On the Cauchy problem describing an electron-phonon interaction

João-Paulo Dias(1), Mário Figueira(1) and Filipe Oliveira(2)
(1) CMAF/UL and FCUL, Av. Prof. Gama Pinto, 2
1649-003 Lisboa-Portugal
(2) Centro de Matemática e Aplicações, FCT-UNL
Monte da Caparica-Portugal

Abstract

In this paper we derive a model to describe a quartic anharmonic interatomic interaction with an external potential involving a pair electron-phonon. We study the corresponding Cauchy Problem in the semilinear and quasilinear cases.

Keywords: Schrödinger-like equations, Cauchy problem, blow-up, phonon-electron interaction.
Mathematics Subject Classication (2010): 37L50, 35L55, 35B44.

1 Introduction

Electron-phonon interactions play a crucial role in the determination of the physical properties of many mixed cristals ([16]).

In the present paper, we study the well-posedness of a nonlinear dispersive system arizing in the frame of electron-phonon interaction in a one-dimensional lattice. In [10], V. Konotop treats the temporal dynamics of such a system in the presence of resonant interactions between the electron and phonon subsystems. The hamiltonian H for such a one-dimensional chain of particles is given by

$$
H=H_{e l}+H_{p h}+H_{e l-p h},
$$

where, denoting by a dot the time derivative, the hamiltonians for each subsystem and their interaction read in bra-ket notation

$$
H_{e l}=-J \sum_{n}(|n><n+1|+n><n+1 \mid),
$$

$$
H_{p h}=\frac{M}{2} \sum_{n}{\dot{\rho_{n}}}^{2}+\frac{U}{2} \sum_{n}\left(\rho_{n+1}-\rho_{n}\right)^{2},
$$

and

$$
H_{e l-p h}=\chi \sum_{n}|n><n|\left(\rho_{n+1}-\rho_{n-1}\right) .
$$

Here, ρ_{n} denotes the distance to the equilibrium position of the $n^{\text {th }}$ atom of mass M, J is the energetical constant determined by the overlapping of the electronic orbitals, U is a force constant and χ represents the strenght of the electron-phonon interaction.

In the continuum limit, the above hamiltonians become

$$
\begin{gathered}
H_{e l}=-J \int\left|u_{x}\right|^{2}, \quad H_{p h}=\frac{M}{2} \int \rho_{t}^{2}+\frac{U}{2} \int \rho_{x}^{2} \quad \text { and } \\
H_{e l-p h}=\chi \int|u|^{2} \rho_{x} d x
\end{gathered}
$$

where u is the electronic wave-function.
Putting $q=\rho, p=M \rho_{t}$, we obtain the Hamilton evolution set of equations

$$
\left\{\begin{array}{l}
\dot{q}_{p h}=\frac{\partial\left(H_{p h}+H_{e l-p h}\right)}{\partial p_{p h}} \tag{1}\\
\dot{p}_{p h}=-\frac{\partial\left(H_{p h}+H_{e l-p h}\right)}{\partial q_{p h}} \\
i \hbar u_{t}=\frac{\partial\left(H_{e l}+H_{e l-p h}\right)}{\partial u}
\end{array}\right.
$$

In the present paper, we will treat the Cauchy problem associated with this evolution system. We will replace the Hamiltonian of the electronic and phonon subsystems respectively by

$$
\begin{equation*}
H_{e l}=-J \int\left|u_{x}\right|^{2}+\frac{\alpha}{4} \int|u|^{4}, \quad \alpha \in \mathbb{R} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{p h}=\frac{M}{2} \int \rho_{t}^{2}+\frac{U}{2} \int \rho_{x}^{2}-\frac{\beta}{4} \int \rho^{4}, \quad \beta \in \mathbb{R} \tag{3}
\end{equation*}
$$

allowing the possibility of nonlinear cubic potentials for the evolution of u and ρ. Also, we will incorporate in $H_{e l-p h}$ a term to account for the anharmonic interatomic interactions (see [1]):

$$
\begin{equation*}
H_{e l-p h}=\chi \int|u|^{2} \rho_{x}+\lambda \int\left(\rho_{x}\right)^{4}, \quad \lambda \geq 0 . \tag{4}
\end{equation*}
$$

By replacing (2), (3) and (4) in (1), we obtain the system

$$
\left\{\begin{array}{l}
i \hbar u_{t}+J u_{x x}=2 \chi u \rho_{x}+\alpha|u|^{2} u, \tag{5}\\
M \rho_{t t}-\left[U \rho_{x}+\lambda \rho_{x}^{3}\right]_{x}=\chi\left(|u|^{2}\right)_{x}+\beta \rho^{3} .
\end{array} \quad x \in \mathbb{R}, \quad t \geq 0,\right.
$$

Finally, after putting all physical constants equal to the unity, and scaling out the remaining coefficient of the term $u \rho_{x}$ by the transformation $\tilde{\rho}=2 \rho$ and $\tilde{u}=\sqrt{2} u$, we obtain the Initial Value Problem

$$
\begin{cases}i u_{t}+u_{x x}=u \rho_{x}+\alpha|u|^{2} u, & x \in \mathbb{R}, \quad t \geq 0 \tag{6}\\ \rho_{t t}-\left[\rho_{x}+\lambda \rho_{x}^{3}\right]_{x}=\left(|u|^{2}\right)_{x}+\beta \rho^{3}, \\ u(0, x)=u_{0}(x), \quad \rho(0, x)=\rho_{0}(x), \quad \rho_{t}(0, x)=\rho_{1}(x)\end{cases}
$$

For $\alpha=\beta=\lambda=0$, by putting $n=\rho_{x}$, we obtain the classical Zakharov system

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=u n \tag{7}\\
n_{t t}-n_{x x}=\left(|u|^{2}\right)_{x x}
\end{array}\right.
$$

The Initial Value Problem for (7) is studied in [8],[12]. Also, in the case where $\beta=\lambda=0, \alpha \neq 0,(6)$ falls in the scope of the Zakharov-Rubenchik equation studied in [6],[11] for the global well-posedness and stability of solitary waves and in [7] for the adiabatic limit to the Cubic Nonlinear Schrödinger Equation.

The rest of this paper is organized as follows:

In Section 2 we treat the local well-posedness of (6). The main difficulty of this system is the presence of the strongly nonlinear term with derivative-loss $\rho_{x}^{2} \rho_{x x}$. In order to overcome this problem, we translate (6) in terms of its Riemann invariants. Next, we perform a change of functions technique developed in [15], [6] and [5] which takes care of the derivative-loss and use a variant of a result derived by Kato ([9]) to prove the existence and uniqueness of strong local solutions to (6) for initial data

$$
\left(u_{o}, \rho_{o}, \rho_{t_{o}}\right) \in H^{3}(\mathbb{R}) \times H^{3}(\mathbb{R}) \times H^{2}(\mathbb{R})
$$

In Section 3, we derive some conservation laws for (6) and prove the existence of solutions which blow-up in L^{2} in finite time (provided that $\beta>0$) by adapting a result due to Reed and Simon ([13]). Also, for $\beta \leq 0$ and $\lambda=0$, we prove that the solutions obtained in the previous section are in fact global in time.

Finally, if $\lambda>0$ and $\beta<0$, we establish in Section 4 the global existence of weak solutions for (6) by applying a compensated-compactness method developed in [14] by Serre and Shearer (see also [2]). The adaptation of this method to a Schrödinger- Nonlinear Elasticity system was made in [4]. The technique of using this compensated-compactness result in order to prove the existence of global weak solutions was introduced in [3] in the frame of a Schrödinger - Conservation law system.

2 Local existence of strong solutions

In this section we adress the local-wellposdness of the I.V.P. (6).

