
MINIMAL PARTITIONS AND IMAGE CLASSIFICATION USING A
GRADIENT-FREE PERIMETER APPROXIMATION

S. AMSTUTZ, A. NOVOTNY, AND N. VAN GOETHEM

Abstract. In this paper we propose a new optimal partition algorithm an d show applications to
multilabel image classi�cation problems. Possibly noisy a nd blurred greyscale and color images can
be processed, with or without automatic update of the labels . Regularization is performed by a non
standard approximation of the total interface length, whic h involves a system of uncoupled linear
partial di�erential equations and shows �-converge proper ties in the set of characteristic functions.
These good mathematical properties are recovered in the num erical convergence scheme.

1. Introduction

Image processing is a huge �eld of research ranging from code-based algorithms to advanced mathe-
matical tools, and where mainly two classes of problems are addressed. The �rst one is image restora-
tion whose aim is to remove all e�ects responsible for an image degradation: noise, blur, missing parts,
etc. Another family of problems can be referred to as imagesegmentation, where the constituents
of a given image (damaged or not) are identi�ed: it can be di�erent colors, intensities or texture
regions, but also to provide a partition in geometric vs. texture components. Imageclassi�cation is
a particular form of image segmentation, where it is emphasized thatthe image characteristics are
sought within a prescribed number of components, called labels.

The standard greyscale image processing problem can be stated asrestore and/or segment f =
A �u + � where f : 
 7! [0; 1] is the observed image, �u its idealized version (the undamaged image),A
is a known or unknown mask operator (blur kernel or a projection operator away from the missing
parts of �u), and � is the noise. According to the application, one wishes to �nd au which is either a
continuous restoration of f or a segmented version off .

Image restoration and image segmentation are hard problems per se, mainly due to the fact that
the minimization problem min u2 H (
) J (u) := kAu � f kH (
) is in general ill-posed (w.r.t. f if A is
known and also w.r.t. A if the mask is unknown) in the sense that small perturbations in the data
may produce unbounded variations in the solution, but also becauseit is not necessarily a convex
problem, especially when the setH (
) contains discrete levels. Of course, simultaneous segmentation
and restoration of a blurred and noisy image is even a harder task, inparticular in the case of blind
deconvolution. Let us emphasize that an objective assessment ofsegmentation algorithms is hardly
found, essentially because there is no unique ground-truth classi�cation of an image against which the
output of an algorithm may be compared.

Several mathematical models coexist in the literature to provide asoutput a restoration and/or a
segmentation of a given image. Let us just mention the Mumford-Shah [18, 1] and the TV-L 2 (the
so-called Rudin-Osher-Fatemi model) and TV-L 1 functionals [19, 12]. It is today widely recognized
[21, 10, 11] that in order to obtain a solution which is smooth enough while preserving the edges, one
should consider the problem minu2 H (
) J (u) + � jDu j(
) where jDu j(
) is the total variation of u in

, with Du , its distributional derivative, i.e., a measure with a di�use part identi� ed with r u outside
the edges and a concentrated part on the edges, and with� a weight on the total variation of the
image.

In this paper we propose a novel mathematically-founded method to classify images. More precisely,
our method assigns to each pixel of a given image a label, with a prescribed upper bound on the
number of labels. Typically, each label corresponds to a grey or color level. The classi�cation can be
supervised, i.e., the intensity of the label is a �xed value, or unsupervised, meaning that there is an
automatic update of the label intensity. In Fig. 1 the resulting classi�cation of a color image is shown
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Figure 1. Colour classi�cation, from left to right. First: original image. Second:
supervised solution for� = 5 :10� 4p

n (n is the number of pixels). Third and fourth:
unsupervised solution for � = 5 :10� 4p

n and � = 10 � 2p
n, respectively. TV-model

with H = L 1 and 5 labels (red, green, blue, white and black).

Figure 2. Greylevel classi�cation, from left to right. First: original picture. Sec-
ond: damaged image with salt and peper noise. Third: supervised solution for
� = 4 :10� 4p

n. TV-model with H = L 1 and 4 levels of grey.

with and without level updates, and where the e�ect of the parameter � is shown: a smaller value
will provide a solution with a greater perimeter, that is with more deta ils. Let us emphasize that the
value of � should be speci�cally adapted for each kind of image to reconstruct. In particular a \large
enough\ value of � should be used for noisy images, in order to remove the spurious perimeter created
by the noise. As an example, an unsupervised greylevel simultaneous classi�cation and denoising of
a picture with our method (and the TV- L 1 model) is shown in Fig. 2. Later, we will also show
examples of black and white image deblurring with an assumed known blur kernel (as is the case in
many applications, the blur being due to di�raction, motion, zoom, of a measure apparatus etc.). We
will also apply our method to perform combined deblurring and denoising and to classify an image in
terms of a prescribed texture.

