (in the sense of L. Schwartz [18]). It should be emphasized
that E? is not of square norm integrable, and hence the linear elastic energy might be unbounded.
This well-known observation raises the open problem of searching an appropriate (nonlinear, nonlocal)
constitutive law (an important step in this direction has been realized in [17]). We believe that an
adequate constitutive law should incorporate strain derivatives, as for instance the Frank or Burgers
tensors (see [21] for a discussion). It is remarkable that the strain curl appears instead of the strain
gradient (cf. for instance [15] for gradient-based models).

Having said that, it is clear that with a view to a general model, (1.1) is an unproper constitutive
law. It is nevertheless at the basis of our approach, but should here be considered as the definition of
the linear strain E?. For these reasons, the distributional approach is said to describe the geometry (or
statics) of dislocations and disclinations in single crystals. Dynamical and energetical aspects at the
mesoscale are for the moment beyond reach, though at the macroscale, dynamics is briefly addressed
in two publications [22,25].

Many other mathematical approaches to dislocations are based on the displacement (cf., e.g.,
[16, 17]). In general, an isothermal stress-free and defect-free reference configuration is considered on
which the displacement is assumed of bounded deformation (in the sense of Temam and Strang [20]).
This functional space is assumed because of its convenient decomposition property (the so-called
BD decomposition theorem) of the symmetric part of the displacement gradient in a diffuse, norm-
integrable part an a concentrated part on the set of displacement jump points. Moreover, the displace-
ment jump is suitably identified with the Burgers vector, while the concentrated part of the strain is
denoted as the plastic part.

Many questions arise from this formalism:

(1) how can one prove the identification of the displacement jump with the Burgers vector, being
the latter classicaly defined as a uniform (i.e., constant for a given dislocation) line integral
around the dislocation loop [10,11,26]?

(2) working with the displacement and a prescribed reference configuration implies that a cut in
the Riemann foliation R has been implicitly assumed. Is this cut arbitrary or has it a physical
meaning? In the latter case, it should be incorporated into the model, in the former, it is
likely to generate gauge fields which in turn may have physical meaning.

(3) denoting the concentrated part as plastic, implicitely assumes that the diffuse part is elastic.
Is this justified by any kind of constitutive law? Instead, shouldn’t one assume that there
might exist both elastic and plastic diffuse effects?

(4) by appropriately defining the plastic process together with a stress- and defect-free interme-
diate1 configuration, the multiplicative (or Lee) decomposition of the deformation gradient F
may nevertheless be such that the plastic strain be considered as purely concentrated. Then,
assuming the elastic strain as a purely diffuse field allows us to identify the concentrated term
of the BD decomposition with the plastic strain. The question raised by this procedure is
that the reference configuration as defined by F must not be stress- and defect-free, while
∇u := F − I might not correspond to the gradient of the assumed BD displacement (because
of an unspecified rotation). In addition ∇u cannot be decomposed in an elastic and plastic
part, since obviously, no constitutive law for the rotation exists.

(5) assuming that the set of jump points Σ of the BD displacement field has a physical meaning
would require to identify Σ with (a subset of) the glide planes of the dislocation L. By
definition, this would hold if both L and its Burgers vector would be contained in Σ. In
particular, one should prove that the trace of the concentrated part of the strain vanishes,
which is equivalent to a condition on the divergence of the BD displacement(and hence,again,
on the chosen reference configuration).

The space of bounded deformation is probably the wright functional space to model dislocations.
However, the aim of this paper is to justify the introduction of BD functions as a consequence of a

1Sometimes also called “plastic configuration“.
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more general approach to model defect lines at the mesoscopic scale. Our objective is to rigourously
introduce the physical and the mathematical concepts, and to emphasize their strong interrelation.

As a matter of fact, we start from the linear strain E?, which is a well-defined, measurable quantity
at the mesoscale, and which can be defined without appealing to any reference configuration. From
well-known strain expressions for rectilinear dislocations and disclinations [26] we cannot assume that
E? be more regular than Ls

loc(Ω) with 1 ≤ s < 2. This choice nonetheless allows us to define the strain
derivatives as distribution tensors. In particular the Frank tensor and the strain incompatibility are
defined and serve as the basis of our model. On the other hand, given the actual configuration Ω
and a defect line L (or a set of lines Υ), the dislocation and disclination density tensors (remark that
most of the available dislocation models are limited to scalar densities), are well-defined quantities
explicitely given by the line location, orientation, and their Burgers or Frank vectors. A first issue
was to relate the strain incompatibility to the defect densities. This has been completely answered
in [26] for a finite family of rectilinear lines, in [27] for a countable family of such lines, in [23] for a
finite family of skew lines, and in [24] for two kinds of planar dislocation loops2.

In this paper we start from the main result of [24], (cf. Theorem 2 at the end of §2) relating
strain incompatibility with the density of defects, namely with the so-called contortion tensor (this
tensor is related to the crystal intrinsic torsion, cf. [12, 14, 21]), disclination density, and with the
line curvature. From this result we show that appropriate completions of the Burgers and Frank
tensors (cf. §3) can be introduced to generalize the relations valid for rectilinear lines. These so-
called completed tensors are defined up to a gauge tensor field, which is nevertheless fixed (and its
explicit expression given) for a particular case of 3D loops without disclinations, denoted as a simple
dislocation loops in §2.1. In §4.14 we show that the distributional approach allows one to define a
single-valued distortion field, which corresponds to the known distortion from which the dislocation
theory is classically reported in the literature. In particular, its integral around L provides the Burgers
vector (which in the distributional approach is merely defined from the single-valued strain and strain
curl in [26]). In §4.2, it is shown that this distortion is indeed the gradient of a single-valued field, so
far as general as a distribution vector. To this aim, one must introduce an arbitrary cut (related to
aforementioned cut in Riemann foliation) on which the distortion shows concentrated effects. For this
reason, another gauge vector field appears in the definition of the displacement. Eventually, in §5 we
show that the symmetric part of the displacement gradient (note that at this stage, the latter does
not coincide with the distortion introduced above) is a so-called Radon measure, and hence that the
displacement is in fact of bounded deformation. Extension of these results to a finite and a countable
family of loops, hence to dislocation clusters, including the peculiar phenomena at the accumulation
set of lines, are discussed in §6. Finaly, a discussion on the consequences of these results with a view
to the construction of general model is carried on in §6.3.

2. The distributional approach at the mesoscopic scale

The assumed open and connected domain is denoted by Ω, the defect line(s) are indicated by L ⊂ Ω̄,
and ΩL stands for Ω \ L. A family of lines will be denoted by Υ and is always assumed to be a closed
subset of Ω, that is, the intersection of a closed subset of R3 with Ω.

Remark 1. If Ω $ R3, the given topological definition of Υ allows us to consider clusters of defects in
∂Ω, which also corresponds to actual observation in single crystal growth technology. Indeed consider
a sequence of {Lk}k ∈ Ω then its countable union is contained in Ω ∪ ∂Ω.

2.1. Preliminary results.

Notations 1. For a second-order tensor E, we introduce the left (resp. right) curl operator ∇×
(resp. ×∇), i.e., (∇× E)ij = εikl∂kElj and3 (E ×∇)ij = εlkj∂kEil (otherwise written, (E ×∇)T =

−∇× ET ), where ET denotes the transpose of E. Note that ∇× E might also be written as curl E.
The incompatibility tensor associated to the symmetric second-order tensor E writes as

inc E := −∇× E ×∇ = ∇× (∇× E)
T
, (2.1)

2In the latter, the loop curvature is shown to play a role.
3This notation is preferred to the other as found in [22,23] with the opposite sign convention for the ×∇ operator.
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i.e., written componentwise, ( inc E)ij = εikmεjln∂k∂lEmn.

In the sequel, we say that a symmetric tensor Emn is compatible on U ⊂ Ω if εkpmεlqn∂p∂qEmn

vanishes on U . Moreover, as soon as E ∈ L1
loc(Ω,R3×3), the incompatibility of E, inc E is a distribu-

tion [18], that is, a linear and continous form on the space of test functions C∞c (Ω).

Assumption 1 (3D elastic strain). Let L ⊂ Ω be a defect loop and let the elastic strain E?mn be a
given symmetric Ls

loc(Ω) ∩ C∞(ΩL)-tensor compatible on ΩL, with 1 ≤ s < 2. In other words, the
incompatibility tensor, as defined by the distribution η?kl := εkpmεlqn∂p∂qE?mn, vanishes everywhere on
ΩL.