Let $u_{o} \in H^{3}(\mathbb{R}), \rho_{0} \in H^{3}(\mathbb{R})$ and $\rho_{1} \in H^{2}(\mathbb{R})$.
By setting $v=\rho_{x}, w=\rho_{t}$ and $\sigma(v)=v+\lambda v^{2}$, the Cauchy problem (6) is equivalent to

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=u v+\alpha|u|^{2} u \tag{8}\\
\rho_{t}=w \\
v_{t}-w_{x}=0 \\
w_{t}-(\sigma(v))_{x}=\left(|u|^{2}\right)_{x}+\beta \rho^{3}
\end{array}\right.
$$

with initial data

$$
\begin{gather*}
u(., 0)=u_{o} \in H^{3}(\mathbb{R}), \quad \rho(., 0)=\rho_{0} \in H^{3}(\mathbb{R}), \quad v(., 0)=v_{o}:=\rho_{0 x} \in H^{2}(\mathbb{R}) \tag{9}\\
\\
\quad \text { and } w(., 0)=w_{0}:=\rho_{1} \in H^{2}(\mathbb{R}) .
\end{gather*}
$$

Let $\lambda \geq 0$. By introducing the Riemann invariants

$$
l=w+\int_{0}^{v} \sqrt{1+3 \lambda \xi^{2}} d \xi \quad \text { and } \quad r=w-\int_{0}^{v} \sqrt{1+3 \lambda \xi^{2}} d \xi
$$

we derive

$$
l-r=2 \int_{0}^{v} \sqrt{1+3 \lambda \xi^{2}} d \xi=v \sqrt{1+3 \lambda v^{2}}+\frac{1}{\sqrt{3 \lambda}} \operatorname{arcsinh}(\sqrt{3 \lambda}), \quad w=\frac{l+r}{2} .
$$

Noticing that

$$
f(v)=v \sqrt{1+3 \lambda v^{2}}+\frac{1}{\sqrt{3 \lambda}} \operatorname{arcsinh}(\sqrt{3 \lambda})
$$

is one-one and smooth, we put $v=f^{-1}(l-r)=v(l, r)$ and for classical solutions the Cauchy problem (8), (9) is equivalent to

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=u v+\alpha|u|^{2} u \tag{10}\\
\rho_{t}=\frac{1}{2}(l+r) \\
l_{t}-\sqrt{1+3 \lambda v^{2}} l_{x}=\left(|u|^{2}\right)_{x}+\beta \rho^{3} \\
r_{t}+\sqrt{1+3 \lambda v^{2}} r_{x}=\left(|u|^{2}\right)_{x}+\beta \rho^{3}
\end{array}\right.
$$

with initial data

$$
\begin{align*}
u(., 0)=u_{o} \in H^{3}(\mathbb{R}), & \rho(., 0)=\rho_{0} \in H^{3}(\mathbb{R}), \quad l(., 0)=l_{0} \in H^{2}(\mathbb{R}), \tag{11}\\
& \text { and } r(., 0)=r_{0} \in H^{2}(\mathbb{R}),
\end{align*}
$$

where

$$
\begin{equation*}
l_{0}=w_{0}+\int_{0}^{v_{0}} \sqrt{1+3 \lambda \xi^{2}} d \xi \quad \text { and } r_{0}=w_{0}-\int_{0}^{v_{0}} \sqrt{1+3 \lambda \xi^{2}} d \xi \tag{12}
\end{equation*}
$$

In order to obtain a local classical solution for the Cauchy problem (10),(11) for a fixed $\lambda \geq 0$ we will follow the technique employed in [6] and in [5]:

We consider the auxiliary system with non-local source terms

$$
\left\{\begin{array}{l}
i F_{t}+F_{x x}=2 \alpha|u|^{2} F+\alpha u^{2} \bar{F}+F v+\frac{1}{2} u\left(l_{x}+r_{x}\right) \tag{13}\\
\rho_{t}=\frac{1}{2}(l+r) \\
l_{t}-\sqrt{1+3 \lambda v^{2}} l_{x}=\left(|\tilde{u}|^{2}\right)_{x}+\beta \rho^{3} \\
r_{t}+\sqrt{1+3 \lambda v^{2}} r_{x}=\left(|\tilde{u}|^{2}\right)_{x}+\beta \rho^{3}
\end{array}\right.
$$

where \bar{F} is the complex conjugate of F and

$$
\begin{gather*}
u(x, t)=u_{0}(x)+\int_{0}^{t} F(x, s) d s \tag{14}\\
\tilde{u}(x, t)=(\Delta-1)^{-1}\left(\alpha|u|^{2} u+u(v-1)-i F\right),
\end{gather*}
$$

with initial data

$$
\begin{gather*}
F(., 0)=F_{0} \in H^{1}(\mathbb{R}), \quad \rho(., 0)=\rho_{0} \in H^{3}(\mathbb{R}), \quad l(., 0)=l_{0} \in H^{2}(\mathbb{R}), \tag{15}\\
\text { and } r(., 0)=r_{0} \in H^{2}(\mathbb{R}), \quad l_{0} \text { and } r_{0} \text { given by }(12) .
\end{gather*}
$$

We will prove the following result:
Theorem 2.1 Let $\left(F_{0}, \rho_{0}, l_{0}, r_{0}\right) \in H^{1} \times H^{3} \times H^{2} \times H^{2}$.
There exists $T^{*}=T^{*}\left(F_{0}, \rho_{0}, l_{0}, r_{0}\right)>0$ such that for all $T<T^{*}$ there exists a unique solution (F, ρ, l, r) of the Cauchy problem (13), (15) with
$(F, \rho, l, r) \in C^{j}\left([0, T] ; H^{1-2 j}\right) \times C^{j}\left([0, T] ; H^{3-j}\right) \times C^{j}\left([0, T] ; H^{2-j}\right) \times C^{j}\left([0, T] ; H^{2-j}\right), \quad j=0,1$.
From this result, we will prove the following Theorem
Theorem 2.2 Let $\left(u_{0}, \rho_{0}, \rho_{1}\right) \in H^{3} \times H^{3} \times H^{2}$.
There exists $T^{*}=T^{*}\left(F_{0}, \rho_{0}, \rho_{1}\right)>0$ such that for all $T<T^{*}$ there exists a unique solution (F, ρ, l, r) of the Cauchy problem (6), with

$$
(F, \rho) \in C^{j}\left([0, T] ; H^{3-2 j}\right) \times\left(C^{j}\left([0, T] ; H^{3-2 j}\right) \cap C^{j+1}\left([0, T] ; H^{2-2 j}\right)\right), \quad j=0,1 .
$$

Proof of Theorem 2.1:

We want to apply a variant of Theorem 6 in [9], hence we need to put the Cauchy problem in the framework of real spaces. By introducing the new variables $F_{1}=\operatorname{Re}(F), F_{2}=\operatorname{Im}(F), u_{1}=\operatorname{Re}(u), u_{2}=\operatorname{Im}(u)$.