Our method consists in a multiphase (piecewise constant) joint classi�cation and restoration of an
image, as based on

� an exact gradient-free approximation of the total variation
� an optimal partition algorithm.

Here, we mean byexact the fact that we approximate the continuous total variation, inst ead of its
discretized counterpart on a chosen mesh, and without the need to a-priori set apart its di�use and
concentrated parts. It is also meant that the approximating functionals converge, as a small parameter
" tends to zero, in somefunctional sense(i.e., �-convergence) to the total variation. By gradient-free
we mean that, as opposed to Modica-Mortola/Ambrosio-Tortorelli-type regularizations [17, 2], the
gradient of the image does not appear in the approximating functionals. Hence, from a numerical
viewpoint, our approach is better suited to the reconstruction ofdiscontinuous images. It has the other
feature to force discrete prescribed values. This is of course a major advantage as to the applications
to optimal partition problems (see [6, 13]), which are in some sense primary to classi�cation problems
and whose basic concepts are recalled hereafter. Consider a bounded domain 
 of R2, a number
N 2 N, functions g1; :::; gN 2 L 1(
), and a parameter � > 0. A model problem of minimal partition
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reads:

min

 1 ;:::; 
 N

NX

i =1

� Z


 i

gi (x)dx +
�
2

Per(
 i )
�

; (1.1)

where the minimum is searched among all partitions (
1; :::; 
 N ) of 
 by subsets of �nite perimeter.
Here, Per(
 i ) is the relative perimeter of 
 i in 
, i.e. Per(
 i ) = j@
 i \ 
 j, hence we have

�
2

NX

i =1

Per(
 i ) = �
X

i<j

j@
 i \ @
 j j:

Optimal partition problems in imaging are known to be challenging problems. Other methods as
found in the litterature are based on convexi�cation, whose majordi�culty is not to depart too much
from the convex envelope of the cost function. In particular these method solve the optimal partition
problem exactly only for two levels (see [22, 13]). However, to address image classi�cation, other
mathematical tools, such as topological asymptotic analysis, can be e�ciently applied [8].

In essence, our method is not designed for the restoration of continuous images, unless a segmented
restoration is sought, two examples of which are shown in Figs. 1 and2. It is a-priori also not
well-suited to process images with texture parts that must be �nely identi�ed, since the optimal
partitioning will rather identify homogeneous (i.e., texture-free) plane regions. Nevertheless it can be
observed that the segmented image of Fig. 2 features some �ne characteristics, as e.g., the shade on
Lena's hat and some residual texture on its feather tuft. We are aware that more e�cient methods
exist to address these restoration problems, in particular if the image to restore shows sharp edges of
connected subregions [7, 9, 14].

Nonetheless, our method is adequate for all problems whose underlying mathematical structure is
related to optimal partition. In particular it is adapted to classify an image without sharp edges (a
pioneer reference is [15]), a simple example of which is shown in Fig. 8(b). Another example where
our method is well suited is the following. Assume that a detail of an image is occluded, i.e., is missing
for some reason, and that this detail shows a structure which cannot be recovered by, e.g., harmonic
expansion [9]. Then, an optimal partition formulation of the problem allows us to reconstruct the
missing information, as shown in Fig. 5 for the triple and quadruple-point examples.

The paper is organized as follows. The leading ideas are introduced in Section 2 in the context
of binary minimal partition. The method is then extended to the multila bel partitioning problem
in Section 3. The image classi�cation problem is addressed in Sections 4and 5 for greyscale and
color images, respectively. Section 6 deals with the classi�cation of images based on the analysis of
anisotropic textures. The deblurring problem is discussed in Section7.

2. Binary minimal partition

2.1. Motivation: binary image classi�cation. We �rst present a simple example of image pro-
cessing which consists of binary image classi�cation. Let us begin withsome de�nitions and notation.
We de�ne the set

E = L 1 (
 ; f 0; 1g)

and the function F : E ! R [ f + 1g such that

F (u) =
�

1
2 jDu j(
) if u 2 BV (
 ; f 0; 1g)
+ 1 otherwise:

We recall that the total variation of u 2 L 1(
) is de�ned as

jDu j(
) = sup fhu; div � i : � 2 C1
c (
) ; k� (x)k � 1 8x 2 
 g; (2.1)

and u is said of bounded variation, denoted u 2 BV (
), when jDu j(
) < 1 . Throughout we use the
notation

hu; vi :=
Z



u v dx ;

for every pair of functions u; v having suitable regularity.



