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1 Introduction

Electron-phonon interactions play a crucial role in the determination of the phys-
ical properties of many mixed cristals ([16]).

In the present paper, we study the well-posedness of a nonlinear dispersive sys-
tem arizing in the frame of electron-phonon interaction in a one-dimensional lattice.
In [10], V. Konotop treats the temporal dynamics of such a system in the pres-
ence of resonant interactions between the electron and phonon subsystems. The
hamiltonian H for such a one-dimensional chain of particles is given by

H= Hel + th + Helfpha

where, denoting by a dot the time derivative, the hamiltonians for each subsystem
and their interaction read in bra-ket notation

Hel:—JZ(|n><n+1|+n><n+1|),

n
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M . U
th = ? ZPnZ + 5 Z(pn—i-l - pn)27
n n

and
Hel—ph = XZ |n >< n|(pn+1 - pn—l)‘

n

Here, p, denotes the distance to the equilibrium position of the n* atom of mass
M, J is the energetical constant determined by the overlapping of the electronic
orbitals, U is a force constant and y represents the strenght of the electron-phonon
interaction.

In the continuum limit, the above hamiltonians become
M U
H, = —J/\uw|2, Hy,p, = 2/;}?4— 2//0925 and

Hel—ph = X/|U|2pzdl‘,

where u is the electronic wave-function.

Putting ¢ = p, p = M p;, we obtain the Hamilton evolution set of equations

a(th + Hel—ph)
apph

Qph =

a(th + Helfph) (1)
8Qph

pph:_

0 (He + Hep—
ihut _ ( el el ph).
\ ou
In the present paper, we will treat the Cauchy problem associated with this evolution
system. We will replace the Hamiltonian of the electronic and phonon subsystems

respectively by

H, = —J/]ux|2+j/|u4, aeR (2)

M U 3
th:2/03+2/0920—4/047 B eR, (3)

allowing the possibility of nonlinear cubic potentials for the evolution of u and p.
Also, we will incorporate in H¢;—p;, a term to account for the anharmonic interatomic
interactions (see [1]):

Hotn = / ful? s + A / (p)', A>0. (4)

and

By replacing (2), (3) and (4) in (1), we obtain the system

{ ihug + Juge = 2xups + oful?u, r€eR, t>0,
Mpy — [Ups + 2p3le = x(|ul?)z + Bp°.
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Finally, after putting all physical constants equal to the unity, and scaling out
the remaining coefficient of the term up, by the transformation p = 2p and @ = v/2u,
we obtain the Initial Value Problem

iUt + Uge = upe + aful?u, zeR, t>0,
pit — [z + Ap3)e = ([ul*)z + Bp?, (6)

u(0,2) = uo(x),  p(0,2) = pola),  pi(0,7) = pu(a).
For a = 8 = A = 0, by putting n = p,, we obtain the classical Zakharov system

Ut + Ugy = UN
(7)

Ngt — Ny = (‘u|2)x:v

The Initial Value Problem for (7) is studied in [8],[12]. Also, in the case where
B=A=0,a#0, (6) falls in the scope of the Zakharov-Rubenchik equation studied
in [6],[11] for the global well-posedness and stability of solitary waves and in [7] for
the adiabatic limit to the Cubic Nonlinear Schrédinger Equation.

The rest of this paper is organized as follows:

In Section 2 we treat the local well-posedness of (6). The main difficulty of this
system is the presence of the strongly nonlinear term with derivative-loss pipm. In
order to overcome this problem, we translate (6) in terms of its Riemann invariants.
Next, we perform a change of functions technique developed in [15], [6] and [5] which
takes care of the derivative-loss and use a variant of a result derived by Kato ([9])
to prove the existence and uniqueness of strong local solutions to (6) for initial data

(o) po, pto) € H3(R) x H3(R) x H*(R).

In Section 3, we derive some conservation laws for (6) and prove the existence
of solutions which blow-up in L? in finite time (provided that 3 > 0) by adapting a
result due to Reed and Simon ([13]). Also, for § < 0 and A = 0, we prove that the
solutions obtained in the previous section are in fact global in time.