Definition 1 (Frank and Burgers tensors). The Frank tensor ∂̄ω? is defined on the entire domain Ω
as the following distribution:

∂̄ω? := −E? ×∇, (2.2)

that is, componentwise, ∂̄mω
?
k := εkpq∂pE?qm, in such a way that incompatibility writes as the following

symmetric distribution tensor:
η? = inc E? = −∇× E? ×∇, (2.3)

that is, componentwise, η?kl = η?lk := εlpm∂p∂̄mω
?
k. Moreover, for a selected x0 ∈ ΩL, the Burgers

tensor is defined on the entire domain Ω as the distribution

∂̄b? := E? +
(
(x− x0)× ∂̄ω?

)
, (2.4)

that is, componentwise, as ∂̄lb
?
k(x) := E?kl(x) + εkpq(xp − x0p)∂̄lω?

q (x).

Given x0 ∈ ΩL, the rotation ω?
0k and displacement ω?

0k at x0, the multivalued rotation and dis-
placement vectors at x ∈ ΩL are defined as

ω?
k(x) = ω?

0k +

∫
Γ

∂mω
?
k(ξ)dξm, (2.5)

u?k(x) = u?0k + εklmω
?
l (xm − x0m) +

∫
Γ

∂lb
?
k(ξ)dξl, (2.6)

where ω?
k and u?k obviously depends on the path Γ ⊂ ΩL from x0 to x. It is well-known that ω?

k and
u?k are single-valued fields if and only if the incompatibility η? vanishes. To render these two fields
single valued one can also introduce a cut in Ω in such a way that all path Γ are equivalent. This
procedure introduces a jump set at the arbitrarily chosen cut, whose consequences must be carefully
discussed.

Single defect line, denoted by L, are in general either dislocations (translational defect) or disclina-
tions (rotational defect) (cf. [11] and [26] for detail) or have a combined dislocation and disclination
nature. Accordingly, we introduce the following concentrated distribution tensors.

Definition 2 (Defect densities and contortion).

DISCLINATION DENSITY: Θ? := τδL ⊗ Ω?
(
Θ?

ij := τiΩ
?
jδL

)
(2.7)

DISLOCATION DENSITY: Λ? := τδL ⊗B?
(
Λ?
ij := τiB

?
j δL

)
(2.8)

MESOSCOPIC CONTORTION: κ? := α? − I

2
tr α?

(
κ?ij := α?

ij −
1

2
δijα

?
kk

)
, (2.9)

where δL denotes the 1-dimensional Hausdorff measure concentrated on L, τ the unit tangent vector
of L, and with the auxiliary defect density measure:

α?
ij := Λ?

ij − εjlm(xl − x0l)Θ?
im, (2.10)

where x0m is a point where rotation and Burgers fields are prescribed.

Typical disclination and dislocation loops are given in Figs. 1(a) and 1(b). We observe that the
lines are either close or end at the crystal boundary. In fact, the following classical theorem is proved
in, e.g. [11].

Theorem 1 (Conservation laws). Isolated defect lines are always closed or end at the boundary of Ω.
Moreover, ∂iΘ

?
ij = ∂iΛ

?
ij = 0 while ∂iα

?
ij = εjmnΘ

?
mn.

Lemma 1. The tensor η̃? := −κ? ×∇ is symmetric.

Proof. The proof follows from Definition 2 and Theorem 1 by the simple computation of εijmεjpq∂pκ
?
iq

which shows to vanish identically. �
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(a) (b)

Figure 1. 1(a) Disclinations is a rotational defect, which is often present, although
rare, in crystals growing from the melt, c©University of Cambridge; 1(b) Spiral screw
dislocation in a crystal of silicon carbide ((IKZ, Berlin) Institute for Crystal Growth,
Germany);

2.2. General mesoscopic results for defect loops. In general, a dislocation curve is of mixed
screw-edge type. The type is determined by the scalar α(x) = τi(x)B

?
i : if α = 0 on L the curve is

a pure edge dislocation, whereas pure screw curves (i.e., s.t. α = 1) which are not rectilinear do not
exist. The dislocation at x is of mixed screw-edge type as soon as 0 < α(x) < 1. The expression of
the strain and Frank tensors for these two kinds of dislocations and this kind of discliantion are given
for lines parallel to the z-axis for which the medium is assumed to be steady, body force free and
isothermal (detail is given in [10,26])4.

Let us introduce the classes of torsion-free dislocations which will be considered in this paper.

Definition 3 (Smooth defect loop). Let the dislocation and/or dislocation L ⊂ Ω be a loop homeo-
morphic to the circle such that its tangent vector τ is almost everywhere Lipschitz continuous (and
hence the loop curvature exists and is bounded almost everywhere).

Precisely, the following assumption and lemma are required to prove Theorem 2 by extending the
proof of the result holding for rectilinear defects (see [26]) to defect loops.

Assumption 2. A smooth defect loop L is a simple5 regular and closed Lipschitz curve contained in
Ω̄, that is, a curve satisfying the following requirements:

(1) an admissible defect-line L is parametrically described by a continuous mapping

x̂i : [0, 1]→ Ω̄

where its restriction to the open interval ]0, 1[ takes its values in Ω.
(2) the tangent vector τ exists everywhere and is Lipschitz continuous in ∈ [0, 1].
(3) if x̂i(t) = x̂i(t

′) then t = t′ or {t, t′} = {0, 1}. Moreover if {t, t′} = {0, 1} then x̂i(0) = x̂i(1) ∈
Ω and τp(0) = τp(1).

Assumption 2 allows one to define a tube surrounding the line L ∈ Ω whose normal sections do not
intersect.

Lemma 2. For every smooth defect L and for every x̂ ∈ L there exists δ > 0 with δ independent of
x̂ such that the closed disks Dδ(x̂) and Dδ(x̂

′) for x̂ 6= x̂′ have an empty intersection.

Let ν be the inward normal to the loop L and introduce the normal vector σ := ν × τ in order to
define the right-handed orthonormal basis {σ, ν, τ} satisfying the usual Frenet’s formulae on L:

τ ′ = χν, ν′ = −χτ − ζσ, σ′ = ζν, (2.11)

where χ and ζ denote the loop curvature and torsion, respectively.

4The explicit expressions given in [26] are not all identical to the classically reported ones [10]. However the difference

in the strain expressions are explicitely known up to a compatible strain tensor, as discussed in [26].
5“Simple” means that there are no distinct values of the length parameter other than the start- and endpoints whose

images may coincide on L.
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In the remaining of the paper the following abuse of notation will be tolerated: we will sometimes
denote by σ, ν, τ their uniform extension in a neigbourhood of the line. In fact, the precise knowledge
of the neigbourhood and in particular its width and the exact expression of the cut-off function (which
must be smooth, with compact support, and take unit values in a neibourhood of L) has no importance
since σ, ν, τ are nevertheless multiplied by concentrated fields on the line. So, eventually, only the value
of σ, ν, τ on the line matters, even if the extension must be considered to give a rigourous meaning to
the products.

Assumption 3 (Mesoscopic nature of the Frank tensor). The Frank tensor −E? ×∇ is a first-order
distribution assumed to be such that the projection p? := (−E? ×∇) τ is a vector-valued Radon measure
in the sense of Ambrosio et al. [1] on Ω, with a (vector) singular part c? and (vector) regular part
r? := p? − c? ∈ L1(Ω) such that the following quantities are purely concentrated on L:

c? , τ · ∇ × r? and ∇ (τ · r?) , (2.12)

with τ indicating the tangent vector of L (here understood as multiplied by a unit cut-off function
around L).

Theorem 2 (Incompatibility of a smooth loop). Under Assumptions 1,2 & 3 and for a smooth loop
L satisfying Assumption 2, incompatibility is the following first-order symmetric tensor distribution:

η?mn = incmn (E?) =
[
τmτkη̂

?
kn + τmτn

1

2
(B?

kσk)χδL

]
m↔n

(2.13)

where the Einstein tensor reads

η̂?kn = ˜̃η
?

kn −
δkn
2

˜̃η
?

pp, (2.14)

the Kröner’s tensor is defined by

˜̃η
?

kn = Θ?
kn + η̃?kn, (2.15)

with the symmetric tensor,

η̃?kn := εkij∂iκ
?
nj , (2.16)

where the defect contortion κ? are given by Definition 2, and symbol Am↔n means that sum of tensor
Amn and its transposed Anm is taken.

Remark 2. Theorem 2 has been proven in [23] for skew rectilinear dislocations and disclinations.
For dislocation loops we refer to [24] where (2.13) has been verified explicitely for planar (of mixed
edge-screw type) and pure edge dislocation loops. Recall also that the symmetry of η̃?kn has been proved
in Lemma 1.

In the following we will use the notation B?
σ := B?

kσk and B?
ν := B?

kνk.