4

The following calculus illustrates our method on a simple case. Letf 2 L 1 (
 ; [0; 1]) be a given
image andc1; c2 2 [0; 1] be two classes representing di�erent intensities of gray. We want to approxi-
mate f by the piecewise constant imageu c1 + (1 � u) c2, with u 2 E. Given p 2 [1; + 1 ), the binary
image classi�cation problem is formulated as

I := min
u2E

n
kuc1 + (1 � u)c2 � f kp

L p (
) + �F (u)
o

: (2.2)

Sinceu is a characteristic function, we have
Z



juc1 + (1 � u)c2 � f jpdx =

Z



ju(c1 � f ) + (1 � u)(c2 � f )jpdx

=
Z



ujc1 � f jpdx +

Z



(1 � u)jc2 � f jpdx:

We can then rede�ne I , up to an additive constant, as

I = min
u2E

fI (u) := hu; gi + �F (u)g ; (2.3)

with
g = jc1 � f jp � j c2 � f jp: (2.4)

More generally, we shall address the numerical solution of (2.3) foran arbitrary function g 2 L 1(
).
We refer to this problem as a binary minimal partition problem.

2.2. Approximation of the perimeter term. Let us de�ne the convex hull of E
~E = L 1 (
 ; [0; 1]);

and the function ~F : ~E ! R [ f + 1g by

~F (u) =
�

F (u) if u 2 E;
+ 1 otherwise:

It is shown in [4] that a suitable approximation of ~F is provided by the functional ~F" de�ned as

~F" (u) = inf
v2 H 1 (
)

�
"kr vk2

L 2 (
) +
1
"

�
kvk2

L 2 (
) + hu; 1 � 2vi
� �

: (2.5)

The above minimization problem is easily solved and we have the alternative expression

~F" (u) =
1
"

h1 � L " u; ui ; (2.6)

where L " u is the (weak) solution of the boundary value problem with unknown v 2 H 1(
)
�

� "2� v + v = u in 

@n v = 0 on @
 :

(2.7)

Considering ~F" in place of ~F leads to the approximate problem:

I " = min
u2 ~E

n
I " (u) := hu; gi + � ~F" (u)

o
: (2.8)

2.3. Mathematical properties. We �rst recall some key properties of the functional ~F" (Proposition
2.1, Theorem 2.2 and Theorem 2.3) proved in [4] using notably a result from [20]. We refer e.g. to
[5, 16] for an introduction to �-convergence. Let us start by de� ning the functional

F" (u) = inf
v2 H 1 (
)

�
"kr vk2

L 2 (
) +
1
"

kv � uk2
L 2 (
)

�
: (2.9)

It is straightforward to check that, for every u 2 L 2(
),

~F" (u) = F" (u) +
1
"

hu; 1 � ui : (2.10)

Proposition 2.1. The function ~F" : ~E ! R is continuous on ~E for the weak-� topology of L 1 (
) ,
and it is the relaxation (i.e. lower semi-continuous envelope) of the function

u 2 ~E 7!
�

F" (u) if u 2 E
+ 1 if u =2 E:

(2.11)
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Theorem 2.2. As " ! 0, the functionals ~F" � � converge to ~F in ~E, strongly in L 1(
) .

Theorem 2.3. Let u" be an approximate minimizer of (2.8), i.e.

I " (u" ) = hu" ; gi + � ~F" (u" ) � I " + � " ;

with u" 2 ~E and lim " ! 0 � " = 0 . Then we have

I " (u" ) ! I:

Moreover, (u" )" � 0 admits cluster points, and each of these cluster points is a minimizer of (2.3).

The following pointwise convergence result will be later useful.

Proposition 2.4. If u 2 ~E, then
lim
" ! 0

~F" (u) = ~F (u):

Proof. We suppose thatu 2 E, otherwise the result is straightforward in view of (2.10). We set

~G" (u; v) = "kr vk2
L 2 (
) +

1
"

�
kvk2

L 2 (
) + hu; 1 � 2vi
�

;

thus ~F" (u) � ~G" (u; v) for any v 2 H 1(
). Let � > 0. Arguing as in the proof of Proposition 4.2 of
[20], we may �nd v" 2 H 1(
) such that, for " small enough, ~G" (u; v" ) � ~F (u) + � . We infer that
lim sup" ! 0

~F" (u) � ~F (u). The lim inf inequality of the �-convergence completes the proof. �

By the direct method of the calculus of variations, we straightforwardly prove the following existence
result (see [4] for details).