By setting $U=\left(F_{1}, F_{2}, \rho, l, r\right)$ and $F_{10}=\operatorname{Re}\left(F_{0}\right), F_{20}=\operatorname{Im}\left(F_{0}\right)$, the I.V.P. (13), (15) can be written in the form

$$
\left\{\begin{array}{c}
\frac{\partial}{\partial t} U+A(U) U=g(t, U) \tag{16}\\
U(., 0)=U_{0}
\end{array}\right.
$$

where

$$
\begin{gathered}
A(U)=\left[\begin{array}{ccccc}
0 & \Delta & 0 & 0 & 0 \\
-\Delta & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -\sqrt{1+3 \lambda v^{2}} & 0 \\
0 & 0 & 0 & 0 & \sqrt{1+3 \lambda v^{2}}
\end{array}\right], \\
g(t, U)=\left[\begin{array}{c}
2 \alpha|u|^{2} F_{2}-\alpha\left(u_{1}^{2}-u_{2}^{2}\right) F_{2}+2 \alpha u_{1} u_{2} F_{1}+F_{2} v+\frac{1}{2} u_{2}\left(l_{x}+r_{x}\right) \\
2 \alpha|u|^{2} F_{1}-\alpha\left(u_{1}^{2}-u_{2}^{2}\right) F_{1}-2 \alpha u_{1} u_{2} F_{2}-F_{1} v-\frac{1}{2} u_{2}\left(l_{x}+r_{x}\right) \\
\frac{1}{2}(l+r) \\
\left(|\tilde{u}|^{2}\right)_{x}+\beta \rho^{3} \\
\left(|\tilde{u}|^{2}\right)_{x}+\beta \rho^{3}
\end{array}\right]
\end{gathered}
$$

and

$$
U_{0}=\left(F_{10}, F_{20}, \rho_{0}, l_{0}, r_{0}\right) \in Y=\left(H^{1}(\mathbb{R})\right)^{2} \times\left(H^{2}(\mathbb{R})\right)^{3}
$$

(The condition $\rho_{0} \in H^{3}(\mathbb{R})$ will be used later).
Note that the source term $g(t, U)$ is non-local, due to the presence of \tilde{u}.

We now set $X=\left(H^{-1}(\mathbb{R})^{2} \times\left(L^{2}(\mathbb{R})\right)^{3}\right.$ and $S=(1-\Delta) I$, wich is an isomorphism $S: Y \rightarrow X$.

Furthermore, we denote by W_{R} the open ball in Y of radius R centered at the origin and by $G(X, 1, \beta)$ the set of linear operators $\Lambda: D(\Lambda) \subset X \rightarrow X$ such that:

- $-\Lambda$ generates a C_{o}-semigroup $\left\{e^{-t \Lambda}\right\}_{t \in \mathbb{R}}$;
- for all $t \geq 0,\left\|e^{-t \Lambda}\right\| \leq e^{\beta t}$, where, for all $U \in W_{R}$,

$$
\begin{gathered}
\beta=\frac{1}{2} \sup _{x \in \mathbb{R}}\left\|\frac{\partial}{\partial x} a(\rho, l, r)\right\| \leq c(R), \quad c:[0 ;+\infty[\rightarrow[0 ;+\infty[\text { continuous, and } \\
a(\rho, l, r)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\sqrt{1+3 \lambda v^{2}} & 0 \\
0 & 0 & \sqrt{1+3 \lambda v^{2}}
\end{array}\right]
\end{gathered}
$$

Following [9] (paragraph 12),

$$
A: U=\left(F_{1}, F_{2}, \rho, l, r\right) \in W_{R} \rightarrow G(X, 1, \beta) .
$$

It is easy to see that g verifies, for fixed $T>0,\|g(y, U)\|_{Y} \leq \theta, t \in[0, T], U \in W$. For (ρ, l, r) in a ball \tilde{W} in $\left(H^{2}(\mathbb{R})\right)^{3}$, we set (see [9]-12.6)

$$
B_{o}(\rho, l, r)=[(1-\Delta), a(\rho, l, r)](1-\Delta)^{-1} \in \mathcal{L}\left(\left(L^{2}(\mathbb{R})\right)^{3}\right) .
$$

We now introduce the operator $B(U) \in \mathcal{L}(X), U=\left(F_{1}, F_{2}, \rho, l, r\right) \in \in W_{R}$ by

$$
B(U)=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & & & \\
0 & 0 & & B_{0}(\rho, l, r) & \\
0 & 0 & &
\end{array}\right] .
$$

In [9] (paragraph 12), Kato proved that for $(\rho, l, r) \in \tilde{W}$ we have

$$
(1-\Delta) a(\rho, l, r)(1-\Delta)^{-1}=a(\rho, l, r)+B_{0}(\rho, l, r) .
$$

Hence, we easily derive for $U \in W_{R}, S A(U) S^{-1}=A(U)+B(U)$.
Now, for each pair $U, U * \in W_{R}, U=\left(F_{1}, F_{2}, \rho, l, r\right), U^{*}=\left(F_{1}^{*}, F_{2}^{*}, \rho^{*}, l^{*}, r^{*}\right)$, we claim that

$$
\begin{equation*}
\left\|g(t, U)-g\left(t, U^{*}\right)\right\|_{L^{1}\left(0, T^{\prime} ; X\right)} \leq c\left(T^{\prime}\right) \sup _{0 \leq t \leq T^{\prime}}\left\|U(t)-U\left(t^{\prime}\right)\right\|_{X} \tag{17}
\end{equation*}
$$

where $0 \leq T^{\prime} \leq T$ and and $c\left(T^{\prime}\right)$ is a non-decreasing function such that $c(0)=0$. Indeed, let us point out that for $h \in L^{2}(\mathbb{R})$ and $w \in H^{1}(\mathbb{R})$,

$$
\|h w\|_{H^{-1}} \leq\|h\|_{H^{-1}}\|w\|_{H^{1}} .
$$

Hence, for example,

$$
\left\|F_{1} u_{1}\left(u_{1}^{*}-u_{1}\right)\right\|_{H^{-1}} \leq\left\|F_{1}\right\|_{H^{1}}\left\|u_{1}\right\|_{H^{1}}\left\|u_{1}^{*}-u_{1}\right\|_{H^{-1}}
$$

and, for $t \leq T^{\prime}$,

$$
\begin{gathered}
\left(l_{x}+r_{x}\right)\left(\int_{0}^{t} F_{2}-\int_{0}^{t} F_{2}^{*}\right)\left\|_{H^{-1}} \leq\right\| l_{x}+r_{x}\left\|_{H^{1}} \int_{0}^{t}\right\| F-F * \|_{H^{-1}} \\
\leq c\left(T^{\prime}\right) \sup _{0 \leq t \leq T^{\prime}}\left\|U(t)-U^{*}(t)\right\|_{X}
\end{gathered}
$$

Finally, applying Theorem 6 in [9], replacing the local condition (7.7) by (17), we obtain the result described in Theorem 2.1, but with $\rho \in C^{j}\left([0 ; T], H^{2-j}\right), j=0,1$. To obtain $\rho \in C^{j}\left([0, T], H^{3-j}\right)$, it is enough to remark that, since $\rho_{t}=w, \rho_{0} \in H^{3}$, $v_{0}=\rho_{0 x} \in H^{2}, w_{0} \in \rho_{1} \in H^{2}$, we derive $\rho_{x}=v \in C^{j}\left([0, T], H^{2-j}\right)$.

Proof of Theorem 2.2:

We will follow here the ideas in [5]:
If (F, ρ, l, r) is a solution of (13), (15), by differenciating (14) with respect to t we obtain $u=F$. Replacing in the first equation of (13), we obtain
$\left(i u_{t}+u_{x x}\right)_{t}=2 \alpha|u|^{2} F+\alpha u^{2} \bar{F}+F v+\frac{1}{2} u\left(l_{x}+r_{x}\right)=2 \alpha|u|^{2} u_{t}+\alpha u^{2} \bar{u}_{t}+u_{t} v+u v_{t}$.

Hence, $\left(i u_{t}+u_{x} x-\alpha|u|^{2} u-u v\right)_{t}=0$, and we get $i u_{t}+u_{x} x-\alpha|u|^{2} u-u v=\phi_{0}(x)$, where

$$
\phi_{0}(x)=i F_{0}+u_{0}^{\prime \prime}-\alpha\left|u_{0}\right|^{2} u_{0}-u_{0} v_{0}
$$

By choosing $F_{0}=i\left(u_{0}^{\prime \prime}-\alpha\left|u_{0}\right|^{2} u_{0}-u_{0} v_{0}\right)$, we obtain $\phi_{0}=0$ and (u, v) satisfy the first equation in (10).