3. The completed Frank and Burgers tensors for dislocation loops

Definition 4 (Planar defects). A planar defect L is a torsion-free (i.e., ζ = 0) dislocation and/or
a disclination loop such that either the Burgers vector lies in the plane of the loop (the so-called
mixed-type loop) or the Burgers vector is purely out-of-plane (the so-called pure edge dislocation).

We will also consider a particular class of 3D non-planar and torsion-free loops of mixed type

Definition 5 (Simple 3D defect). A simple 3D defect L is a torsion-free dislocation and/or dislocation
which is assumed to lie in the union of a finite number of parallel planes and skew segments. Moreover,
the associated Burgers vector lies in one of those planes, which is referred to as the “plane of the loop”.
Thus, χ = 0 on the skew segments, i.e., in the portions of L not lying in planes not parallel to the
plane of the loop (where B?

σ 6= 0), while B?
σ = 0 on the planes parallel to the plane of the loop. Hence

B?χ = 0 on a simple 3D defect L.

Remark that a mixed-type planar defect is a particular kind of simple 3D defect where the finite
number of planes reduces to the plane of the loop. Notice also that the Frank tensor can be arbitrary
in Definitions 4 & 5.
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B
⋆
planar

ν

σ

ν

σ

Ledge Lplanar

τ

τ

B
⋆
edge

Figure 2. Left: pure edge dislocation loop. Right: the planar loop dislocation. The
out-of-plane normal σ is pointing downwards.

The following decomposition theorem will be used in the sequel. It is well-known that any smooth
vector field can be decomposed into a solenoidal and an irrotational part, and this property can be
easily extended to distributional fields. Similar decomposition of any symmetric tensor field into a
compatible and a solenoidal part will here be recalled (for a proof, we refer for instance to [8] or [27]).

Lemma 3 (Standard decomposition of a symmetric tensor). Any symmetric 2nd-order distribution
tensor E can be decomposed into a compatible and a solenoidal symmetric part:

E = Ec + Es, (3.1)

with ∇× Ec ×∇ = 0 (compatible part) and ∇ · Es = 0 (solenoidal part).

Notations 2. For a second order tensor A, symbol Ad∗ will denote the tensor Ad∗ := A − 1
2 tr A,

where subscript d∗ is chosen to remind that in 2D the operation consists in taking the deviatoric part
of A.

Lemma 4. Eq. (2.13) can be rewritten as[
τiτm

(
εmql∂q

(
∂̄lω

?
j − κ?jl

))d∗]
i↔j

=
[
τiτm

(
Θ?

mj − χBσδLδmj

)d∗]
i↔j

. (3.2)

Proof. First step. Let η̄mn := τmτn
1
2 (B

?
σ)χδL. From (2.13)-(2.15) we have

trτη
? := τkη

?
klτl = τk

(
τkτp

(
η̂?pl + η̄?pl

)
+ τlτp

(
η̂?pk + η̄?pk

))
τl = 2τp

(
η̂?pl + η̄?pl

)
τl, (3.3)

while obviously,

trνη
? := νkη

?
klνl = trση

? := σkη
?
klσl = 0. (3.4)

On the other hand, it is easily computed by the definitions that

τiτmη
?
mj = τiτk

(
η̂?kj + η̄?kj

)
+

1

2
τiτj trτη

?

τiτmη
?
mj + τjτmη

?
mi = η?ij + τiτj trτη

?. (3.5)

Moreover we have the identity

τiτmη
?
mj = τiτm

(
η?mj −

1

2
δmj tr η

?

)
+

1

2
τiτj tr η

?. (3.6)

Therefore, by (3.3) & (3.4), tr η? = trτη
?, and hence (3.5) & (3.6) and Notation 2 entail that

η?ij =
[
τiτm

(
η?mj

)d∗]
i↔j

. (3.7)

Second step. By the identity (−χBσδLδmj)
d∗

= 1
2χBσδLδmj Eq. (2.13) rewrites by (3.7) as

η?ij =
[
τiτm

(
η?mj

)d∗]
i↔j

=
[
τiτm

(
η̃?mj

)d∗]
i↔j

+
[
τiτm

(
Θ?

mj − χBσδLδmj

)d∗]
i↔j

(3.8)

and hence by (2.14) & (2.15), (2.16), (2.1) & (2.2) (i.e., η?mj = εmql∂q∂̄lω
?
j ) rewrites as (3.2). �
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Eq. (3.2) indicates that ∂̄qω
?
j −κ?jq is a meaningfull quantity. Therefore, we recall the 2D expression

of the so-called completed Frank and Burgers tensors (as introduced in [26,27]).

Definition 6 (2D completed Frank and Burgers tensors). By Lemma 4, the completed Frank and
Burgers tensors of a planar defect loop L are defined as follows:

2D COMPLETED FRANK TENSOR: ðqω?
j := ∂̄qω

?
j − κ?jq, (3.9)

2D COMPLETED BURGERS TENSOR: ðqb?j := E?qj + εjkp(xk − x0k)ðqω?
p . (3.10)

Corollary 1. By (3.2), (3.9) & (3.10) the following relations hold:

εipq∂pðqω?
j = Θ?

ij + θ?ij − χB?
σδLδij , (3.11)

εipq∂pðqb?j = Λ?
ij + εjpk(xp − x0p) (θ?ik − χB?

σδLδik) , (3.12)

where θ? is a trace-free distribution tensor of order 2 obtained by spanning the base tensors σ⊗ σ, ν ⊗
ν, σ ⊗ ν, ν ⊗ σ, σ ⊗ τ and ν ⊗ τ .

Proof. Posing θ?ij = εipq∂pðqω?
j −Θ?

ij + χBσδLδij , Eq. (3.2) rewrites as

0 =
[
τiτm

(
θ?mj

)d∗]
i↔j

= τiτmθ
?
mj + τjτmθ

?
mi − τiτjθ?pp,

which implies that θ? is a trace-free tensor spanned by σ ⊗ σ, ν ⊗ ν, σ ⊗ ν, ν ⊗ σ, σ ⊗ τ and ν ⊗ τ .
Then (3.12) follows from (3.11) as a consequence of Definiton 2. �

At this stage, we consider a simple 3D dislocation loop, by which we mean a defect satisfying
Definition 5 with in addition Ω? = 0, that is, we consider a simple dislocation L in the absence of
disclinations and such that B?

σχ = 0 almost everywhere on L.
For a simple dislocation, Corollary 1 and Eq. (3.9) entail that

θ? = ∇× ðω? = curl ðω? = η? + κ? ×∇, (3.13)

where as a consequence of tr θ? = 0 one has 0 = (ν ⊗ ν + σ ⊗ σ) · (κ? ×∇) (to check the detail, cf.
step 1 of the proof of Lemma 6)6.

The completed Frank and Burgers tensors must be redefined to generalize their 2D counterparts
of Definition 6. First observe that by Theorem 1 and Eqs. (3.11) & (3.12) one has

∂iΘ
?
ij = 0 ⇒ ∂iθ

?
ij = ∂j (χB

?
σδL) , (3.14)

∂iΛ
?
ij = εjmnΘ

?
mn ⇒ εjikθ

?
ik = −εjmnΘ

?
mn. (3.15)

Therefore Θ? = 0 implies that θ? is symmetric and hence Lemma 3 entails that θ? = (∇ψ)S−∇×ϕ?×∇
for some distribution tensors ψ and ϕ?, with ϕ? solenoidal. As a consequence inc θ? = inc ( inc ϕ?) =
∆∆ϕ?, while in the absence of disclinations, Eq. (3.11) rewrites as

εipq∂p
(
ðqω?

j − εjmn∂mϕ
?
qn

)
= −χB?

σδLδij + (∇ψ)Sij . (3.16)

This conduct us to the following definition.

Definition 7 (3D completed Frank and Burgers tensors). By Lemma 4, the completed Frank and
Burgers tensors of a simple dislocation loop L are defined as follows:

COMPLETED FRANK TENSOR: ð̄qω?
j := ∂̄qω

?
j − κ?jq − ( curl ϕ?)jq (3.17)

COMPLETED BURGERS TENSOR: ð̄qb?j := (E? − ϕ?)jq + ((x− x0)× (ðω? − curl ϕ?))jq , (3.18)

where ϕ? is a symmetric solenoidal distributional solution of

∆∆ϕ? = inc θ? = inc curl ðω?. (3.19)

Remark 3. It is immediately observed from the identity tr inc E = ∆∆tr E −∇ · E · ∇ that

tr ϕ? = 0, (3.20)

since θ? is trace-free and divergence-free for simple dislocation loops by (3.14).