Proposition 2.5. The in�ma of I and I " in (2.3) and (2.8) are �nite and attained in BV (
 ; f 0; 1g)
and ~E, respectively.

2.4. Algorithm. Our algorithm is based on a continuation method, namely we construct a decreasing
sequence ("m ) of positive numbers tending to zero, and, for each" = "m , we �nd an approximate
minimizer of (2.8) using as initial guess the solution obtained at iteration m � 1. In the sequel, the
subscript m will be dropped for simplicity.

2.4.1. Description of the algorithm in the function space setting. Plugging (2.5) into (2.8), we obtain
that the subproblem at " �xed consists is solving the following two-level minimization problem

I " = min
u2 ~E

inf
v2 H 1 (
)

�
hu; gi + �

�
"kr vk2

L 2 (
) +
1
"

�
kvk2

L 2 (
) + hu; 1 � 2vi
� ��

: (2.12)

The simple structure of this problem with respect to each variableu and v leads us to use an
alternating minimization algorithm. The superscript k is used to designate variables computed at
iteration k. The iteration k, k � 1, consists in the two steps described below.

(1) The minimization with respect to v is straightforward. It consists in solving the boundary
value problem �

� "2� vk + vk = uk � 1 in 

@n vk = 0 on @
 :

(2.13)

(2) The minimization with respect to u is a linear programming problem in a convex set. Therefore
a minimizer can always be found among the extreme points of~E. More precisely here, we
have to minimize at each point x 2 
 the linear function

� (s) = s g(x) +
�
"

s(1 � 2vk (x))

over s 2 [0; 1]. Setting

� k (x) = g(x) +
�
"

(1 � 2vk (x)) ;

a solution is immediately found as

uk (x) =
�

0 if � k (x) � 0;
1 otherwise:

In other terms, uk is the characteristic function of the level-setf � k < 0g, denoted by

uk = � f � k < 0g:
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Figure 3. Left: original black and white noisy image. From left to right: obtaine d
solutions for � = 2 :10� 4p

n (incomplete denoising), � = 2 :10� 3p
n (optimal perime-

ter weight), � = 9 :10� 3p
n (excessive perimeter weight), respectively.

This algorithm ensures a decrease of the objective function at each iteration. Moreover, each cluster
point (in the weak-� topology for u and the H 1 norm topology for v) is a stationary point. Of course,
as the coupled problem in (u; v) is not convex, local minimizers are not excluded.

An outstanding feature of this algorithm is that u is a always a characteristic function during the
iterations.

2.4.2. Discrete version. For solving the boundary value problem (2.7) we use �nite elements ona
cartesian mesh with Q1 shape functions. The mesh nodes coincides with the image pixels, and
without any loss of generality, the mesh size is �xed to 1. The discrete counterparts of the variablesu
and v are therefore vectors ofRn wheren is the number of pixels. Denoting byK and M the sti�ness
and mass matrices for the Laplacian, the discrete problem reads

I = min
u2 Rn

min
v2 Rn

�
Mu � g + �

�
"Kv � v +

1
"

(Mv � v + Mu � (1 � 2v))
��

:

In the above expression, the dot stands for the standard dot product of Rn , and 1 = (1 ; :::; 1)T .
In this framework the two steps of the algorithm consist in solving the linear system

("2K + M )vk = uk � 1; (2.14)

and setting

� k = M
�

g +
�
"

(1 � 2vk )
�

; (2.15)

uk = � f � k < 0g: (2.16)

The stopping criterion corresponds to a relative variation of the vector u (in squared`2 norm) between
two successive iterations smaller than some threshold, �xed to 10� 5.

The numerical solution of the linear system (2.14) is performed in an e�cient way with the help of
the fast Fourier transform (FFT). To do so, the image u is symmetrized in both directions, leading
to handle a domain 
̂ with double width and height. Then periodicity conditions are assume d on the
boundary of 
̂, which is a convenient way of implementing Neumann boundary conditions. In this
framework, the matrix products Kv and Mv represent bidimensional discrete convolutions, which are
easily transferred to the Fourier domain. The Fourier transform of v is thus obtained, and v itself is
retrieved by inverse FFT.

2.4.3. Update of " . The parameter " has the dimension of a length. Thus we start with a characteristic
length of 
, namely "0 = "max =

p
n. Then we divide " by two at each iteration of an outer loop,

that is, we choose"m = "max =2m . In order to approximate (2.13) properly, " must not be taken
signi�cantly smaller than the grid size. Thus we stop the algorithm as soon as"m � "min = 0 :1.