Finally, if A > 0 and § < 0, we establish in Section 4 the global existence of
weak solutions for (6) by applying a compensated-compactness method developed
in [14] by Serre and Shearer (see also [2]). The adaptation of this method to a
Schrodinger- Nonlinear Elasticity system was made in [4]. The technique of using
this compensated-compactness result in order to prove the existence of global weak
solutions was introduced in [3] in the frame of a Schrodinger - Conservation law
System.

2 Local existence of strong solutions

In this section we adress the local-wellposdness of the I.V.P. (6).



Let u, € H3(R), po € H3(R)andp; € H*(R).
By setting v = py, w = p; and o(v) = v+ Av?, the Cauchy problem (6) is equivalent

to
g+ Uge = uv + olul?u

pr=w

vy — Wy, =0

wy — (0(v))s = (|u‘2):c + ﬁpg

with initial data
u(.,0) = u, € H*(R), p(.,0) = po € H}R), v(.,0) =, := po, € H*(R) (9)
and w(.,0) = wp := p; € H*(R).

Let A > 0. By introducing the Riemann invariants

l:w+/ V1+3XA2d¢  and r:w—/ V1 3XE2de,
0 0

we derive
v 1 I
Z_T:2/ L+ 3X§2dE = v/ 1+ 3 M2 + arcsinh(v3X), w= e
0 V3 2
Noticing that
1
v) = vV 1+ 3 2% + arcsinh(v/3\
f(v) 5 (V3A)

is one-one and smooth, we put v = f~'(l —r) = v(l,r) and for classical solutions
the Cauchy problem (8), (9) is equivalent to

(i + Uge = uv + oful?u

pr =5 +7)
(10)
I, — V1 + 3 M2, = (Jul?), + 8p°
re 4 VIT 3N, = (Jul)s + B6°
with initial data
’LL(,O) = U € H3(R)7 P(,O) =po € H3(R)7 l(,O) = lO € HQ(R)7 (11)

and 7(.,0) = rg € H*(R),

where

%) Vo
lo = wo +/ V1+3X2d¢ and rg = wo — / V14 3XE2d¢. (12)
0 0



In order to obtain a local classical solution for the Cauchy problem (10),(11) for a
fixed A > 0 we will follow the technique employed in [6] and in [5]:

We consider the auxiliary system with non-local source terms

iF, + Fup = 2ajul?F + au®F + Fo + ju(ly +15)

pr=1(1+r)
(13)
Iy — V143 2l = (|a)?), + 8p°
re + V1 + 3 %, = ([a]?), + Bp®
where F is the complex conjugate of F' and
t
u(z,t) = up(x) —i—/ F(x,s)ds, (14)
0

a(z,t) = (A — 1) HalulPu+u(v — 1) — iF),
with initial data
F(.,0)=Fy € H'(R), p(.,0)=po € H3R), I(.,0)=1y € H*(R), (15)

and 7(.,0) = ro € H*(R), o and ro given by (12).

We will prove the following result:

Theorem 2.1 Let (Fy, po,lo,m0) € H' x H? x H? x H?.
There exists T* = T*(Fu, po,lo,m0) > 0 such that for all T < T* there exists a
unique solution (F,p,l,r) of the Cauchy problem (13), (15) with

(F.p.1,r) € OO0, T]; H' )< CI((0, T]; H* 7)< 07 ([0, T); H* ) €7 ([0, T); H* ),
From this result, we will prove the following Theorem

Theorem 2.2 Let (ug, po,p1) € H> x H® x H?.
There exists T* = T*(Fo, po, p1) > 0 such that for all T < T* there exists a unique
solution (F, p,l,r) of the Cauchy problem (6), with

(F,p) € C7([0,T); H*=%) x (C7([0,T); H*~>) n C7*H([0, T H* %)), j=0,1.
Proof of Theorem 2.1:

We want to apply a variant of Theorem 6 in [9], hence we need to put the
Cauchy problem in the framework of real spaces. By introducing the new variables
Fiy = Re(F), Fo = Im(F), u; = Re(u), ug = Im(u).