6The latter can easily be verified by simple calculations since εjpq∂p(τiB
?
q δL) = −σjνiB

?
νχδL + νiνjB

?
σχδL +

τiB
?
q εjpq∂pδL, while εjpq∂p(δiqτlB

?
l δL) = εijp∂p(τlB

?
l δL), where all terms vanish as multiplied by νiνj+σiσj (recalling

also that χB?
σ = 0).
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Definition 8 (Completed strain ). Let us define the completed strain as

COMPLETED STRAIN: Ē? := E? − ϕ?, (3.21)

where by Remark 3 tr Ē? = tr E?. Let us also define

¯̄∂qωj := εjlm∂lĒ?mq. (3.22)

Remark 4 (A-priori regularity of the completed strain). Observe by (2.2) & (3.10) that curl ðω? =
η?−κ?×∇ has by Theorem 2 the same regularity as κ?×∇. On the other hand, since κ? is a Radon
measure it belongs to H−2

loc (Ω), whereby the RHS of (3.19) belongs to H−5
loc (Ω). Then, by elliptic

regularity results [28] one has ϕ? ∈ H−1
loc (Ω), whereby Lemma 3 entails that ϕ? = ∇ × Ψ × ∇ with

Ψ ∈ H1
loc(Ω) (cf. also, e.g., [19]).

By elliptic regularity results, it is however observed from (4.1) that ϕ? ∈ L2
loc(Ω). This will be

proved in Lemma 6.
Recalling (2.2), (3.17) & (3.18) rewrite as

COMPLETED FRANK TENSOR: ð̄qω?
j := ¯̄∂qωj − κ?jq (3.23)

COMPLETED BURGERS TENSOR: ð̄qb?j := Ē?jq +
(
(x− x0)× ð̄qω?

)
jq
, (3.24)

recovering the exact counterpart of (3.9) & (3.10) with the complete strain instead of the strain.

4. Further results for a simple 3D dislocation loop

In this and the following sections we consider a simple 3D dislocation loop (i.e., with Ω? = 0 and
B?

σχ = 0 a.e. on L, cf. Definition 5).

Remark 5. For a simple dislocation loop one has an explicit expression of the trace-free θ?, viz. (cf.
step 5 of the proof of Lemma 6)

θ?ij = −(νiσj + σiνj)χνlB
?
l δL, (4.1)

which shows the following: ϕ?, solution of (3.19), which is also identified with a diffuse residual strain
in Definition 8 (see also §5), is a contribution to the total strain which is due to the curvature of the
line (recall that B?

ν never identically vanishes for any planar loop).

From the definitions of the 3D completed Frank and Burgers tensors, the aim of this section is to
show existence of single-valued distortion and displacement fields, and to prove that the displacement
is of bounded deformation.

4.1. Existence of a single-valued distortion for a simple dislocation.

Lemma 5 (Canonical relations for simple dislocations). For a simple dislocation, Eq. (3.11) & (3.12)
rewrites as

εipq∂pð̄qω?
j = 0, (4.2)

εipq∂pð̄qb?j = Λ?
ij . (4.3)

Proof. By (3.15), the skew-symmetric parts of Θ? and θ? mutually cancel and (3.11) rewrites as

εipq∂pðqω?
j =

1

2

(
Θ?

ij

)
i↔j

+
1

2

(
θ?ij

)
i↔j
− χB?

σδLδij . (4.4)

Moreover, by Theorem 3, 1
2

(
θ?ij

)
i↔j

can be rewritten as εipqεjkl∂p∂kϕ
?
ql +

1
2 (∂iψj + ∂jψi) for some

distributions tensor ϕ? and vector ψ. Then (3.11) & (3.12) rewrite as

εipq∂p
(
ðqω?

j − εjkl∂kϕ?
ql

)
=

1

2

(
Θ?

ij

)
i↔j

+
1

2
(∂iψj + ∂jψi)− χB?

σδLδij . (4.5)

Taking the divergence on both sides of (4.5) entails that

0 = L0,1(ψj)− ∂j (χB?
σδL) +

1

2
∂iΘ

?
ji, (4.6)

with the Lamé operator Lλ,µ(ψj) := µ∆ψj + (λ+ µ)∂j∂kψk.
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Moreover, since L is a simple dislocation, Ω? = 0 and B?
σχ = 0 almost everywhere on L, and hence

from (4.6) one has ψ = 0 (recall that ψ is given by convolution with the Kelvin matrix [2]). Thus,
(4.5) rewrites as

εipq∂p
(
ðqω?

j − εjkl∂kϕ?
ql

)
= 0, (4.7)

with the solenoidal ϕ? solution of −∆∆ϕ? = inc θ? (in the sense of distributions, see [27] for detail),
thereby proving (4.2). In particular, by (3.15) & (4.4),

εipq∂pðqω?
j =

1

2

(
θ?ij

)
i↔j

= θ?ij = εipqεjmn∂p∂mϕ
?
qn. (4.8)

By (3.12) and (4.4), and recalling that ϕ?
lk = ϕ?

kl, it is easily verified by part integration that

εjlk(xl − x0l)εipqεkmn∂p∂mϕ
?
qn = εipq∂p

(
εjlk(xl − x0l)εkmn∂mϕ

?
qn

)
+ εipq∂pϕ

?
jq,

achieving the proof by (3.18). �

Thus, for a simple dislocation, according to Eq. (4.2) of Lemma 5, there exists a distribution vector

ω
?(S)
j satisfying

ð̄mω?
j = ∂mω

?(S)
j . (4.9)

Specifically, ω?(S) is the solution to

−∆ω?(S) = −∇ · ð̄ω?, (4.10)

with ð̄ω? given by (3.17). Remark that ω? will be uniquely defined as soon as appropriate boundary
conditions are provided. Here the subscript (S) serves to emphasize that the field is single-valued.

Let us now introduce the 2nd order “Bravais distortion” β?, which we identify with the completed
Burgers tensor of Eq. (3.18) or (3.24)

BRAVAIS DISTORTION β? = ð̄b? (β?
qj = ð̄qb?j ), (4.11)

with ð̄b? given by (3.24) and which satisfies by (4.3),

∇×∇× β? = − (∆−∇∇·)β? = ∇× Λ?. (4.12)

The field β? is called “distortion“ since by (2.8), (4.3) and (4.11), one formaly recovers the classical
formula (provided β? ∈ C(ΩL))

B?
j =

∫
SC

Λ?
ijdSi =

∫
C

β?
qjdxq, (4.13)

where C is a sectional loop with index 1 with respect to L (that is, C encloses L ones and lies in a
plane perpendicular to L), and where SC is the planar surface enclosed by C with normal vector τ .

Remark 6. From (4.13) one deduces that

β?(x) = O ((1/d(x,L)) (4.14)

where d denotes the Euclidean distance. It is remarquable that this aymptotic behaviour is solely due
to the constraint (4.11) and not the any chosen constitutive behaviour (see also [17]).

4.2. Existence of a displacement of bounded deformation for planar dislocation loops. The
existence of a single-valued distortion field in the absence of disclinations has been justified above, but
so far there is no proof of existence of a single-valued displacement7. In this section we show that, for
a simple dislocation L, the Bravais distortion is indeed the gradient of a single-valued displacement
field here denoted by u?(S). This will show possible if a cut surface, that is, a smooth surface S ∈ Ω
supported by L on one side and passing across Ω, is introduced in order to avoid field multivaluedness.

The formalism of ”Functions of Bounded Deformations”, BD [20], and of “Special functions of
Bounded Deformations”, SBD [5], is by now classical in Mechanics and is not new in field of dislo-
cation modeling (see for instance [16]). However, to the knowledge of the author this formalism has

7For a discussion on field multivaluedness, we refer to [26].
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yet not been systematically considered for dislocations, and when it is, the SBD space is generally
postulated as appropriate for the displacement. Moreover, it is usualy considered that elastic/plastic
strain decomposition coincides with the mathematical diffuse/concentrated decomposition of the dis-
tributional derivative Du. Rather, there might be diffuse plastic and concentrated elastic strain
contributions. In the present paper, the SBD formalism appears as a natural consequence of another
“distributional“ formalism where multivalued fields, such as the rotation ω?(S), displacement u?(S) or
even distortion β? are avoided in a first step [23,26]. Moreover the field regularity (and in particular
their concentration properties) appear in a subseqyent step, as the solution of PDEs.

We have just showed that in the absence of disclinations a distortion field could be rigourously
introduced, but this ”Bravais distortion“ however is not, so far, the gradient of displacement field. We
show in this section that provided the introduction of a cut surface S, the displacement field naturally
appears as a special function of bounded deformation. Although the case of one single line is natural,
the case of clusters is more envolved and appeals to compactness results in the class of BD functions.