2.4.4. Initialization. The initialization of u is performed by the expressions (2.15)-(2.16) with" !
+ 1 , that is, we set

� 0 = Mg; u0 = � f � 0 < 0g:
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Figure 4. From left to right: original image, initialization ( " = 1 ), and obtained
solutions for " = 15:5 and " = "min , respectively (with � = 9 :10� 3).

2.5. Numerical examples. In Figure 3, we present an example of binary image classi�cation using
the above procedure. The functiong is de�ned by (2.4) with the two levels c1 and c2 corresponding
to black and white. Since this particular example aims at denoising, theL 1 norm is chosen.

In Figure 4, we present another example, also with black and white levels andL 1 norm. Intermediate
iterations are displayed.

3. Multilabel minimal partition

In this section we extend the previous approach to the multilabel problem. We de�ne the set

EN =

(

(u1; :::; uN ) 2 EN ;
NX

i =1

ui = 1

)

:

This is the set of N -tuples of characteristic functions (u1; :::; uN ) = ( � 
 1 ; :::; � 
 N ), where (
 1; :::; 
 N )
form a partition of 
. Given functions g1; :::; gN 2 L 1(
), the minimal partition problem (1.1) reads

I := min
(u1 ;:::;u N )2E N

(

I (u) :=
NX

i =1

[hui ; gi i + �F (ui )]

)

: (3.1)

In the same way as presented in Section 2, this problem is approximated by

I " := min
(u1 ;:::;u N )2 ~EN

(

I " (u) :=
NX

i =1

h
hui ; gi i + � ~F" (ui )

i
)

(3.2)

with

~EN =

(

(u1; :::; uN ) 2 ~EN ;
NX

i =1

ui = 1

)

:

The following result is an extension of its binary counterpart presented in Section 2.

Theorem 3.1. Let u" = ( u"
i )1� i � N be an approximate minimizer of (3.2), i.e.,

I " (u" ) =
NX

i =1

h
hu"

i ; gi i + � ~F" (u"
i )

i
� I " + � " ;

with u"
i 2 ~EN and lim " ! 0 � " = 0 . Then we have

I " (u" ) ! I:

Moreover, (u" )" � 0 admits cluster points, and each of these cluster points is a minimizer of (3.1).

Proof. As for Theorem 2.3, the proof relies on the �-convergence and equicoercivity arguments (see
the details in [4]). The lim inf inequality of the �-convergence and the equicoercivity immediately
pass to the sum in this simple case of uncoupled terms. As to the lim supinequality, one has to
construct a recovery sequence which belongs to~EN , which is not automatically achieved by gathering
independent recovery sequences for each variableui . In fact, this di�culty is overcome by simply
choosing a constant recovery sequence, which is possible by virtueof Proposition 2.4. �
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3.1. Algorithm. For " �xed we have to solve the approximate problem

I " = min
(u1 ;:::;u N )2 ~EN

inf
(v1 ;:::;v N )2 H 1 (
) N

NX

i =1

�
hui ; gi i + �

�
"kr vi k2

L 2 (
) +
1
"

�
kvi k2

L 2 (
) + hui ; 1 � 2vi i
� ��

:

We use again an alternating minimization algorithm with respect to the variables (u1; :::; uN ) and
(v1; :::; vN ). The superscript k is again used to designate these vectors at iterationk.

(1) The minimization with respect to ( v1; :::; vN ) consists in solving theN boundary value prob-
lems �

� "2� vk
i + vk

i = uk � 1
i in 


@n vk
i = 0 on @
 :

(3.3)

(2) The minimization with respect to ( u1; :::; uN ) is a linear programming problem. Minimizers
can be found by exploring the vertices of the polyhedron~EN , that is, EN . The practical
procedure is the following. Set

� k
i = gi +

�
"

(1 � 2vk
i ):

At each point x 2 
 we �nd an index i (x) such that

� k
i (x ) (x) = min f � k

1 (x); :::; � k
N (x)g: (3.4)

We then set

uk
i (x) =

�
1 if i = i (x)
0 otherwise:

The discrete counterpart is easily obtained in the same fashion as in the binary case. Again, an
outstanding feature of this algorithm is that the functions uk

1 ; :::; uk
N are always characteristic functions

of a partition of 
.