By setting U = (Fy, Fa,p,l,r) and Fig = Re(Fy), Fog = Im(Fp), the ILV.P. (13),
(15) can be written in the form

0
{ U+ AU = g(t,U) 16)
U(.,0) = Uy,
where
0 A O 0 0
-A 0 O 0 0
AUy =| 0 0 0 0 0 ,
0 0 0 —v1+ 3?2 0
0 0 O 0 V1 + 3?2
20|ul*Fy — a(u? — u3)Fy + 2cuiug By + Fov + %uz(lz +72)
20ul?Fy — a(u? — ud)Fy — 2cuus Fy — Fio — %uz(lm +7z)
g(t,U) = s(l+7)
(la]*)z + 8o
(lal*)z + Bp®
and

Uo = (Fio, Fag, po,lo,m0) € Y = (H'(R))* x (H*(R))®.

(The condition pg € H3(R) will be used later).
Note that the source term g(t, U) is non-local, due to the presence of a.

We now set X = (H Y(R)? x (L?(R))? and S = (1 — A)I, wich is an isomor-
phism S : Y — X.

Furthermore, we denote by Wg the open ball in Y of radius R centered at the
origin and by G(X, 1, 3) the set of linear operators A : D(A) C X — X such that:

e —A generates a C,-semigroup {e~**};cr;
e forallt >0, e~ < e, where, for all U € Wk,

1 0

B = =supl|=—alp,l,7)] <c(R), c:][0;4+00[— [0;400[ continuous, and
0 0 0
alp,l,r) =10 —V1+3\? 0
0 0 V14 3\?

Following [9] (paragraph 12),
A:U= (Fl,FQ,p,l,T’) eWpr — G(X, 1,,3).

It is easy to see that g verifies, for fixed T' > 0, |lg(y, U)[ly <0, t € [0,T], U € W.
For (p,l,7) in a ball W in (H?(R))3, we set (see [9]-12.6)

Bo(p,l,m) = [(1 = A),alp,1,r)](1 = A)~" € LIL*(R))?).
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We now introduce the operator B(U) € L(X), U = (I, Fy, p,l,r) €€ Wgr by

0 0O 0 0

0 0O 0 0
BU)=|0 0

00 By(p,1,r)

0 0

In [9] (paragraph 12), Kato proved that for (p,l,r) € W we have
(1= Aalp,1,r)(1 = A) ™" = alp,1,7) + Bo(p,1,7).

Hence, we easily derive for U € Wg, SA(U)S™! = A(U) + B(U).

Now, for each pair U, Ux € Wg, U = (F, Fa, p,l,r), U* = (F}, F5, p*, *, %), we
claim that

lg(t,U) = g(t, U") L1 (o,77,x) < «(T) sup [|U(t) = U(#)| x, (17)
0<t<T"

where 0 <T" < T and and ¢(7”) is a non-decreasing function such that ¢(0) = 0.
Indeed, let us point out that for h € L?(R) and w € H(R),

[hwl| -1 < [|Bll =1 [lwll -
Hence, for example,
[Frus(uy — uwa)| g < 1L g fluall g lluy = vallg-o,

and, for t < T,

t t t
o+ 1) (/ B[ F) L I M L S
0 0 0

< co(T") sup [[U(t) - U"(t)]x-
0<t<T

Finally, applying Theorem 6 in [9], replacing the local condition (7.7) by (17), we
obtain the result described in Theorem 2.1, but with p € C7([0; T], H*>7),j = 0, 1.
To obtain p € CY([0,T], H377), it is enough to remark that, since p; = w, pp € H?,
vo = po, € H?, wo € p1 € H?, we derive p, = v € CI([0,T], H>7). [ |
Proof of Theorem 2.2:

We will follow here the ideas in [5]:

If (F,p,l,r) is a solution of (13), (15), by differenciating (14) with respect to ¢
we obtain u = F. Replacing in the first equation of (13), we obtain

— 1
(iug + Uge)t = 20|u>F + au®F + Fv + iu(lgC + 1) = 2aul?us + au?T; + uv + uvy.

7



Hence, (iug + uzz — aful?u — uv); = 0, and we get iug + u,x — oful?u — uv = ¢o(x),
where

¢0<$) =1Fy + U{)’ — a]u0]2u0 — UQVQ-
By choosing Fy = i(uf — a|ug|*ug — uovo), we obtain ¢p = 0 and (u,v) satisfy the
first equation in (10).