Consider a simple dislocation loop L and a tensor test-function ϕ? (with compact support in Ω).
By (4.3) & (4.11), and by Stokes theorem, one has

〈εipq∂pβ?
qj , ϕ

?
ij〉 =< Λ?

ij , ϕ
?
ij > = < B?

j τiδL, ϕ
?
ij >= B?

j

∫
L
ϕijτidH1 = B?

j

∫
SL

εipq∂pϕijnqdH2

= < B?
jnqδSL , εipq∂pϕij >=< −εipq∂p

(
B?

jnqδSL

)
, ϕij >, (4.15)

where SL is a smooth closed surface enclosed by L and n the inward unit normal vector to SL
8.

By (4.15) one has

β?
qj = −B?

jnqδSL + ∂qΨ
(SL)
j (4.16)

where Ψ(SL) is an arbitrary vector distribution at this stage. Moreover by (3.21), (3.24), (4.9) and
(4.11), the Bravais distortion rewrites as

β?
qj = E?qj + εjpl(xp − x0p)∂qω?(S)

l − ϕ?
qj

= ∂q

(
εjpl(xp − x0p)ω?(S)

l

)
+ E?qj + ω

?(S)
jq − ϕ?

qj (4.17)

with the skew-symmetric ω
?(S)
jq := −εjqlω?(S)

l . By (4.9), (4.15), (4.16) and (4.17), there exists a

distribution vector field u
?(S)
j ,

DISPLACEMENT FIELD: u
?(S)
j := Ψ

(SL)
j − εjpl(xp − x0p)ω?(S)

l , (4.18)

with ω?(S) solution of (4.10), and such that

DISPLACEMENT GRADIENT: ∂qu
?(S)
j = B?

jnqδSL +
(
E?qj + ω

?(S)
jq − ϕ?

qj

)
, (4.19)

where subscript (S) again means “single-valued” but also recalls that the field depends on the arbitrary
choice of the cut surface S = SL. In the sequel, u?(S) will be considered as un unknown (instead of
the gauge Ψ(SL)), which will be determined in an appropriate function space as soon as constitutive
and conservative laws are provided and with chosen boundary conditions.

Let us rewrite Eq. (4.19) as

DISPLACEMENT GRADIENT DECOMPOSITION: ∂qu
?(S)
j = e?qj + p?qj , (4.20)

DIFFUSE DISTORTION: e?qj := E?qj − ϕ?
qj + ω

?(S)
jq , (4.21)

CONCENTRATED DISTORTION: p?qj := B?
jnqδSL . (4.22)

Remark 7. Let us emphasize that p? is not an physical observable field, since it is not invariant by
change of admissible SL.

Remark 8. If and only if there are no dislocations, one recovers the classical formula

∇u?(S) = E? + ω?(S).

8Here and in the sequel symbol δS denotes the concentrated two-dimensional Hausdorff measure on S (δS ≡ H2
S).
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Moreover, one has tr p? = 0 if and only if B? · n = 0, that is, if the dislocation is a conservative
planar defect (i.e., lying in SL and with Burgers vector in SL). Moreover, one also has tr (p?)S = 0.
Remark that the skew-symmetric part of p?, viz. w?P

jq := 1
2

(
B?

jnq −B?
qnj

)
δSL is called the “plastic

spin” [6].

Now, taking the symmetric part of (4.19), one defines

SYMMETRIC PART:
1

2

(
∂qu

?(S)
j + ∂ju

?(S)
q

)
= eqj

(
u?(S)

)
:= E?jq − ϕ?

jq +
1

2

(
B?

jnq +B?
qnj

)
δSL ,(4.23)

SKEW-SYMMETRIC PART:
1

2

(
∂qu

?(S)
j − ∂ju?(S)

q

)
= w?T

jq := ω
?(S)
jq +

1

2

(
B?

jnq −B?
qnj

)
δSL . (4.24)

Remark 9. Observe that the displacement gradient symmetric part (4.23) is made of (i) a diffuse
elastic part E? (the linear elastic strain tensor), (ii) a diffuse “residual” part −ϕ?, (iii) a “plastic”
concentrated part. Moreover, the displacement gradient skew-symmetric part (4.24) is made of (i) a
diffuse part ω?(S) (the infinitesimal rotation tensor), (ii) a concentrated part w?P (the skew-symmetric
plastic spin).

The following definitions are made9:

Definition 9.

TOTAL COMPATIBLE STRAIN: E?T :=
1

2

(
∇u?(S) + u?(S)∇

)
(4.25)

RESIDUAL STRAIN: E?R := −ϕ? (4.26)

PLASTIC CONCENTRATED STRAIN: E?p :=
1

2
(B? ⊗ n+ n⊗B?) δSL , (4.27)

PLASTIC STRAIN: E?P := E?R + E?p (4.28)

where by “plastic strain” it is meant non linear-elastic strain.

Remark 10. It should be noted that by the trace and divergence- free properties of E?R (cf. Eqs. (3.19)
and (3.20)), the residual strain is impactless on the equilibrium, i.e., −∇ ·

(
C?Ē

)
= −∇ · (C?E?) = f

where f is the external body force, and C? the isotropic elasticity tensor. This justifies the term
“residual”.

In Definition 9, ϕ? is a solution of (3.19) which a priori belongs to H−1
loc (Ω) (cf. Remark 4). More-

over, u?(S) = Ψ(SL)− (x−x0)×ω?(S) is a distribution depending on the arbitrary distribution Ψ(SL).

Eq. (4.23) can be rewritten as

TOTAL STRAIN DECOMPOSITION: E?T = E? + E?P = Ē? + E?p. (4.29)

Remark from (4.29), (4.23) & (4.24) that

∇u?(S) = E?T + ω?T , (4.30)

where E?T and ω?T have each elastic and plastic parts.
Moreover, it is observed from Remark 3 that tr E?R = 0, and hence tr E?P = 0 if and only if

tr E?p = B? · n = 0, that is, if SL is contained in the glide planes.

The linear elastic strain is defined from the stress σ? by

E? = (C?)−1σ? + β?(T ? − T0), (4.31)

where σ? denotes the mesoscopic stress field, (C?)−1 and β? stand for the 4th- and 2nd-order meso-
scopic compliance and thermal dilation tensors, and T0 is the reference temperature. Thus E?P is
the part of the strain wich represents mechanical properties which depart from the linear elasticity
assumption, also including diffuse and concentrated plastic effects. Moreover, E?P “ accomodates“
the linear strain in the sense that its incompatibility verifies by (4.23)

inc E?P = − inc E? = −η?.

9The notation ∇u means ∇⊗ u while u∇ means u⊗∇.
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Let us emphasize that the aforementioned decomposition (4.29) has been made possible provided
we had shown first that there exists a displacement gradient (4.20), itself guaranteed as soon as a cut
surface S was introduced, in order to render any reference configuration unambiguously defined.

Definition 10 (Glide surface). The glide surface associated to a defect line L is a particular smooth
surface GL ⊂ Ω̄ containing L and such that its tangent plane at L is spanned by τL and B?L.

For a planar dislocation, GL coincides with the plane of the loop. For a pure edge dislocation, GL is
the cylinder whose section is the loop. For rectilinear defects, the glide plane can be taken arbitrary
as any plane containg the line.

Definition 11 (Particular glide surface S◦
L). A particular choice of SL in (4.15) (and hence in (4.27))

consists in taking the particular SL = S◦
L contained in GL. For a planar dislocation, S◦

L coincides with
the planof the loop, whereas for a pure edge dislocation, S◦

L is the closed surface made of the half
cylinder whose section is the loop and whose uper base is a subset of ∂Ω (the half cylinder is chosen
on the side of L corresponding to its out-of-plane Burgers vector).

5. The displacement field is of bounded deformation

It remains to observe that the functional space which naturally appears in the distributional ap-
proach and with simple dislocation loops is the set of functions of Bounded Deformation BD(Ω). Let
us start with a definition.

Definition 12 (Radon measures). A (tensor-valued) Radon measure µ ∈ M(U) is a linear and
continuous functional on Cc(U), the set of continuous functions with compact support in U . Moreover

for any Borel set A ⊂ U , µ(A) is a set function such that (i) µ(∅) = 0, (ii) µ(
⊔
i

Ai) =
∑
i

µ(Ai) for

any collection of pairwise disjoint sets {Ai}, and (iii) µ(K) is scalar- or tensor-valued (i.e., finite) as
soon as K ⊂ U is compact.