3.2. Numerical validation. The three examples of Fig. 5 are taken from and should be compared
to [13]. Let E0; E1; :::; EN be a given partition of 
. We de�ne gi , i = 1 ; :::; N , by

gi =
X

1� j � N
j 6= i

� E j = 1 � � E i :

This means that, in the set E i , i � 1, the label i is favored, whereas in the setE0 there is no preference.
In the subsequent examples the domain 
 is the unit square with a 400� 400 discretization and we
choose� = 0 :1

p
n.

3.2.1. Example with 3 labels.The partition is as shown in Fig. 5(a) (left). The set E0 is the black
disc, while eachE i , i = 1 ; 2; 3, is assigned to a speci�c color, namely red, green and blue, respectively.
We retrieve the triple junction, which is known to be the theoretical solution [13].

3.2.2. Example with 4 labels.We consider now the partitions of Fig. 5(b) and 5(c), with E0 the black
disc and 4 other subsets. In these cases, the solution is not unique, and the algorithm chooses a
particular one. This choice stems from the selection of a particular minimizer in (3.4). This is in
contrast with the results obtained in [13] which, due to the convexi�cation method employed, are
mixtures of minimizers.

4. Multilabel image classification

4.1. Formulation as a minimal partition problem. We come back to the classi�cation problem
presented in Section 2.1, but this time with N grey levelsc1; :::; cN 2 [0; 1]. We are given an image
f 2 L 1 (
 ; [0; 1]), and consider the piecewise constant image

w =
NX

i =1

ui ci ;

where ui is the characteristic function of a subset 
 i of 
 such that (
 1; :::; 
 N ) form a partition of

. We have for any L p norm on 


kw � f kp
L p (
) =







NX

i =1

ui ci � f







p

L p (
)

=







NX

i =1

ui (ci � f )







p

L p (
)

=
NX

i =1

Z



ui jci � f jp:
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(a)

(b) (c)

Figure 5. 5(a) Triple point: given partition (left) and obtained solution (right) ; 5(b)
and 5(c) Two quadruple points: given partition (left) and obtained solution (right).

The mis�t between the piecewise constant and original images is measured by

kw � f kp
L p (
) =

NX

i =1

hui ; gi i ; gi = jci � f jp:

When the levelsci are �xed, we can directly apply the algorithm of Section 3.1.

4.2. Update of levels. However, it is often desirable to determine the grey levels within the classes
automatically. Thus, we include a third step in the alternating minimizat ion algorithm, consisting in
solving

min
ci 2 [0;1]

NX

i =1

hui ; gi i =
NX

i =1

Z



ui jci � f jp:

This problem is separable in its variablesc1; :::; cN , and eachci must satisfy

ci 2 argmin
c2 R

Z



ui jc � f jp:

We distinguish between the two cases of practical interest, namelyp = 2 and p = 1.

� p = 2 . This is a standard problem which results in computing the arithmetic mean

ci =

R

 ui fR

 ui

:

� p = 1 . Minimizing a sum of L 1 distances classically amounts to computing a median, but here,
due to the weights ui this is a little more involved. Details of the procedure in the discrete
setting are given in Appendix A. Note that there may be several solutions. In this case we
take the half-sum of the extreme points of the minimizing set.

For the initialization, the levels are equidistributed in [0 ; 1], i.e., we choose

c0
i =

i � 1
N � 1

:

4.3. Examples. Examples with 3 labels are shown in Figs. 6-8. In Fig. 6, an example of denoising is
shown (hence we have chosen theL 1 norm). In Fig. 7, the classi�cation of the swan picture is shown
with di�erent values of " . This result is to be compared with its binary counterpart in Fig. 4. In
Fig. 8 two examples, namely, one hand-made and one real-world images with disconnected geometric
elements are featured.
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Figure 6. Greylevel image denoising with update of levels (3 labels),L 1 norm,
� = 5 :10� 3p

n: original image (left), noisy image (middle) solution with 3 labels
(right) and � = 5 :10� 3.

Figure 7. From left to right: original image, initialization ( " = 1 ), and obtained
solutions for " = 15:5 and "min , respectively (with 3 labels, L 1 norm, � = 5 :10� 5).

(a)

(b)

Figure 8. 8(a)Image classi�cation with 2 labels, L 1 norm and update of levels:
original image (left), obtained images for� = 2 :10� 3p

n (middle) and � = 5 :10� 3p
n

(right); 8(b) Image classi�cation with update of levels, L 1 norm, � = 5 :10� 3p
n:

original image (left), obtained images with 2 labels (middle) and 3 labels (right).