Furthermore, from this equation we derive
u=(A—=1) " a|ulPu+u(v — 1) — duy). (18)

Therefore u = @ and (u, p,[,r) satisfy (10), (11). Note that u; = F € C([0,T]; H').
Moreover

u(x,t) = up(x) +/0 F(z,s)ds € C([0,T]; HY),

but from (18) we have in fact u € C([0,T]; H?). [

3 Global well-posedness for A = 0 and blow-up
results

In this section, we prove that the local solutions obtained in Theorem 2.2 are
in fact global in time in the case where § < 0 and A = 0. Conversely, if § > 0, we
show the blow-up of the local solutions in finite time under some conditions on the
initial data.

We consider initial data (ug, po, p1) € H®> x H® x H%. Let
(u,p) € C7([0,T], H* ), j=0,1

the unique corresponding maximal solution of the Cauchy problem (6). We begin
by deriving the following conservation laws:

gt/|u|2dx =0, tel0,T], (19)
0

5 B0 =0, te[0;T] (20)

where the energy E(t) is given by

B0 = [(oPde+ g [(ufdo+ ] [tan = [otaes [ olupas

+/!um|2dx+§/u|4d:n.

For the first one we multiply the first equation in (6) by @ and we integrate the
imaginary part. To obtain the conservation of energy, we derive from (6)

Re/iututdx—i—Re/umutd:c = Re/pxuutdx—l—aRe/MQuutdx

8



and

1 1
—a/]ux|2dx = = pm;\u|2dx+aa/\u|4dx

20t
10 .
- 28t/px‘u| d“‘/a#’f‘“' do+ 7 4 0t /‘“' da-

Finally,
4 &> p 24 op i_ 9 31 _ 43,3
soplulde= [P uae =g [ 0L TR~ (o X)) - | o

19 10 W) s B [
_48t/( >d“4at/< )dm+8c‘)t/( ) 88t/pdx’

and (20) is proved.

Next, we will prove the following result:

Theorem 3.1 Let <0 and A\ =0.
Then Theorem 2.2 holds for T* = +4oc0.

Proof of Theorem 3.1:

In order to prove this result, we is sufficient to deriva a priori bounds for the
norms [[ullgs, |[pllzs and ol g2
Let us begin by noticing that | [ p.|ul?dz| < § [(ps)?dz + [ |ul*dx.
By the Gagliardo-Nirenberg inequality and (19),
1
lullzs < collullzellusllze < colluollzelusllze < elluollze + 5 lluallzz
Since # < 0, we obtain from (20)

/ (pr)2dz + / [(02)? + Mpa) )i + / g2z < e, (21)

with ¢ depending only on (uoll, ool o1 lli).

t
Moreover, since p(t) = po(x) +/ pi(x, 7, dT),
0

t
()22 < [lpoll 22 +/ e (7) || L2,
0

hence, since 3 < 0,

/(pt)Qda;+/(p)2daz+/(px)2dm+/|u]2dm+/\uz|2da:§0(l+t), (22)



with C depending exclusively on the initial data.

Next, we estimate ||ugz||z2, ||pztllr2 and ||pzz|/z2. For A = 0, the system (10)

reads
g+ Uge = uv + alul?u

pr = %(l +7)
(23)
lh—1, = (’u‘Q)z + Bp?

ret+1a = ([ul?)e + 5p°

a(t) :/(rz)de—l—/(Zz)Q+/|ut|2daz.

In what follows we will denote by A(t) a generic positive continuous function

We put

A . R+—>R+7

which can change from line to line.
By deriving with respect to = the last equation in (23), multiplying by r, and
integrating, we get

1d
2 dt

(/ Tﬁd:r>% (/ uxﬁdx)l% + Jlulloo < / |1ux,2 dmf < /%) ) (/de”
</ r?”dx>2 </ “m|2493>2+ ( / rgdx>2]7

where we have used the Sobolev injection ||uz||c < c||uz|| 1 and (22).
By writing a similar estimate for [, we obtain

az(t) +az(t) (/ yumﬁdm> é] L (24)

lttasllz2 < lurllze + A®) < a2 (1) + A(#). (25)