Let us emphasize that in mechanical terms, a field is an extensive model variable if it is a Radon
measure. In particular condition (ii) of Definition 12 does not hold for a general distribution (and in
particular for the general E?R of §4.2 which is not a-priori more regular than the curl of a L2 function.)

However, let us now prove that the residual strain E?R, or equivalently ϕ?, is not a general order-one
distribution but a locally square integrable field. We would like to define our fields on an extension
domain Ω̂ defined as follows. If Ω = R3 then Ω̂ = Ω, whereas if Ω $ R3 then Ω̂ is an open connected

subset of R3 such that Ω $ Ω̂. The elastic strain and defect densities, and hence the 2D completed

Frank and Burgers tensors, and θ?, are suitably extended in Ω̂ \ Ω̄.

Lemma 6. For a simple dislocation loop, let ϕ be a distributional solution of ∆∆ϕ = inc θ? on Ω̂.
Then ϕ? ∈ L2

loc(Ω̂).

Proof. First step. From Lemma 1, we know that η̃? is symmetric. Moreover, recall that as a
consequence of tr θ? = 0, one has tr η̃? = τ ⊗ τ · η̃?. In particular σ ⊗ σ · η̃? = −ν ⊗ ν · η̃?. To check
this, consider Theorem 2 and the proof of Lemmas 4, and compute in the local basis (τ, σ, ν),

0 = εjpq∂pðqω?
j = εjpq∂p

(
∂̄qω

?
j − κ?jq

)
= η?jj − εjpq∂pκ?jq

= 2τpτlη̂
?
pl − εjpq∂pκ?jq = 2τpτl

(
εpij∂iκ

?
lj − δpl

1

2
εmnq∂nκ

?
mq

)
− εpij∂iκ?pj

= 2τpτlεpij∂iκ
?
lj − 2 (τpτl + νpνl + σpσl) εpij∂iκ

?
lj = −2 (νpνl + σpσl) εpij∂iκ

?
lj .

Second step. Let us explicitely compute θ = curl ðω? = η? + κ? × ∇. By Theorem 2 one has
componentwise, and by the properties of η̃? as established in the first step,

θ?ij = τiτk

(
η̃?kj −

1

2
δkj η̃

?
pp

)
+ τjτk

(
η̃?ki −

1

2
δkiη̃

?
pp

)
− (τiτk + νiνk + σiσk)η̃

?
kj .

= −τiτj η̃?pp − (νiνl + σiσl) η̃
?
lj + (τiτl + νiνl + σiσl) η̃

?
lkτkτj

= −τiτj η̃?pp + τiτkη̃
?
klτlτj − (νiνl + σiσl) η̃

?
lk (νkνj + σkσj)

= − (νiνl + σiσl) η̃
?
lk (νkνj + σkσj) = (νiνj − σiσj)σkη̃?klσl − (νiσj + σiνj)σkη̃

?
klνl. (5.1)
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Third step. Let us now show that σiη̃
?
ijσj and hence the first term on the RHS of (5.1) vanishes.

Recall that η̃?ij = εjpq∂p(τiB
?
q δL) − 1

2εjpq∂p(δiqτlB
?
l δL). Then, by considering the Frenet’s formulae

(i.e., ∂sτi = χνi, ∂sνi = −χτi, ∂sσi = 0, with τi, σi, νi uniformly extended in a neigbourhood of
L), it can easily be verified that εjpq∂p(τiB

?
q δL) = −σjνiB?

νχδL + νjνiB
?
σχδL + τiB

?
q εjpq∂pδL, while

εjpq∂p(δiqτlB
?
l δL) = εijp∂p(τlB

?
l δL), whereby all terms vanish as multiplied by σiσj .

We now consider the last term on the RHS of (5.1). Recalling that χB?
σ = 0, we multiply the terms

−σjνiB?
νχδL, τiB

?
q εjpq∂pδL and εijp∂p(τlB

?
l δL) by σiνj , and observe that they all vanish except the

last one which rewrites as τp∂p(τlB
?
l δL) = ∂s(τlB

?
l δL). Moreover, multiplying the terms −σjνiB?

νχδL,
τiB

?
q εjpq∂pδL and εijp∂p(τlB

?
l δL) by σiνj yields the single term ∂s (τlB

?
l δL), whereby the RHS of (5.1)

can be rewritten as

θ?ij = −(νiσj + σiνj)∂s (τlB
?
l δL) =

1

2
(νiσj + σiνj)χνlB

?
l δL +

1

2
(νiσj + σiνj)τlB

?
l ∂sδL. (5.2)

Fourth step. The last term of (5.2) vanishes. In fact, considering a test function ψij one has

〈1
2
(νiσj + σiνj)τlB

?
l ∂sδL, ψ〉 = −〈δL, ∂s(

1

2
(νiσj + σiνj)τlB

?
l ψij)〉 = 0,

since L is a loop (i.e., the variation at the endpoints vanishes). Thus

θ?ij = −(νiσj + σiνj)χνlB
?
l δL (5.3)

shows to be a concentrated Radon measure. Therefore θ? belongs to H−2
loc (Ω̂) (cf. Remark 4), whereby

inc θ? belongs to H−4
loc (Ω̂). Then, by elliptic regularity results [28] one has ϕ? ∈ L2

loc(Ω̂). This achieves
the proof. �

Remark 11. If U is a bounded subset of Ω̂ with Lipschitz boundary, then ϕ? ∈ L2(U). In particular
if Ω is bounded and Lipschitz then ϕ? ∈ L2(Ω).

Theorem 3. The displacement field u?(S) of Eq. (4.18) is of bounded deformation in Ω̂.

Proof. Let us first recall that according to a famous theorem by Temam and Strang [20], a dis-
tribution field is in BD (and hence in L1

loc) if the symmetric part of its gradient is a Radon measure.

Consider Eq. (4.23). By Assumption 1, E? ∈ L1(Ω̂), while by Lemma 6 E?R ∈ L1
loc(U) on every

bounded subset U of Ω̂. Thus E? + E?R is a Radon measure on Ω̂. Moreover, E?p is obviously a
concentrated Radon measure on Ω̂ by its explicit expression (4.27), thereby achieving the proof. �

It is observed from (4.23) that the singular measure is here purely concentrated, whereby the

L1(Ω̂)-displacement field u?(S) belongs to a subset of BD(Ω̂) known as the space of Special functions

of Bounded Deformation SBD(Ω̂) [1, 5].

Remark 12. As a field of bounded deformation u?(S) is allowed to exhibit jumps10 in Ω̂. Recall that
u?(S) = ΨSL − (x − x0) × ω?(S) with ω?(S) solution of (4.10). As soon as the displacement u?(S) is
found (as a function of bounded deformation) the gauge field ΨSL is fixed. Recall that the smooth
surface SL could also be chosen ”arbitrarily“.

A crucial consequence of the dispacement field belonging to SBD(Ω̂) space, is that the surface SL
cannot anymore be selected completely freely, since it was proved in, e.g., [5], that it must coincide
with the set of jump points ΣL of u?(S). Therefore, the concentrated plastic strain E?p is a physical
observable field. Moreover, by (4.27), the jump of u?(S) on SL, [[u

?(S)]], is constant and equal to the
Burgers vector B?L of L, while [[u?(S)]] = 0 in Ω \ SL.

Remark 13. The canonical choice SL = S◦
L is not a consequence of the dispacement being in SBD(Ω̂).

Rather, it results from the postulate that the Burgers vector is restricted to lie in ΣL.

10A function is alllowed to have jumps, though that function is considered as single-valued, the latter term having

an instrinsic meaning at every x ∈ Ω̂ which is distinct from having jumps [26,27].
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6. Results for a family of defect lines

We would like to extend the results obtained and discussed above to a family Υ := {Lk}k of defect
lines Lk. Let us introduce

Definition 13 (Defect densities of a family of defect lines).

DISCLINATION DENSITY: Θ?
ij :=

∑
L∈Υ

Θ?L
ij with Θ?L

ij := Ω?L
j δiL (6.1)

PURE DISLOCATION DENSITY: Λ?
ij :=

∑
L∈Υ

Λ?L
ij with Λ?L

ij := B?L
j δiL (6.2)

CONTORTION: κ?ij :=
∑
L∈Υ

κ?Lij with κ?Lij := α?L
ij −

1

2
α?L
mmδij , (6.3)

with the auxiliary defect density measure:

α?L
ij := Λ?L

ij − εjlm(xl − x0l)Θ?L
im, (6.4)

and where x0m is a point where rotation and Burgers fields are prescribed independently of L.

Moreover, let us introduce

Definition 14.