Furthermore, from this equation we derive

$$
\begin{equation*}
u=(\Delta-1)^{-1}\left(\alpha|u|^{2} u+u(v-1)-i u_{t}\right) \tag{18}
\end{equation*}
$$

Therefore $u=\tilde{u}$ and (u, ρ, l, r) satisfy (10), (11). Note that $u_{t}=F \in C\left([0, T] ; H^{1}\right)$. Moreover

$$
u(x, t)=u_{0}(x)+\int_{0}^{t} F(x, s) d s \in C\left([0, T] ; H^{1}\right)
$$

but from (18) we have in fact $u \in C\left([0, T] ; H^{3}\right)$.

3 Global well-posedness for $\lambda=0$ and blow-up results

In this section, we prove that the local solutions obtained in Theorem 2.2 are in fact global in time in the case where $\beta \leq 0$ and $\lambda=0$. Conversely, if $\beta>0$, we show the blow-up of the local solutions in finite time under some conditions on the initial data.

We consider initial data $\left(u_{0}, \rho_{0}, \rho_{1}\right) \in H^{3} \times H^{3} \times H^{2}$. Let

$$
(u, \rho) \in C^{j}\left([0, T], H^{3-2 j}\right), \quad j=0,1
$$

the unique corresponding maximal solution of the Cauchy problem (6). We begin by deriving the following conservation laws:

$$
\begin{gather*}
\frac{\partial}{\partial t} \int|u|^{2} d x=0, \quad t \in[0, T[\tag{19}\\
\frac{\partial}{\partial t} E(t)=0, \quad t \in[0 ; T[\tag{20}
\end{gather*}
$$

where the energy $E(t)$ is given by

$$
\begin{gathered}
E(t)=\frac{1}{2} \int\left(\rho_{t}\right)^{2} d x+\frac{1}{2} \int\left(\rho_{x}\right)^{2} d x+\frac{\lambda}{4} \int\left(\rho_{x}\right)^{4} d x-\frac{\beta}{4} \int \rho^{4} d x+\int \rho_{x}|u|^{2} d x \\
+\int\left|u_{x}\right|^{2} d x+\frac{\alpha}{2} \int|u|^{4} d x
\end{gathered}
$$

For the first one we multiply the first equation in (6) by \bar{u} and we integrate the imaginary part. To obtain the conservation of energy, we derive from (6)

$$
R e \int i u_{t} \bar{u}_{t} d x+R e \int u_{x x} \bar{u}_{t} d x=R e \int \rho_{x} u \bar{u}_{t} d x+\alpha R e \int|u|^{2} u \bar{u}_{t} d x
$$

and

$$
\begin{aligned}
-\frac{1}{2} \frac{\partial}{\partial t} \int\left|u_{x}\right|^{2} d x & =\frac{1}{2} \int \rho_{x} \frac{\partial}{\partial t}|u|^{2} d x+\frac{\alpha}{4} \frac{\partial}{\partial t} \int|u|^{4} d x \\
& =\frac{1}{2} \frac{\partial}{\partial t} \int \rho_{x}|u|^{2} d x-\frac{1}{2} \int \frac{\partial}{\partial t} \rho_{x}|u|^{2} d x+\frac{\alpha}{4} \frac{\partial}{\partial t} \int|u|^{4} d x .
\end{aligned}
$$

Finally,

$$
\begin{gathered}
-\frac{1}{2} \int \frac{\partial^{2} \rho}{\partial x \partial t}|u|^{2} d x-\frac{1}{2} \int \frac{\partial \rho}{\partial t}\left(|u|^{2}\right)_{x} d x=\frac{1}{2} \int \frac{\partial \rho}{\partial t}\left\{\frac{\partial^{2} \rho}{\partial t^{2}}-\frac{\partial}{\partial x}\left[\rho_{x}+\lambda\left(\rho_{x}\right)^{3}\right]-\beta \rho^{3}\right\} d x \\
=\frac{1}{4} \frac{\partial}{\partial t} \int\left(\rho_{t}\right)^{2} d x+\frac{1}{4} \frac{\partial}{\partial t} \int\left(\rho_{x}\right)^{2} d x+\frac{\lambda}{8} \frac{\partial}{\partial t} \int\left(\rho_{x}\right)^{4}-\frac{\beta}{8} \frac{\partial}{\partial t} \int \rho^{4} d x
\end{gathered}
$$

and (20) is proved.

Next, we will prove the following result:
Theorem 3.1 Let $\beta \leq 0$ and $\lambda=0$.
Then Theorem 2.2 holds for $T^{*}=+\infty$.

Proof of Theorem 3.1:

In order to prove this result, we is sufficient to deriva a priori bounds for the norms $\|u\|_{H^{3}},\|\rho\|_{H^{3}}$ and $\left\|\rho_{t}\right\|_{H^{2}}$.
Let us begin by noticing that $\left.\left.\left|\int \rho_{x}\right| u\right|^{2} d x\left|\leq \frac{1}{4} \int\left(\rho_{x}\right)^{2} d x+\int\right| u\right|^{4} d x$.
By the Gagliardo-Nirenberg inequality and (19),

$$
\|u\|_{L^{4}}^{4} \leq c_{0}\|u\|_{L^{2}}^{3}\left\|u_{x}\right\|_{L^{2}} \leq c_{0}\left\|u_{0}\right\|_{L^{2}}^{3}\left\|u_{x}\right\|_{L^{2}} \leq c\left\|u_{0}\right\|_{L^{2}}^{6}+\frac{1}{2}\left\|u_{x}\right\|_{L^{2}}^{2} .
$$

Since $\beta \leq 0$, we obtain from (20)

$$
\begin{equation*}
\int\left(\rho_{t}\right)^{2} d x+\int\left[\left(\rho_{x}\right)^{2}+\lambda\left(\rho_{x}\right)^{4}\right] d x+\int\left|u_{x}\right|^{2} d x \leq c, \tag{21}
\end{equation*}
$$

with c depending only on $\left(\left\|u_{0}\right\|_{H^{1}},\left\|\rho_{0}\right\|_{H^{2}},\left\|\rho_{1}\right\|_{H^{1}}\right)$.
Moreover, since $\rho(t)=\rho_{0}(x)+\int_{0}^{t} \rho_{t}(x, \tau, d \tau)$,

$$
\|\rho(t)\|_{L^{2}} \leq\left\|\rho_{0}\right\|_{L^{2}}+\int_{0}^{t}\left\|\rho_{t}(\tau)\right\|_{L^{2}} d \tau
$$

hence, since $\beta \leq 0$,

$$
\begin{equation*}
\int\left(\rho_{t}\right)^{2} d x+\int(\rho)^{2} d x+\int\left(\rho_{x}\right)^{2} d x+\int|u|^{2} d x+\int\left|u_{x}\right|^{2} d x \leq C(1+t) \tag{22}
\end{equation*}
$$

with C depending exclusively on the initial data.
Next, we estimate $\left\|u_{x x}\right\|_{L^{2}},\left\|\rho_{x t}\right\|_{L^{2}}$ and $\left\|\rho_{x x}\right\|_{L^{2}}$. For $\lambda=0$, the system (10) reads

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=u v+\alpha|u|^{2} u \tag{23}\\
\rho_{t}=\frac{1}{2}(l+r) \\
l_{t}-l_{x}=\left(|u|^{2}\right)_{x}+\beta \rho^{3} \\
r_{t}+r_{x}=\left(|u|^{2}\right)_{x}+\beta \rho^{3}
\end{array}\right.
$$

We put

$$
\alpha(t)=\int\left(r_{x}\right)^{2} d x+\int\left(l_{x}\right)^{2}+\int\left|u_{t}\right|^{2} d x .
$$

In what follows we will denote by $A(t)$ a generic positive continuous function

$$
A: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}
$$

which can change from line to line.
By deriving with respect to x the last equation in (23), multiplying by r_{x} and integrating, we get