(r2)2de < 2 / i |da + 2 / 2rolde + 315 / lparalda

< A(t)

< A(t)

23 [ (2 + (1)de < A

From the first equation in (23),

By replacing in (24),

D=

(e + (1) < A) [ad (1) + )] (26)

N |

Moreover, since p, = (I + 1),
1
[petllLz < caz(t). (27)

10



Now, by multiplying the first equation in (23) by @, integrating the imaginary part
and using the Cauchy-Schwarz inequality,

1d
i [ tude = [ puatmum) +a [ (Pt

1

2
< lullollpecllzz ( / |ut12dz:) < ca(t).

Finally, using (26), we get

%OZ
and .
alt) < (1+ a(0))els AT 1,

Hence, by (25) and (27),
[uaellL2 + llpztll L2 < A(t).

By, the second and third equation in (23), ||l¢]|z2 + ||7e]l 2 < A(t), therefore

1
lorllze = Sllt+ rllze < A(1)
and
prxHLQ = Hptt - (”U,‘Q)m — ﬂp3HL2 < A(t)

To obtain a continuous bound on ||pzzz||r2, |Usze||r2 and ||pize|| 2, the exact same
method can be used by setting

o) = [(raaPdot [0+ [ fufds
and deriving system (23) with respect to x. [

We now assume § > 0. In what follows, we will consider the following conditions
on the initial data:

/pgpldx >0 (28)
and 1 9
BO) <—g(5 + 2a)%c5 |G- (29)

We will prove the following blow-up result:

Theorem 3.2 Let 5> 0.

Under the conditions of Theorem 2.2 and assuming that the initial data (ue, po, p1)
satisfies conditions (28) and (29), there exists a time 0 < T* < T := ([ p2)([ pop1) ™"
such that, if the solution exists in [0,T*], then

lim pPdx = 4o0.
t—=T*~

11



Proof of Theorem 3.2:

Following [13] (chapter 10, paragraph 13), let us put

G(t) = / PRde and  F(t) = (G(£) .

N

(30)

1
We have F/(t) = S G(1) ¢/(t) = ~G(1) / ppedaz, and, from (28), F(0) < 0.
Furthermore, we set Q(t) = —2G(t)%F”(t) = G"(t)G(t) — 3G'(t)?, with

G'(t) = 6 / (p)2dz+ 2H(t) and  H(t) = / oo — g(pt)Q]dx.

o) =ol( [ ae) ([wrde = [Gonias )1+ 2600

and by the Cauchy-Schwarz inequality we obtain Q(¢) > 0, and consequently
F’(t) <0, provided H(t) > 0.
This last fact is easy to check. From (6) and (20),

H(t) = —4E(t) + 4[/ || *da + % / lu|tdz + z /pm\u|2]d:c + /(px)2dx

We have

= —4F(0) +4[/\um|2dm+(;/\u|4dm+i/pz\UIQ]dx—i-/(px)de.

We have 9
3/p1|u|2dyc < /(pm)zdx—l—4/|u|4dx

and, by the Gagliardo-Nirenberg inequality and (19),

9 9 1.9
(32lab [ ful'de < (G+2al)collwolfallule < 4 [ fusfPdos1o (G 2lal e fuol

From condition (29), H(t) > —4E(0) — (3 + 2|a|)?c3||uo|/82 > 0.
Hence, we have shown that for all ¢ € [0,T[, F”(t) < 0, which implies Theorem 3.2.
]

4 Global existence of weak solutions for the
quasilinear system

For the study of the existence of a global weak solution to the Cauchy problem
(6), we will consider, for € > 0, the regularized problem (cf. [4] for the case 3 = 0)

iU+ Ugy = Upy + aful?u
Wi — €Wey = PP + (0(p2))e + (Ju)s

12



with initial data (we have dropped the € parameter on u, w and p)

u(0,x) = ug(x) € H'(R), p(0,x) = po(x) € H*(R), w(x,0) = py(0,2) = p1(x) € H'(R).
(32)

Here, o(v) = v+ Av3 and A > 0 (hence o/(v) = 1 + 3\v? > 0).