5. Multilabel classification of color images

The original image f is represented by the three channels (f 1; f 2; f 3) 2 L 1 (
 ; [0; 1])3 representing
the intensity of red, blue and green respectively. Each phase 
i is associated to a color (ci 1; ci 2; ci 3) 2
[0; 1]3 in the same RGB system. The constructed imagew = ( w1; w2; w3) is given by

wj =
NX

i =1

ui cij ;
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Figure 9. Unsupervised color image classi�cation with 2 labels andL 1 norm, � =
5:10� 3p

n: original image (left), obtained image (right)

Figure 10. Unsupervised color image classi�cation with L 1 norm, � = 5 :10� 3p
n:

original image (left), obtained image with 2 labels (middle), obtained image with 5
labels (right)

Figure 11. Unsupervised color image classi�cation withL 1 norm and 5 labels, from
left to right: original image and obtained images for � = 5 :10� 3p

n, � = 10 � 2p
n,

� = 2 :10� 2p
n

where ui is the characteristic function of 
 i . We have for each channel

kwj � f j kp
L p =







NX

i =1

ui cij � f j







p

L p

=







NX

i =1

ui (cij � f j )







p

L p

=
NX

i =1

Z



ui jcij � f j jp:

The mis�t between the segmented and original images is measured by
3X

j =1

kwj � f j kp
L p =

NX

i =1

hui ; gi i ; gi =
3X

j =1

jcij � f j jp:

We then apply the same algorithm as in Section 4. Note that the geometrical variable u = ( u1; :::; uN )
as well as the auxiliary variable v = ( v1; :::; vN ) remain N -dimensional vectors, and the update of
levels is separable in the channels.

The �rst example (see Figure 9) is a two-label problem, initialized with a pure black phase and a
pure white phase.

In the second example (see Figure 10), we �rst choose 2 labels, then 5 labels. In this latter case,
the phases are initialized by the pure colors black, red, green, blue and white. We observe that only
4 labels remain at convergence, which is an e�ect of the perimeter penalization.

In the third example (see Figure 11), we choose again 5 labels. Results obtained with di�erent
values of � are depicted.

6. Anisotropy-based image classification

We come back to a greyscale imagef 2 L 1 (
 ; [0; 1]). We are given N vectors � 1; :::; � N 2 S2,
where S2 is the unit sphere of R2. In order to detect uctuations oriented along the direction � i , we
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(a) (b)

Figure 12. (a) Anisotropy-based image classi�cation with 2 labels: original image
(left), obtained partition for � = 10 � 5p

n (right); (b) Anisotropy-based image clas-
si�cation with 4 labels: original image (left), obtained partition for � = 10 � 6p

n
(right).

�rst regularize f by solving �
� � � + � = f in 


@n � = 0 on @
 :
(6.1)

Then we set
gi = � (r �:� i )2: (6.2)

In practice, (6.1) is solved by �nite elements, in the same way as described in Section 2.4.2. Then
(6.2) is computed at each node using a discrete gradient based on �nite di�erences. We point out that
the function gi can be interpreted as the topological sensitivity of the energy functional

1
2

kr � k2
L 2 (
) +

1
2

k� � f k2
L 2 (
)

with respect to the creation of an insulating crack normal to � i , see [3] and [9] for various applications
of this concept in image processing.

We then apply the multilabel minimal partition algorithm of Section 3 with the obtained functions
(g1; :::; gN ).

In Figure 12(a) we show an example with 2 labels. We want to detect vertical and horizontal
uctuations, therefore we choose the vectors (� i ) as

� 1 = (1 ; 0)T ; � 2 = (0 ; 1)T :

In Figure 12(b) we show an example with 4 labels, where the vectors (� i ) are given by

� 1 = (1 ; 0)T ; � 2 =

p
2

2
(1; 1)T ; � 3 = (0 ; 1)T ; � 4 =

p
2

2
(� 1; 1)T :

7. Image deblurring

In this section we apply a variant of our minimal partition model for bin ary image deconvolution.
The blurring kernel is represented by a linear operatorA : L 2(
) ! L 2(
) such that A1 = 1. The
given blurred (greyscale) image isf 2 L 1 (
 ; [0; 1]), and the reconstructed image isw = c1u+ c2(1� u),
with u 2 E and c1; c2 2 [0; 1]. We have

Aw = c1Au + c2A(1 � u) = ( c1 � c2)Au + c2:

The deblurring problem reads

I := min
u2E

n
I (u) = k(c1 � c2)Au + c2 � f k2

L 2 (
) + �F (u)
o

: (7.1)

We cannot write the above problem in the form (2.3), thus the alternating algorithm presented in
Section 2.4 cannot be straightforwardly adapted. This is the reason why we restrict ourselves to the
binary problem.