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t} \int\left(r_{x}\right)^{2} d x \leq 2 \int\left|u u_{x} r_{x}\right| d x+2 \int\left|u_{x}^{2} r_{x}\right| d x+3|\beta| \int \rho^{2}\left|\rho_{x} r_{x}\right| d x \\
\leq A(t)\left[\left(\int r_{x}^{2} d x\right)^{\frac{1}{2}}\left(\int\left|u_{x x}\right|^{2} d x\right)^{\frac{1}{2}}+\|u\|_{\infty}\left(\int\left|u_{x}\right|^{2} d x\right)^{\frac{1}{2}}\left(\int r_{x}^{2} d x\right)^{\frac{1}{2}}+\left(\int r_{x}^{2} d x\right)^{\frac{1}{2}}\right] \\
\leq A(t)\left[\left(\int r_{x}^{2} d x\right)^{\frac{1}{2}}\left(\int\left|u_{x x}\right|^{2} d x\right)^{\frac{1}{2}}+\left(\int r_{x}^{2} d x\right)^{\frac{1}{2}}\right]
\end{gathered}
$$

where we have used the Sobolev injection $\left\|u_{x}\right\|_{\infty} \leq c\left\|u_{x}\right\|_{H^{1}}$ and (22).
By writing a similar estimate for l_{x}, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int\left(\left(r_{x}\right)^{2}+\left(l_{x}\right)^{2}\right) d x \leq A(t)\left[\alpha^{\frac{1}{2}}(t)+\alpha^{\frac{1}{2}}(t)\left(\int\left|u_{x x}\right|^{2} d x\right)^{\frac{1}{2}}\right] . \tag{24}
\end{equation*}
$$

From the first equation in (23),

$$
\begin{equation*}
\left\|u_{x x}\right\|_{L^{2}} \leq\left\|u_{t}\right\|_{L^{2}}+A(t) \leq \alpha^{\frac{1}{2}}(t)+A(t) . \tag{25}
\end{equation*}
$$

By replacing in (24),

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t} \int\left(\left(r_{x}\right)^{2}+\left(l_{x}\right)^{2}\right) d x \leq A(t)\left[\alpha^{\frac{1}{2}}(t)+\alpha(t)\right] . \tag{26}
\end{equation*}
$$

Moreover, since $\rho_{t}=\frac{1}{2}(l+r)$,

$$
\begin{equation*}
\left\|\rho_{x t}\right\|_{L^{2}} \leq c \alpha^{\frac{1}{2}}(t) \tag{27}
\end{equation*}
$$

Now, by multiplying the first equation in (23) by \bar{u}_{t}, integrating the imaginary part and using the Cauchy-Schwarz inequality,

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t} \int\left|u_{t}\right|^{2} d x=\int \rho_{x t} \operatorname{Im}\left(u \bar{u}_{t}\right)+\alpha \int\left(|u|^{2}\right)_{t} \operatorname{Im}\left(u \bar{u}_{t}\right) \\
\leq\|u\|_{\infty}\left\|\rho_{x t}\right\|_{L^{2}}\left(\int\left|u_{t}\right|^{2} d x\right)^{\frac{1}{2}} \leq c \alpha(t) .
\end{gathered}
$$

Finally, using (26), we get

$$
\frac{d}{d t} \alpha(t) \leq A(t)\left[\alpha^{\frac{1}{2}}(t)+\alpha(t)\right] \leq A(t)[1+\alpha(t)]
$$

and

$$
\alpha(t) \leq(1+\alpha(0)) e^{\int_{0}^{t} A(\tau) d \tau}-1 .
$$

Hence, by (25) and (27),

$$
\left\|u_{x x}\right\|_{L^{2}}+\left\|\rho_{x t}\right\|_{L^{2}} \leq A(t) .
$$

By, the second and third equation in (23), $\left\|l_{t}\right\|_{L^{2}}+\left\|r_{t}\right\|_{L^{2}} \leq A(t)$, therefore

$$
\left\|\rho_{t t}\right\|_{L^{2}}=\frac{1}{2}\left\|l_{t}+r_{t}\right\|_{L^{2}} \leq A(t)
$$

and

$$
\left\|\rho_{x x}\right\|_{L^{2}}=\left\|\rho_{t t}-\left(|u|^{2}\right)_{x}-\beta \rho^{3}\right\|_{L^{2}} \leq A(t) .
$$

To obtain a continuous bound on $\left\|\rho_{x x x}\right\|_{L^{2}},\left\|u_{x x x}\right\|_{L^{2}}$ and $\left\|\rho_{t x x}\right\|_{L^{2}}$, the exact same method can be used by setting

$$
\alpha(t)=\int\left(r_{x x}\right)^{2} d x+\int\left(l_{x x}\right)^{2}+\int\left|u_{x t}\right|^{2} d x
$$

and deriving system (23) with respect to x.
We now assume $\beta>0$. In what follows, we will consider the following conditions on the initial data:

$$
\begin{equation*}
\int \rho_{0} \rho_{1} d x>0 \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
E(0)<-\frac{1}{64}\left(\frac{9}{4}+2 \alpha\right)^{2} c_{o}^{2}\left\|u_{o}\right\|_{L^{2}}^{6} . \tag{29}
\end{equation*}
$$

We will prove the following blow-up result:
Theorem 3.2 Let $\beta>0$.
Under the conditions of Theorem 2.2 and assuming that the initial data ($u_{o}, \rho_{0}, \rho_{1}$) satisfies conditions (28) and (29), there exists a time $0<T^{*} \leq T_{0}:=\left(\int \rho_{0}^{2}\right)\left(\int \rho_{0} \rho_{1}\right)^{-1}$ such that, if the solution exists in $\left[0, T^{*}\right]$, then

$$
\lim _{t \rightarrow T^{*-}} \int \rho^{2} d x=+\infty
$$

Proof of Theorem 3.2:

Following [13] (chapter 10, paragraph 13), let us put

$$
\begin{equation*}
G(t)=\int \rho^{2} d x \quad \text { and } \quad F(t)=(G(t))^{-\frac{1}{2}} \tag{30}
\end{equation*}
$$

We have $F^{\prime}(t)=-\frac{1}{2} G(t)^{-\frac{3}{2}} G^{\prime}(t)=-G(t)^{-\frac{3}{2}} \int \rho \rho_{t} d x$, and, from $(28), F^{\prime}(0)<0$.
Furthermore, we set $Q(t)=-2 G(t)^{\frac{5}{2}} F^{\prime \prime}(t)=G^{\prime \prime}(t) G(t)-\frac{3}{2} G^{\prime}(t)^{2}$, with

$$
G^{\prime \prime}(t)=6 \int\left(\rho_{t}\right)^{2} d x+2 H(t) \quad \text { and } \quad H(t)=\int\left[\rho \rho_{t t}-\frac{5}{2}\left(\rho_{t}\right)^{2}\right] d x
$$

We have

$$
Q(t)=6\left[\left(\int \rho^{2} d x\right)\left(\int\left(\rho_{t}\right)^{2} d x-\int\left(\rho \rho_{t}\right)^{2} d x\right)\right]+2 G(t) H(t)
$$

and by the Cauchy-Schwarz inequality we obtain $Q(t) \geq 0$, and consequently $F^{\prime \prime}(t) \leq 0$, provided $H(t) \geq 0$.
This last fact is easy to check. From (6) and (20),

$$
\begin{aligned}
& H(t)=-4 E(t)+4\left[\int\left|u_{x}\right|^{2} d x+\frac{\alpha}{2} \int|u|^{4} d x+\frac{3}{4} \int \rho_{x}|u|^{2}\right] d x+\int\left(\rho_{x}\right)^{2} d x \\
& \quad=-4 E(0)+4\left[\int\left|u_{x}\right|^{2} d x+\frac{\alpha}{2} \int|u|^{4} d x+\frac{3}{4} \int \rho_{x}|u|^{2}\right] d x+\int\left(\rho_{x}\right)^{2} d x
\end{aligned}
$$