For a smooth solution of (31)-(32), the energy identity (20) takes the form

d(1 [ 5 1[a ANf[a B,
(ﬁ{z/wdaﬁ+2/vdm+4/vdaﬁ 4/pdaz+
/v|u|2dx—|—/|um2dx+3/|u4dx} _ _6/(%)%, (33)

where we have put v = p;. On the other hand, the conservation law

% (/ yude) —0 (34)

still holds. Also, we deduce (cf. [4] and following [14])

Jtwe =@ = [(uPyovndo+5 [ o+ [waads

and

d d
- wxvd:n+/(ww)2dx—/a'(v)(vz)de = /(|u|2)xvxd:v—|—ﬁ/p pmdx—l—hﬁ/(vz)zd:z;

since
d
o wavdr = —/wwtvdx— /wxvtdaz = /wtvmdaﬁ— /wxvtd:c

UVt = Pt = Wy

and

Integrating this identity over the time interval [0, ¢] we obtain, with vg(x) = v(z,0),

/wwdw—f—/plmvod:r—l—/ /wz d:):dT—/ / dxdT
t t c .
:/ /(’u‘Q)xed{L'dT—Sﬁ/ /pQ(px)dedT+2/(vx)2da:— 2/(v0$)2da:.
0 0

Since —/wxvdx = /wvxdx, we get

1
/ / Vdxdr + = /(vx)2d$ < i/(vx)2dm+/w2d$+/]vop1x|dx—|—
€
c t t t
2/(vox)2d:v+3ﬁ/ /p202d$d7+6/ /(wz)2d$d7+2/ /|uuxvx|dxd7 (35)
0 0 0

13



and

t t 1 [t
2/ /|uuxvx|d$d7 < 2/ /uux|2d$d7'+2/ /(’Ux)zdl‘dT. (36)
0 0 0

Now, let us assume ( < 0. Since € > 0, we can derive from (33), as in (21),

t
/deZU + /(U2 + MM dr 4+ [ |ug)® + e/ (w,)?dxdr < C, (37)
0

where C' only depends on (||ugl| g1, || oll g2, || o1 g1)-
Hence, from (34), (36) and (37),

/ /\uuxvx|dazd7 <Ct+ - / / )(vg)2dxdr. (38)

Taking € < 1, we deduce from (35), (36), (37) and (38)

// )(vg)2dxdT + €2 /(vz dm+e|ﬂ]// vidrdr < C(141t).  (39)

Let us now analyse the problem of the existence and uniqueness of a solution
(u, p,w) € C([0, +o0f; H') x C([0, +o0[; H?) x C([0, +oo[; H')

to the Cauchy problem (31)-(32). Without loss of generality, we may assume ¢ = 1.
We start with the existence and uniqueness of a local (in time) solution. We fix
0 < T < +oco and introduce the Banach spaces X7 = C([0,T]; H') (complex) and
Yr = C([0,T); H?) (real) endowed with the usual norms. Furthermore, we consider
the product space BL R X BY & Where

BE={ue Xr : |ullx, <R} and BE ={ueYr : |july, <R}
Finally, we consider the application
® : (@1,p) € BE x BE — (u,p) € X1 x Yr.

Here, u denotes the solution of the linear problem

. L 9~
(e o g
and .
) = ot [ wdr p(.0) = e B2 (1)
where w is the unique solution of
{1 =07+ oD+ (3 )
w(.,0) = wo(z) € HY,

verifying w € L?(0,T; H?), wy € L*(0,T; L?). We have
t
u(t) = ey — 2/ ¢! t=)0%= (540 + alu|?a)(s)ds
0

14



and B75° + (0(2))e + ([]?), € C([0,T]; L2).