As before, we approximateF (u) by ~F" (u). Using the expression (2.6), we approximate (7.1) by

I " = min
u2 ~E

�
I " (u) = k(c1 � c2)Au + c2 � f k2

L 2 (
) + �
1
"

h1 � L " u; ui
�

; (7.2)
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Figure 13. Deblurring and denoising: original image (left), damaged image with
blur and noise e�ects (middle), reconstructed image for� = 2 :10� 4p

n (right).

and use the same continuation procedure with respect to" . An analogue to Theorem 2.3 and Propo-
sition 2.5 can be straightforwardly derived.

For solving (7.2) at " �xed, we use a projected gradient algorithm. The iteration k reads

uk+1 = P[0;1](u
k � tk rI " (uk )) ;

with
P[0;1](' ) = max(0 ; min(1; ' )) ;

rI " (u) = 2( c1 � c2)A � [(c1 � c2)Au + c2 � f ] +
�
"

(1 � 2L " u)

and tk determined by a line search. More precisely,tk is initialized by tk
0 = kuk kL 2 (
) =krI " (uk )kL 2 (
) ,

and divided by 2 until I " (uk+1 ) < I " (uk ).
In our experiments we take the operatorA = Aq

0, where A0 is the discrete convolution operator by
the kernel

� =

0

@
0 a 0
a 1 � 4a a
0 a 0

1

A ; a = 0 :15:

We recall that the unknown u is symmetrized and periodized, hence the convolution is performed with-
out boundary e�ect. In addition, the computation of the product Au = Aq

0u is e�ciently performed
through the FFT, without actually computing and storing the matrix of the operator A.

In Figure 13, f is of the form P[0;1] (A(u� c1 + (1 � u� )c2 + � )), with u� a characteristic function
and � a random noise. The grey levels are black and white.

The example featured in Fig. 14 also shows that though the underlying minimal partition algorithm
is intended for the classi�cation of plane regions, the proposed method also permits to restore a blurred
and noisy text. In order to retrieve the �ne details of the text, it is necessary to choose the penalization
coe�cient � quite small, hence it is di�cult to accommodate with a high level of noise. In Fig. 14(b),
a better result is obtained when the decrease of" is stopped before reaching the value"min , although
for this value the obtained image is not binary.

8. Concluding remarks

Whereas the computer vision community is very active in developing powerful algorithms, few of
these approaches are theoretically justi�ed. In this paper we propose a mathematically sound method
to perform optimal partitions and apply it to image restoration and c lassi�cation of greyscale and
color images. Let us emphasize that the proposed continuation approach approximates the continuous
total variation and not its discretized version. This is achieved through the solving of linear partial
di�erential equations with constant coe�cients, which is performe d by �nite elements and fast Fourier
transforms. This task is from far the dominant part of the computational e�ort of our algorithms. Its
implementation could certainly be further improved, but code optimization was not the aim of this
work.

We consider the present paper as a �rst step of an ongoing work where an image partition algorithm
and a gradient-free approximation of the perimeter is proposed toaddress piecewise constant image
restoration and/or classi�cation. In particular, we have applied our algorithm to denoising, deblurring
and supervised texture identi�cation problems, as well as for inpainting. Future extensions of the
methods could be multilabel deblurring and unsupervised texture identi�cation.
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(a)

(b)

Figure 14. Deblurring of the text " w 2 �". 14(a) Original image (left), blurred
image (middle), reconstructed image for� = 10 � 5p

n (right). 14(b) blurred image
with noise (left), its restoration with � = 10 � 5p

n for " = 0 :748 (middle) and for
" = "min (right).

Appendix A. Weighted median

Let (x1; :::; xn ) 2 Rn , (� 1; :::; � n ) 2 Rn be given. We assume that thex i are numbered in increasing
order. We want to minimize

V (x) =
nX

i =1

� i jx � x i j:

This function is clearly convex and a�ne on each interval [x i ; x i +1 ]. Therefore, the minimizing set is
an interval of the form [x l ; xr ], 1 � l � r � n. The subdi�erential of V at the point x j is

@V(x j ) =
X

i<j

� i �
X

i>j

� i + � j [� 1; 1]:

Then x j is a minimizer of V if and only if 0 2 @V(x j ), i.e.

� � j �
X

i<j

� i �
X

i>j

� i � � j : (A.1)

We obtain x l and xr by exploring every x j and checking if it satis�es (A.1).
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