We have

$$
3 \int \rho_{x}|u|^{2} d x \leq \int\left(\rho_{x}\right)^{2} d x+\frac{9}{4} \int|u|^{4} d x
$$

and, by the Gagliardo-Nirenberg inequality and (19),
$\left(\frac{9}{4}+2|\alpha|\right) \int|u|^{4} d x \leq\left(\frac{9}{4}+2|\alpha|\right) c_{0}\left\|u_{0}\right\|_{L^{2}}^{3}\left\|u_{x}\right\|_{L^{2}} \leq 4 \int\left|u_{x}\right|^{2} d x+\frac{1}{16}\left(\frac{9}{4}+2|\alpha|\right)^{2} c_{0}^{2}\left\|u_{0}\right\|_{L^{2}}^{6}$.
From condition $(29), H(t) \geq-4 E(0)-\frac{1}{16}\left(\frac{9}{4}+2|\alpha|\right)^{2} c_{0}^{2}\left\|u_{0}\right\|_{L^{2}}^{6} \geq 0$.
Hence, we have shown that for all $t \in\left[0, T\left[, F^{\prime \prime}(t) \leq 0\right.\right.$, which implies Theorem 3.2.

4 Global existence of weak solutions for the quasilinear system

For the study of the existence of a global weak solution to the Cauchy problem (6), we will consider, for $\epsilon>0$, the regularized problem (cf. [4] for the case $\beta=0$)

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=u \rho_{x}+\alpha|u|^{2} u \tag{31}\\
\rho_{t}=w \\
w_{t}-\epsilon w_{x x}=\beta \rho^{3}+\left(\sigma\left(\rho_{x}\right)\right)_{x}+\left(|u|^{2}\right)_{x}
\end{array}\right.
$$

with initial data (we have dropped the ϵ parameter on u, w and ρ)
$u(0, x)=u_{0}(x) \in H^{1}(\mathbb{R}), \rho(0, x)=\rho_{0}(x) \in H^{2}(\mathbb{R}), w(x, 0)=\rho_{t}(0, x)=\rho_{1}(x) \in H^{1}(\mathbb{R})$.
Here, $\sigma(v)=v+\lambda v^{3}$ and $\lambda>0$ (hence $\sigma^{\prime}(v)=1+3 \lambda v^{2}>0$).
For a smooth solution of (31)-(32), the energy identity (20) takes the form

$$
\begin{align*}
& \frac{d}{d t}\left\{\frac{1}{2} \int w^{2} d x+\frac{1}{2} \int v^{2} d x+\frac{\lambda}{4} \int v^{4} d x-\frac{\beta}{4} \int \rho^{4} d x+\right. \\
& \left.\int v|u|^{2} d x+\int\left|u_{x}\right|^{2} d x+\frac{\alpha}{2} \int|u|^{4} d x\right\}=-\epsilon \int\left(w_{x}\right)^{2} d x \tag{33}
\end{align*}
$$

where we have put $v=\rho_{x}$. On the other hand, the conservation law

$$
\begin{equation*}
\frac{d}{d t}\left(\int|u|^{2} d x\right)=0 \tag{34}
\end{equation*}
$$

still holds. Also, we deduce (cf. [4] and following [14])

$$
\int\left[w_{t} v_{x}-\sigma^{\prime}(v)\left(v_{x}\right)^{2}\right] d x=\int\left(|u|^{2}\right)_{x} v_{x} d x+\beta \int \rho^{3} v_{x} d x+\epsilon \int w_{x x} v_{x} d x
$$

and
$-\frac{d}{d t} \int w_{x} v d x+\int\left(w_{x}\right)^{2} d x-\int \sigma^{\prime}(v)\left(v_{x}\right)^{2} d x=\int\left(|u|^{2}\right)_{x} v_{x} d x+\beta \int \rho^{3} \rho_{x x} d x+\frac{\epsilon}{2} \frac{d}{d t} \int\left(v_{x}\right)^{2} d x$ since

$$
-\frac{d}{d t} \int w_{x} v d x=-\int w_{x t} v d x-\int w_{x} v_{t} d x=\int w_{t} v_{x} d x-\int w_{x} v_{t} d x
$$

and

$$
v_{t}=\rho_{x t}=w_{x}
$$

Integrating this identity over the time interval $[0, t]$ we obtain, with $v_{0}(x)=v(x, 0)$,

$$
\begin{aligned}
& -\int w_{x} v d x+\int \rho_{1 x} v_{0} d x+\int_{0}^{t} \int\left(w_{x}\right)^{2} d x d \tau-\int_{0}^{t} \int \sigma^{\prime}(v)\left(v_{x}\right)^{2} d x d \tau \\
= & \int_{0}^{t} \int\left(|u|^{2}\right)_{x} v_{x} d x d \tau-3 \beta \int_{0}^{t} \int \rho^{2}\left(\rho_{x}\right)^{2} d x d \tau+\frac{\epsilon}{2} \int\left(v_{x}\right)^{2} d x-\frac{\epsilon}{2} \int\left(v_{0 x}\right)^{2} d x .
\end{aligned}
$$

Since $-\int w_{x} v d x=\int w v_{x} d x$, we get

$$
\begin{align*}
& \int_{0}^{t} \int \sigma^{\prime}(v)\left(v_{x}\right)^{2} d x d \tau+\frac{\epsilon}{2} \int\left(v_{x}\right)^{2} d x \leq \frac{\epsilon}{4} \int\left(v_{x}\right)^{2} d x+\frac{1}{\epsilon} \int w^{2} d x+\int\left|v_{0} \rho_{1 x}\right| d x+ \\
& \frac{\epsilon}{2} \int\left(v_{0 x}\right)^{2} d x+3 \beta \int_{0}^{t} \int \rho^{2} v^{2} d x d \tau+\epsilon \int_{0}^{t} \int\left(w_{x}\right)^{2} d x d \tau+2 \int_{0}^{t} \int\left|u u_{x} v_{x}\right| d x d \tau \tag{35}
\end{align*}
$$

and

$$
\begin{equation*}
2 \int_{0}^{t} \int\left|u u_{x} v_{x}\right| d x d \tau \leq 2 \int_{0}^{t} \int\left|u u_{x}\right|^{2} d x d \tau+\frac{1}{2} \int_{0}^{t} \int\left(v_{x}\right)^{2} d x d \tau \tag{36}
\end{equation*}
$$

Now, let us assume $\beta \leq 0$. Since $\epsilon>0$, we can derive from (33), as in (21),

$$
\begin{equation*}
\int w^{2} d x+\int\left(v^{2}+\lambda v^{4}\right) d x+\int\left|u_{x}\right|^{2}+\epsilon \int_{0}^{t}\left(w_{x}\right)^{2} d x d \tau \leq C \tag{37}
\end{equation*}
$$

where C only depends on $\left(\left\|u_{0}\right\|_{H^{1}},\left\|\rho_{0}\right\|_{H^{2}},\left\|\rho_{1}\right\|_{H^{1}}\right)$.
Hence, from (34), (36) and (37),

$$
\begin{equation*}
2 \int_{0}^{t} \int\left|u u_{x} v_{x}\right| d x d \tau \leq C t+\frac{1}{2} \int_{0}^{t} \int \sigma^{\prime}(v)\left(v_{x}\right)^{2} d x d \tau \tag{38}
\end{equation*}
$$

Taking $\epsilon \leq 1$, we deduce from (35), (36), (37) and (38)

$$
\begin{equation*}
\epsilon \int_{0}^{t} \int \sigma^{\prime}(v)\left(v_{x}\right)^{2} d x d \tau+\epsilon^{2} \int\left(v_{x}\right)^{2} d x+\epsilon|\beta| \int_{0}^{t} \int \rho^{2} v^{2} d x d \tau \leq C(1+t) \tag{39}
\end{equation*}
$$