The existence and uniqueness of a local solution is a consequence of the Banach
fixed-point theorem for a convenient choice of R and T, R > max(||uo|| g1, ||pol #2)-
We have

Wi — Wgzy = ﬁpg + (U(pl‘))x + (‘u|2)x
From (33), (34), (37), (39), (40) and (41), we derive the a priori estimate
lwe — waa|r2(0,m,12) < C(T),  C € C([0,+00[;Ry),
which implies w € L?(0, T; H?) and a similar a priori estimate for [|w| 2o 7, g2y and

so for |lwellz20,r;r2) and ||wllcqo,m);m1)-

We conclude that p € Y7 and v € Xp, with similar estimates for ||p||y; and ||u|| x,
hence we can extend the solution to [0, +ool.
Hence, if we write

t
pe(t) = po +/ wedr, po € HXR), 0<e<l, (43)
0

we get, with

uc(0, ) = ug(x) € H, v.(0,2) = vo(x) € H, we(0,2) = p(0,2) = p1(z) € H,
(44)

a unique solution
(te, ve, we) € (C([0, +oof; HY))? (45)

of the Cauchy problem

iuet + Uegr = UeVe + a‘u€‘2u€
Vet = Wey (46)
Wey = (U(U))z + (‘u€‘2>(£ + ﬁpe?) + €Weyy

with the initial data (44).

Moreover, we have for each T' > 0, by (34), (37) and the first equation in (31),
{uc}e bounded in L>(0, +o00; H'),

{ues }e bounded in L%°(0, +o0; Hil)j

hence {uc} belongs to a compact set of L?(0,T; L*(Ig)) for each interval Ip =
[-R, R], R > 0. By applying a standard diagonalization method we conclude that
there exists u € L>(0,+o0o0; H') and a subsequence of {u}, still denoted {u.}.,
such that

ue — u in L>(0, +oo; H) weak* and in L},.(R x [0, 00[).

We also have, by (37) and (39), {w¢} bounded in L2 (R x [0, 00]) and, with Y (v) =

loc
0% + %U‘l, {v¢}e bounded in L%C(R x [0, 00[), where v € LIZO:C(]R x [0, 00[) means
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Jie 2o (v)dadt < +oo for each compact K C R x [0, +o0[. Finally we have, by (43),
{pe}e bounded in L2 (R x [0, +00]).
By (37) and (39) we derive, for e <1,

e/ot /[(u%)2 + 0 () (e )?)dzdr < C(1 + 1), (47)

where C only depends on ([luoll 1, lpoll: 1]l 1)-

Now we consider the quasilinear hyperbolic system
{ UVt = Wy (48)

Wt = (U(U))x

and let (n(v,w), q(v,w)), (v,w) € R?, be a pair of smooth convex entropy-entropy
flux for (48) such that 7y, Nuw and 7y, /v’ are bounded in R2.
From (34) and the estimates (37) and (47), we can deduce that (cf. [14], [2] and [4])

0 0
an(we; Ue) + %Q(wea Ue)

belongs to a compact subset of VVl;Cw(R x [0, 400[).

Hence, we can apply a result on compensated compactness of Serre and Shearer
([14]) to conclude that {(we,ve)}e is pre-compact in (Li,.(R x [0, +0c[)%. Hence,
there exists a subsequence {(u, ve, we)}e and

(u, v, w) € L*®(]0, +oof; HY) x L=

loc

(R [0, +00[) x Li,o(R x [0, +00])

such that
(te, Ve, we) — (u,v,w) in (L}, (R x [0, 400[)?

and . .
Pe = PO —i—/ wedT — p = po —i—/ wdr in L}, (R x [0, +00[).
0 0
Hence, we obtain from (46) the following result:

Theorem 4.1 Assume (uo,po,p1) € H' x H2x H', A\ > 0 and 3 < 0. Then, there
exists

(u,v,w) € L°°(0, +o0; H') x L=

loc

(R x [0, 400[x L2 (R x [0, +00])

such that, with p(z,t) = po(z) + fgw(x, T)dr, we have

—+00 “+o00
—i/ /ué’td:cdt—/ /ugcﬁxdxdt—i—/uo(a:)ﬁ(a:,O)dx =
0 0
+oo +oo
/ /vu@dwdt—i—oe/ /]u|2u9d:vdt
0 0
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for all 0 € CL(R x [0, +00[) (complez-valued), and

+00 +oo
_ B 3
/0 / (060 — weby)dedt + / P00, 0)da + /0 / (Wit — o (0)be + B dadt

+ [ ot 0o [ [u)vrd=o

for all ¢, € C}(R x [0, +00| (real-valued).
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