ELASTIC STRAIN: E? :=
∑
L∈Υ

E?L (6.5)

PLASTIC CONCENTRATED STRAIN: E?p :=
∑
L∈Υ

E?pL with E?pL :=
(
B?L ⊗ n

)S
δSL , (6.6)

RESIDUAL STRAIN: E?R :=
∑
L∈Υ

E?RL with E?RL := −ϕ?L, (6.7)

where ϕ?L is a solution of ∆∆ϕ?L = inc θ?L = ∇×
(
(νL ⊗ σL + σL ⊗ νL)χLνL ·B?LδL

)
×∇.

Here subscript L means that the quantity (tangent, Burgers or Frank vector, etc.) on which it is
appended is relative to the isolated line L = Lk ∈ Υ, for some index k (limited or not).

6.1. Case of finite family of defect lines. The results of previous sections can immediately be
extended to a finite number Υ of isolated lines Lk. By isolated it is meant that Li ∩Lj = ∅ whenever
i 6= j. In fact, finite sums of L1 functions, of Radon measures, and of order-1 distributions are still
of the same functional type. Hence, Theorems 2 and 3 are straightforwardly extended to the finite
family Υ := {Lk}1≤k≤K , (K ∈ N∗).

Let us first give the following result which holds for a finite number of planar defects or simple 3D
defect loops.

Theorem 4 (Incompatibility of a finite family of line defects). For a finite family of defect lines Υ,
incompatibility writes in compact form as

η? =
∑
L∈Υ

η?L = inc (E?) = −∇× E? ×∇ =

[(
η̃?L

)d∗
+
I

2
B?L

σ χLδL

]
Υ

, (6.8)

where, given the second-order tensor A, AΥ is the notation AΥ :=
∑
L∈Υ

2
((
τL ⊗ τL

)
A
)S

.

As the generalization of Theorem 3 and from Definition 14, the following result holds true for finite
number of simple 3D dislocation loops.

Theorem 5. For a finite family of simple dislocations Υ, one has

TOTAL COMPATIBLE STRAIN: E?T = ∇Su? = E? + E?p + E?R, (6.9)

where E?T := (∇u?)S with the displacement field u? :=
∑
L∈Υ

u?L(S) of bounded deformation.
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6.2. Case of countable family of defect lines. Let us introduce the finite family LK :=
∪

1≤k≤K

Lk,

(K ∈ N∗) and consider the case of a countable family Υ := lim
K→∞

LK (also denoted by
∪
L∈Υ

L).

Assumption 4 (Regularity of the cluster). It is assumed that Υ is a closed subset of Ω with finite H1

measure, that is, that Υ is a rectifiable one-dimensional set (or a curve-like one set in the temrinology
of Falconer [7]) belonging to Ω̄. Moreover it is assumed that H1-almost everywhere, Υ has a Lipschitz
continous tangent vector, that is, that its curvature χ exists H1-almost everywhere and is bounded.

The following Lemma proved in [25,27] illustrates the kind of result required if a countable, instead
of a finite family, is considered.

Lemma 7. Let δ(i), i ∈ I ⊂ N, stand for the Dirac measure at x̂(i) ∈ l0 and
∑
i∈I

C(i)δ(i) be a Radon

measure on Ωz0 = Ω ∩ {z = z0}. Then the sum of the weights C(i) is locally absolutely convergent,
this meaning its absolute convergence on any bounded subset {x̂(i), i ∈ I ′ ⊂ I} of l0.

Remark 14 (The difficulty dealing with a countable family of defects). As opposed to the finite case,
it is false to claim that a concentrated first-order distribution on a countable set is a sum of Dirac

masses and Dirac mass derivatives, as 1D counter-examples can show: the series F =
∑
i∈N∗

C(i)(H0−

H(i)), with H(i) = H(x − x̂(i)), x̂(i) = 1/i, H0 = H(x) and H the step function, may be L1
loc

converging even if the sum of the weights C(i) diverges. To show this, it suffices to select suitable C(i)

such that the partial sums defining F are enclosed between the L1
loc functions G(x) and −G(x), with

G(x) = log ((1 + x) /x) for x > 0 and G(x) = 0 for x ≤ 0. Then F ∈ L1
loc, in such a way that the

distributional derivative of F , which cannot be the diverging series −
∑
i∈N∗

C(i)δ(i), exhibits a special

behaviour near the origin to recover convergence. Moreover, another difficulty arises from the different
kinds of convergence that could be required. For instance, Lemma 7 is false if a (coarser) distributional
convergence is considered.

The mathematical problem raised by the example of Remark 14 will appear if an arbitrary countable
family of simple 3D dislocation loops is considered. Peculiar concentration phenomena will appear
at accumulation sets, in the form of distributional terms which are not measures (and hence, are
not extensive quantities of the model). Moreover, since the loops are not restricted to by planar,
the geometry of the accumulation set might also cause mathematical difficulties. In particular, the
formalism of functions of bounded deformation would fail to be valid. To bypass this difficulty the
following postulate is made.

Postulate 1. It is assumed that there exists a finite family of glide planes G := {Gm}m≤l≤M in Ω

such that Υ ⊂
∪

1≤1≤M

Gm. Moreover, the canonical choice of Remark 11 will be adopted, that is, given

L ⊂ Υ, we take SL = S◦
L ⊂ Gm for some 1 ≤ m ≤M .

The following assumption will also be made.

Assumption 5 (Total Burgers vector). The total Burgers vector, as defined by B? :=
∑
L⊂Υ

B?L has

locally a finite norm, i.e., ‖B?‖ ≤
∑

L⊂Υ∩U

‖B?L‖ <∞ where U is an open and bounded subset of Ω.

Remark 15. It is shown in [27] that Assumption 5 is in fact a consequence of the set of assumptions
on the strain curl, which are required to prove Theorem 4 for a countable family of lines (cf. [23,25]).

Let us now assume that Ω has a Lipschitz boundary and hence that E? can be continuously extended
in a neigbourhood of ∂Ω while assumed of compact support in Ω̂. Moreover, the completed Frank and
Burgers tensors, and θ?, are extendend by 0 on Ω̂ \ Ω̄.
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Referring to Kleinert [11], the explicit complete strain expression11 for a curve L ∈ Υ (in a isotropic
elastic crystal in equilibrium with no external body forces, nor inertial effects) reads componentwise

Ē?Lij (x) =
B?L

r

8π
εuvr[εjκlεvil]i↔j

∮
L
τLκ (x′)∂u1/RdL(x

′) +
B?L

r

8π(1− ν)
εklr

∮
L
τLκ (x′)∂i∂j∂lRdL(x

′),(6.10)

for every x, x′ ∈ Ω̂ and with the notation R := ‖x− x′‖. Integrating in a system of polar (spherical-

type) coordinates, it is observed that E?L ∈ Ls(Ω̂) for 1 ≤ s < 3/2.12

Therefore

∫
Ω̂

∑
L∈LK

E?LdV ≤ CH1(Υ)
∑
L∈Υ

‖B?L‖ <∞ by Assumption 5, by the hypotheseH1(Υ) <

∞, and with C is a positive constant independent of K. Thus {E?L}L∈Υ is equibounded in Ls(Ω̂) with

1 ≤ s < 3/2. The explicit expression (6.10) shows that is also equicontinuous in Ls(Ω̂), and hence by

Riesz-Kolmogorov’s compactness theorem [4], for every bounded U ⊂ Ω̂ and up to a subsequence,

Ē?(Υ) := lim
K→∞

∑
L∈LK

Ē?L ∈ Ls(U), (6.11)

strongly in Ls(U) (1 ≤ s < 3/2). Likewise, one also has (up to a non-relabeled subsequence),

E?R(Υ) := lim
K→∞

∑
L∈LK

E?RL ∈ L2
loc(Ω̂), (6.12)

whereby we define

E?(Υ) := Ē?(Υ)− E?R(Υ). (6.13)

From Postulate 1 and Assumption 5, compacity of the Radon measures again entails that

E?p(Υ) := lim
K→∞

∑
L∈LK

(
B?L ⊗ n

)S
δS◦

L
∈M(U), (6.14)

(again up to a non-relabeled subsequence), where the uniform bound on H2(S◦
L) is provided by the

assumed finite number of glide planes and the boundedness of U ⊂ Ω̂.