Let us now analyse the problem of the existence and uniqueness of a solution

$$
(u, \rho, w) \in C\left(\left[0,+\infty\left[; H^{1}\right) \times C\left(\left[0,+\infty\left[; H^{2}\right) \times C\left(\left[0,+\infty\left[; H^{1}\right)\right.\right.\right.\right.\right.\right.
$$

to the Cauchy problem (31)-(32). Without loss of generality, we may assume $\epsilon=1$. We start with the existence and uniqueness of a local (in time) solution. We fix $0<T<+\infty$ and introduce the Banach spaces $X_{T}=C\left([0, T] ; H^{1}\right)$ (complex) and $Y_{T}=C\left([0, T] ; H^{2}\right)$ (real) endowed with the usual norms. Furthermore, we consider the product space $\tilde{B}_{R}^{T} \times B_{R}^{T}$ where

$$
\tilde{B}_{R}^{T}=\left\{u \in X_{T}:\|u\|_{X_{T}} \leq R\right\} \quad \text { and } \quad B_{R}^{T}=\left\{u \in Y_{T}:\|u\|_{Y_{T}} \leq R\right\} .
$$

Finally, we consider the application

$$
\Phi:(\tilde{u}, \tilde{\rho}) \in \tilde{B}_{R}^{T} \times B_{R}^{T} \rightarrow(u, \rho) \in X_{T} \times Y_{T}
$$

Here, u denotes the solution of the linear problem

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=\tilde{\rho}_{x} \tilde{u}+\alpha|\tilde{u}|^{2} \tilde{u} \tag{40}\\
u(., 0)=u_{0} \in H^{1},
\end{array}\right.
$$

and

$$
\begin{equation*}
\rho(t)=\rho_{0}+\int_{0}^{t} w d \tau, \quad \rho(., 0)=\rho_{0} \in H^{2} \tag{41}
\end{equation*}
$$

where w is the unique solution of

$$
\left\{\begin{array}{l}
w_{t}-w_{x x}=\beta \tilde{\rho}^{3}+\left(\sigma\left(\tilde{\rho}_{x}\right)\right)_{x}+\left(|\tilde{u}|^{2}\right)_{x} \tag{42}\\
w(., 0)=w_{0}(x) \in H^{1}
\end{array}\right.
$$

verifying $w \in L^{2}\left(0, T ; H^{2}\right), w_{t} \in L^{2}\left(0, T ; L^{2}\right)$. We have

$$
u(t)=e^{i t \partial_{x x}} u_{0}-i \int_{0}^{t} e^{i(t-s) \partial_{x x}}\left(\tilde{\rho}_{x} \tilde{u}+\alpha|\tilde{u}|^{2} \tilde{u}\right)(s) d s
$$

and $\beta \tilde{\rho}^{3}+\left(\sigma\left(\tilde{\rho}_{x}\right)\right)_{x}+\left(|\tilde{u}|^{2}\right)_{x} \in C\left([0, T] ; L^{2}\right)$.
The existence and uniqueness of a local solution is a consequence of the Banach fixed-point theorem for a convenient choice of R and $T, R>\max \left(\left\|u_{0}\right\|_{H^{1}},\left\|\rho_{0}\right\|_{H^{2}}\right)$. We have

$$
w_{t}-w_{x x}=\beta \rho^{3}+\left(\sigma\left(\rho_{x}\right)\right)_{x}+\left(|u|^{2}\right)_{x} .
$$

From (33), (34), (37), (39), (40) and (41), we derive the a priori estimate

$$
\left|w_{t}-w_{x x}\right|_{L^{2}\left(0, T ; L^{2}\right)} \leq C(T), \quad C \in C\left(\left[0,+\infty\left[; \mathbb{R}_{+}\right),\right.\right.
$$

which implies $w \in L^{2}\left(0, T ; H^{2}\right)$ and a similar a priori estimate for $\|w\|_{L^{2}\left(0, T ; H^{2}\right)}$ and so for $\left\|w_{t}\right\|_{L^{2}\left(0, T ; L^{2}\right)}$ and $\|w\|_{C\left([0, T] ; H^{1}\right)}$.

We conclude that $\rho \in Y_{T}$ and $u \in X_{T}$, with similar estimates for $\|\rho\|_{Y_{T}}$ and $\|u\|_{X_{T}}$, hence we can extend the solution to $[0,+\infty[$.
Hence, if we write

$$
\begin{equation*}
\rho_{\epsilon}(t)=\rho_{0}+\int_{0}^{t} w_{\epsilon} d \tau, \quad \rho_{0} \in H^{2}(\mathbb{R}), \quad 0<\epsilon \leq 1 \tag{43}
\end{equation*}
$$

we get, with
$u_{\epsilon}(0, x)=u_{0}(x) \in H^{1}, \quad v_{\epsilon}(0, x)=v_{0}(x) \in H^{1}, \quad w_{\epsilon}(0, x)=\rho_{t}(0, x)=\rho_{1}(x) \in H^{1}$,
a unique solution

$$
\begin{equation*}
\left(u_{\epsilon}, v_{\epsilon}, w_{\epsilon}\right) \in\left(C \left(\left[0,+\infty\left[; H^{1}\right)\right)^{3}\right.\right. \tag{44}
\end{equation*}
$$

of the Cauchy problem

$$
\left\{\begin{array}{l}
i u_{\epsilon t}+u_{\epsilon x x}=u_{\epsilon} v_{\epsilon}+\alpha\left|u_{\epsilon}\right|^{2} u_{\epsilon} \tag{46}\\
v_{\epsilon t}=w_{\epsilon x} \\
w_{\epsilon t}=(\sigma(v))_{x}+\left(\left|u_{\epsilon}\right|^{2}\right)_{x}+\beta \rho_{\epsilon}{ }^{3}+\epsilon w_{\epsilon x x}
\end{array}\right.
$$

with the initial data (44).
Moreover, we have for each $T>0$, by (34), (37) and the first equation in (31),

$$
\begin{array}{r}
\left\{u_{\epsilon}\right\}_{\epsilon} \text { bounded in } L^{\infty}\left(0,+\infty ; H^{1}\right), \\
\left\{u_{\epsilon \epsilon}\right\}_{\epsilon} \text { bounded in } L^{\infty}\left(0,+\infty ; H^{-1}\right),
\end{array}
$$

hence $\left\{u_{\epsilon}\right\}_{\epsilon}$ belongs to a compact set of $L^{2}\left(0, T ; L^{2}\left(I_{R}\right)\right)$ for each interval $I_{R}=$ $[-R, R], R \geq 0$. By applying a standard diagonalization method we conclude that there exists $u \in L^{\infty}\left(0,+\infty ; H^{1}\right)$ and a subsequence of $\left\{u_{\epsilon}\right\}_{\epsilon}$, still denoted $\left\{u_{\epsilon}\right\}_{\epsilon}$, such that

$$
u_{\epsilon} \rightarrow u \text { in } L^{\infty}\left(0,+\infty ; H^{1}\right) \text { weak }{ }^{*} \text { and in } L_{l o c}^{1}(\mathbb{R} \times[0, \infty[) .
$$

We also have, by (37) and (39), $\left\{w_{\epsilon}\right\}_{\epsilon}$ bounded in $L_{l o c}^{2}\left(\mathbb{R} \times\left[0, \infty[)\right.\right.$ and, with $\sum(v)=$ $\frac{1}{2} v^{2}+\frac{\lambda}{4} v^{4},\left\{v_{\epsilon}\right\}_{\epsilon}$ bounded in $L_{l o c} \sum_{\mathbb{R}} \times\left[0, \infty[)\right.$, where $v \in L_{l o c} \sum_{\mathbb{R}} \times[0, \infty[)$ means
$\int_{K} \sum(v) d x d t<+\infty$ for each compact $K \subset \mathbb{R} \times[0,+\infty[$. Finally we have, by (43), $\left\{\rho_{\epsilon}\right\}_{\epsilon}$ bounded in $L_{l o c}^{2}(\mathbb{R} \times[0,+\infty[)$.
By (37) and (39) we derive, for $\epsilon \leq 1$,

$$
\begin{equation*}
\epsilon \int_{0}^{t} \int\left[\left(u_{\epsilon x}\right)^{2}+\sigma^{\prime}\left(v_{\epsilon}\right)\left(u_{\epsilon x}\right)^{2}\right] d x d \tau \leq C(1+t) \tag{47}
\end{equation*}
$$

where C only depends on $\left(\left\|u_{0}\right\|_{H^{1}},\left\|\rho_{0}\right\|_{H^{2}},\left\|\rho_{1}\right\|_{H^{1}}\right)$.
Now we consider the quasilinear hyperbolic system

$$
\left\{\begin{array}{l}
v_{t}=w_{x} \tag{48}\\
w_{t}=(\sigma(v))_{x}
\end{array}\right.
$$

and let $(\eta(v, w), q(v, w)),(v, w) \in \mathbb{R}^{2}$, be a pair of smooth convex entropy-entropy flux for (48) such that $\eta_{w}, \eta_{w w}$ and $\eta_{v w} / \sqrt{\sigma^{\prime}}$ are bounded in \mathbb{R}^{2}.
From (34) and the estimates (37) and (47), we can deduce that (cf. [14], [2] and [4])

$$
\frac{\partial}{\partial t} \eta\left(w_{\epsilon}, v_{\epsilon}\right)+\frac{\partial}{\partial x} q\left(w_{\epsilon}, v_{\epsilon}\right)
$$

belongs to a compact subset of $W_{\text {loc }}^{-1,2}(\mathbb{R} \times[0,+\infty[)$.
Hence, we can apply a result on compensated compactness of Serre and Shearer $([14])$ to conclude that $\left\{\left(w_{\epsilon}, v_{\epsilon}\right)\right\}_{\epsilon}$ is pre-compact in $\left(L_{l o c}^{1}\left(\mathbb{R} \times\left[0,+\infty[)^{2}\right.\right.\right.$. Hence, there exists a subsequence $\left\{\left(u_{\epsilon}, v_{\epsilon}, w_{\epsilon}\right)\right\}_{\epsilon}$ and

$$
(u, v, w) \in L^{\infty}(] 0,+\infty\left[; H^{1}\right) \times L_{l o c}^{\sum}\left(\mathbb{R} \times\left[0,+\infty[) \times L_{l o c}^{2}(\mathbb{R} \times[0,+\infty[)\right.\right.
$$

such that

$$
\left(u_{\epsilon}, v_{\epsilon}, w_{\epsilon}\right) \rightarrow(u, v, w) \text { in }\left(L _ { l o c } ^ { 1 } \left(\mathbb{R} \times\left[0,+\infty[)^{3}\right.\right.\right.
$$

and

$$
\rho_{\epsilon}=\rho_{0}+\int_{0}^{t} w_{\epsilon} d \tau \rightarrow \rho=\rho_{0}+\int_{0}^{t} w d \tau \text { in } L_{l o c}^{1}(\mathbb{R} \times[0,+\infty[) .
$$

Hence, we obtain from (46) the following result:
Theorem 4.1 Assume $\left(u_{o}, \rho_{0}, \rho_{1}\right) \in H^{1} \times H^{2} \times H^{1}, \lambda>0$ and $\beta \leq 0$. Then, there exists

$$
(u, v, w) \in L^{\infty}\left(0,+\infty ; H^{1}\right) \times L_{\text {loc }}^{\sum}\left(\mathbb{R} \times\left[0,+\infty\left[\times L_{\text {loc }}^{2}(\mathbb{R} \times[0,+\infty[)\right.\right.\right.
$$

such that, with $\rho(x, t)=\rho_{0}(x)+\int_{0}^{t} w(x, \tau) d \tau$, we have

$$
\begin{gathered}
-i \int_{0}^{+\infty} \int u \theta_{t} d x d t-\int_{0}^{+\infty} \int u_{x} \theta_{x} d x d t+\int u_{0}(x) \theta(x, 0) d x= \\
\int_{0}^{+\infty} \int v u \theta d x d t+\alpha \int_{0}^{+\infty} \int|u|^{2} u \theta d x d t
\end{gathered}
$$

for all $\theta \in C_{0}^{1}(\mathbb{R} \times[0,+\infty[)$ (complex-valued), and

$$
\begin{gathered}
\int_{0}^{+\infty} \int\left(v \phi_{t}-w \phi_{x}\right) d x d t+\int \rho_{0 x} \phi(x, 0) d x+\int_{0}^{+\infty} \int\left(w \psi_{t}-\sigma(v) \psi_{x}+\beta \rho^{3} \psi\right) d x d t \\
+\int \rho_{1} \psi(x, 0) d x-\int_{0}^{+\infty} \int\left(|u|^{2}\right)_{x} \psi d x d t=0
\end{gathered}
$$

for all $\phi, \psi \in C_{0}^{1}(\mathbb{R} \times[0,+\infty[$ (real-valued $)$.

Acknowledgements:

The research of J. P. Dias and M. Figueira was partially supported by FCT, Financiamento Base 2008-ISFL-1-209 and grant PTDC/MAT/110613/2009 and the research of F. Oliveira was partially supported by Financiamento Base 2008-ISFL-1-297.

References

[1] O. Braun \& al, Kinks in the Klein-Gordon model with anharmonic interatomic interactions: a variational approach, Physics Letters A, 157, 241-245 (1991).
[2] F. Caetano, On the existence of weak solutions to the Cauchy problem for a class of quasilinear hyperbolic equations with a source term, Rev. Mat. Complut., 17, 147-167 (2004).
[3] J.P. Dias and M. Figueira, Existence of weak solutions for a quasilinear version of Benney equations, J. Hyp. Diff. Eq., 4, 555-563 (2007).
[4] J.P. Dias, M. Figueira and H. Frid, Vanishing viscosity with short wavelong wave interactions for systems of conservation laws. Arch. Ration. Mech. Anal., 196, 981-1010 (2010).
[5] J.P. Dias, M. Figueira and F. Oliveira, Existence of local strong solutions for a quasilinear Benney system. C. R. Math. Acad. Sci. Paris, 344, 493496 (2007).
[6] F. Oliveira, Stability of the solitons for the one-dimensional ZakharovRubenchik equation, Physica D, 175, 220-240 (2003).
[7] F. Oliveira, Adiabatic limit of the Zakharov-Rubenchik equation. Rep. Math. Phys. 61, 13-27 (2008).
[8] J. Ginibre, Y.Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system, Journal of Functional Analysis, 151, 384-486 (1997).
[9] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes in Mathematics, Springer, 448, 2570 (1975).
[10] V. Konotop, Localized electron-phonon states originated by a three-wave interaction, Physical Review B, 55-R11, 926-928, (1997).
[11] F. Linares and C. Matheus, Well posedness for the 1D ZakharovRubenchik system. Adv. Differential Equations, 14, 261-288 (2009).
[12] T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solutions to the Zakharov equation, Publ. Res. Inst. Math. Sci., 28, 329-361 (1992).
[13] M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press, New York-London (1975).
[14] D. Serre and J. Stearer, Convergence with physical viscosity for nonlinear elasticity, unpublished preprint (1993).
[15] Y. Shibata and Y. Tsutsumi , Local existence of solutions for the initial boundary problem of fully nonlinear wave equation. Nonlinear Anal. TMA, 11, 335-365 (1987).
[16] X. Wang, X. Liang, Electron-phonon interaction in ternary mixed crystals, Physical Review B, 42, 8915-8922, (1990).