Thus from (6.11)-(6.12), one deduce from the identity

∇×
(
Ē?L + E?p(Υ)

)
×∇ = 0, (6.15)

that there exist a distribution field u? := lim
K→∞

∑
L∈LK

u?(S)L =:
∑
L∈Υ

u?(S)L which belongs to SBD(U)

for every bounded U ⊂ Ω̂, and satisfies

∇Su? = Ē?L + E?p(Υ). (6.16)

Let now U be a bounded subset of Ω̂ with a Lipschitz boundary, and 1 < s < 3/2. From the above
definitions and results we have the following uniform bound,∑

L∈LK

(
‖u?(S)L‖L1(U) + ‖Ē?L‖sLs(U) + |E

?pL|(U) +H2(S◦
L)
)

≤ ‖u?‖L1(Ω) + ‖Ē?L‖sLs(U) + |E
?p(Υ)|(U) +H2(Υ) ≤ C <∞, (6.17)

for some C independent of K.
Therefore, it results from a compactness result in SBD(U) [3, 5] that there exists a displacement

field (identified with u?) such that u? ∈ SBD(U) and a rectifiable set Σ ⊂ U defined as the jump set

11Expression (3.16) of [11] corresponds to our Eq. (4.20) since by Remark 10, ∇ ·
(
CĒ

)
= ∇ · (CE?) = 0. Note also

that for a nonvanishing body force an extra impactless term should be added.
12Indeed E?L can be integrated over Ω̂ by means of a system of polar (spherical-type) coordinates (R, s,Ψ) with

s the abcissa of L and with volume element dV := R2dRdsdΨ. Then, since ∂iR
−1, ∂ijlR = O(R−2), one has∫

Ω̂ ‖E?L‖s(x)dV (x) =
∮
L ds

∫ π
−π dΨ

∫∞
0 ‖E?L‖s(R, s,Ψ)R2dR which is bounded if 1 ≤ s < 3/2.
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of u? such that∑
L∈LN

u?(S)L → u? strongly in L1
loc(U ;R3) (6.18)

∑
L∈LN

(
Ē?L

)
⇀ E?diff(Υ) := E?(Υ) + E?R(Υ) weakly in L1(U ;R3×3) (6.19)

∑
L∈LN

E?pL ⇀ E?p(Υ) weakly-? in M(U ;R3×3) (6.20)

H2(Σ) ≤ lim inf
K→∞

H2(
∪

L∈LK

S◦
L). (6.21)

Remark 16. In particular if Ω is a bounded, Lipschitz and connected set, take U s.t. Ω $ U ⊂ Ω̂.
Then Σ ∩ ∂Ω must not be empty. Recall that Υ ∩ ∂Ω must not be empty, since Υ was assumed a
closed subset of Ω. Thus the dislocations clustering at the crystal boundary (i.e., the accumulation
points belonging to ∂Ω) are identified with the jump points of u? in ∂Ω. Moreover, E?(Υ) ∈ L1(Ω)
and E?R(Υ) ∈ L2(Ω).

As the generalization of Theorem 3, the following result holds true for countable number of simple
3D dislocation loops.

Theorem 6. Let U be a bounded subset of Ω̂ with a Lipschitz boundary. For a countable family of
simple dislocations Υ, one has

TOTAL COMPATIBLE STRAIN: E?T = ∇Su? = E?p(Υ) + E?diff(Υ), (6.22)

where E?T := (∇u?)S with the displacement field u? :=
∑
L∈Υ

u?L(S) of bounded deformation in U , with

E?diff(Υ) defined by (6.19) and E?p(Υ) given by

E?p(Υ) = ([[u?]]⊗ n)S δΣ. (6.23)

In particular, the BD formalism has permitted to fix all gauge fields (and surfaces) unambiguously,
therefore rendering the model fields physically as well as mathematically well defined.

6.3. Discussion. It appears from this compactness result that the diffuse part of the strain, E?diff(Υ),
cannot be qualified of elastic anymore. In particular it must not verify any constitutive relation with
the stress. Let us emphasize that the qualification plastic to denote E?p is also a nomenclature
postulate, since so far this term only appears as the concentrated part of the total strain. This
observation is also justified by the fact that E?diff(Υ) is neither elastic nor plastic, while of course,
there is no way to set appart (with physical meaning) the displacement (or its gradient) in elastic and
plastic parts.

However, by observing that

E?p(Υ) = lim
K→∞

∑
L∈LK

(
B?L ⊗ n

)S
δS◦

L
= ([[u?]]⊗ n)S δΣ, (6.24)

with Υ = lim
K→∞

LK ⊂ Σ ⊂
∪
L∈Υ

S◦
L assumed as a subset of the glide plane family G, the term plastic to

denote the concentrated part E?p(Υ) could be justified by the fact that the plastic effects are known
to be due to the motion of the dislocations on their glide planes (which are always finitely many in
actual materials). However, we believe that as far as statics is concerned and since the diffuse strain
is not elastic, it is not physically justified to denote the concentrated part as plastic.

Moreover, from (6.24), we can define the Burgers vector at the accumulation set of the dislocation
lines13 as the jump of u?.

13which is a ”curve-like” set and which is of course is not isolated, whereby any classical definition of the Burgers
vector would fail to hold.
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Nevertheless, it is observed from (4.1) that tr E?R = 0, and since the jump set has been assumed
as a subset of the glide planes in Postulate 1 one also has tr E?p = B? · n = 0. Then,

E?P := E?p + E?R

is trace-free and hence could be qualified as the plastic, or nonelastic, strain of the model, with a
concentrated part E?p and a diffuse part E?R. In fact, in many model of plasticity (see, e.g., [6])
the plastic strain is assumed trace free, in the sense that plastic strains do not affect the density (no
changes in volume), but only appear as shear effects (as the creation of shear bands for instance). In
our model, the concentrated nonelastic strain is related to the presence of the glide planes on which
the dislocations lie and move, whereas the diffuse part is due to dislocation line curvature. It can also
be observed that the non-elastic diffuse part is not affected by the out-of-plane “skew“ edge segments.

As already mentioned, the search for the appropriate function space has allowed us to rigourously
define the model fields, both from a physical (through the notion of ”observability“ of a physical field)
and a mathematical point of view, since the gauge fields and surfaces have been fixed, while a precise
meaning has been given to dislocation clusters.

In particular, we have shown that the displacement gradient can be decomposed in several physi-
cally meaningfull ways, among which (i) an elastic/plastic decomposition (4.20), a symmetric/skew-
symmetric decomposition (4.30). Let us emphasize that (4.20) coincides to a diffuse/concentrated
decomposition, but this must not be a necessarily condition, since p? as well as p? + E?R are both
trace-free and hence could both be considered as plastic parts. It should also be stressed that the
importance of having at hand a well-defined displacement gradient, instead of its sole symmetric part,
is justified by the necessity of taking into account the plastic spin in dislocation models. Quoting
Gurtin in [9]: ”Unless the plastic spin is constrained to be zero, constitutive dependencies on the
Burgers tensor necessarily involve the infinitesimal plastic rotation“.

From the present work one can now address the issue of (i) the choice of the relevant model internal
variables, (ii) the appropriate constitutive laws (let us refer to [23] for a discussion). Some remarks
can already be made.

In [6] a time-dependent plasticity model is considered with a free energy of the type

Ψ(∇u, p, curl p, γ) := Ψe(εe) + Ψcurl( curl p) + Ψiso(γ), (6.25)

with ∇u = e + p, εe := eS , and where Ψiso represents isotropic hardening. Within our model, this
free energy would be written with εe = Ē? and p = p? or with εe = E? and p = p? − ϕ?, since by
Remark 3, tr p = 0. Other choices could also be made (for instance p = −β?) since decompostion
(4.20) is not unique whereby the exact meaning of the plastic spin remains unclear (about this issue,
read also [13]). Moreover this second-order model is considered with the implicit assumption that εe
and curl p are square-integrable, which is certainly not verified in our distributional model.

In fact we should first consider a time-independent model with a free energy of the type

Ψ̂(e?,Λ?) :=Wdeform.(e
?) +Wdefect(Λ

?), (6.26)

where the energy is decomposed in a two terms involving the first-order deformation internal variable,
e? (with (e?)S = Ē?), and the first-order defect internal variable14 Λ? (or equivalently κ?), respec-
tively. Moreover, by (4.3), (4.16) and & (4.17), it is observed that curl e? = curl β? = Λ? = − curl p?.
Thus there is a link with (6.25) but problem of minimizing (6.26) is hard to address because (i) it
explicitely takes into account the constraint curl e? = Λ?, (ii) e? is a multivalued field and Λ? a
Radon measure, (iii) e? is not square integrable. To address this problem, a convincing approach
using Cartesian currents has been proposed in [17]. Note that the stress is subsequently obtained by

computing σ? = ∂Ψ̂
∂e? (e

?
min,Λ

?), while E? is provided by Eq. (1.1).

Work towards an answer to these open questions and further generalizations will be proposed in
future publications.

14For the terminology, see [13,23]
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