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1 Introduction

Electron-phonon interactions play a crucial role in the determination of the phys-
ical properties of many mixed cristals ([16]).

In the present paper, we study the well-posedness of a nonlinear dispersive sys-
tem arizing in the frame of electron-phonon interaction in a one-dimensional lattice.
In [10], V. Konotop treats the temporal dynamics of such a system in the pres-
ence of resonant interactions between the electron and phonon subsystems. The
hamiltonian H for such a one-dimensional chain of particles is given by

H = Hel +Hph +Hel−ph,

where, denoting by a dot the time derivative, the hamiltonians for each subsystem
and their interaction read in bra-ket notation

Hel = −J
∑
n

(|n >< n+ 1|+ n >< n+ 1|),
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Hph =
M

2

∑
n

ρ̇n
2 +

U

2

∑
n

(ρn+1 − ρn)2,

and
Hel−ph = χ

∑
n

|n >< n|(ρn+1 − ρn−1).

Here, ρn denotes the distance to the equilibrium position of the nth atom of mass
M , J is the energetical constant determined by the overlapping of the electronic
orbitals, U is a force constant and χ represents the strenght of the electron-phonon
interaction.

In the continuum limit, the above hamiltonians become

Hel = −J
∫
|ux|2, Hph =

M

2

∫
ρ2
t +

U

2

∫
ρ2
x and

Hel−ph = χ

∫
|u|2ρxdx,

where u is the electronic wave-function.

Putting q = ρ, p = Mρt, we obtain the Hamilton evolution set of equations

q̇ph =
∂(Hph +Hel−ph)

∂pph

ṗph = −
∂(Hph +Hel−ph)

∂qph

i~ut =
∂ (Hel +Hel−ph)

∂u
.

(1)

In the present paper, we will treat the Cauchy problem associated with this evolution
system. We will replace the Hamiltonian of the electronic and phonon subsystems
respectively by

Hel = −J
∫
|ux|2 +

α

4

∫
|u|4, α ∈ R (2)

and
Hph =

M

2

∫
ρ2
t +

U

2

∫
ρ2
x −

β

4

∫
ρ4, β ∈ R, (3)

allowing the possibility of nonlinear cubic potentials for the evolution of u and ρ.
Also, we will incorporate in Hel−ph a term to account for the anharmonic interatomic
interactions (see [1]):

Hel−ph = χ

∫
|u|2ρx + λ

∫
(ρx)4, λ ≥ 0. (4)

By replacing (2), (3) and (4) in (1), we obtain the system{
i~ut + Juxx = 2χuρx + α|u|2u, x ∈ R, t ≥ 0,
Mρtt − [Uρx + λρ3

x]x = χ(|u|2)x + βρ3.
(5)
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Finally, after putting all physical constants equal to the unity, and scaling out
the remaining coefficient of the term uρx by the transformation ρ̃ = 2ρ and ũ =

√
2u,

we obtain the Initial Value Problem
iut + uxx = uρx + α|u|2u, x ∈ R, t ≥ 0,

ρtt − [ρx + λρ3
x]x = (|u|2)x + βρ3,

u(0, x) = u0(x), ρ(0, x) = ρ0(x), ρt(0, x) = ρ1(x).

(6)

For α = β = λ = 0, by putting n = ρx, we obtain the classical Zakharov system
iut + uxx = un

ntt − nxx = (|u|2)xx.
(7)

The Initial Value Problem for (7) is studied in [8],[12]. Also, in the case where
β = λ = 0, α 6= 0, (6) falls in the scope of the Zakharov-Rubenchik equation studied
in [6],[11] for the global well-posedness and stability of solitary waves and in [7] for
the adiabatic limit to the Cubic Nonlinear Schrödinger Equation.

The rest of this paper is organized as follows:

In Section 2 we treat the local well-posedness of (6). The main difficulty of this
system is the presence of the strongly nonlinear term with derivative-loss ρ2

xρxx. In
order to overcome this problem, we translate (6) in terms of its Riemann invariants.
Next, we perform a change of functions technique developed in [15], [6] and [5] which
takes care of the derivative-loss and use a variant of a result derived by Kato ([9])
to prove the existence and uniqueness of strong local solutions to (6) for initial data

(uo, ρo, ρto) ∈ H3(R)×H3(R)×H2(R).

In Section 3, we derive some conservation laws for (6) and prove the existence
of solutions which blow-up in L2 in finite time (provided that β > 0) by adapting a
result due to Reed and Simon ([13]). Also, for β ≤ 0 and λ = 0, we prove that the
solutions obtained in the previous section are in fact global in time.

Finally, if λ > 0 and β < 0, we establish in Section 4 the global existence of
weak solutions for (6) by applying a compensated-compactness method developed
in [14] by Serre and Shearer (see also [2]). The adaptation of this method to a
Schrödinger- Nonlinear Elasticity system was made in [4]. The technique of using
this compensated-compactness result in order to prove the existence of global weak
solutions was introduced in [3] in the frame of a Schrödinger - Conservation law
system.

2 Local existence of strong solutions

In this section we adress the local-wellposdness of the I.V.P. (6).

3



Let uo ∈ H3(R), ρ0 ∈ H3(R)andρ1 ∈ H2(R).
By setting v = ρx, w = ρt and σ(v) = v+λv2, the Cauchy problem (6) is equivalent
to 

iut + uxx = uv + α|u|2u

ρt = w

vt − wx = 0

wt − (σ(v))x = (|u|2)x + βρ3

(8)

with initial data

u(., 0) = uo ∈ H3(R), ρ(., 0) = ρ0 ∈ H3(R), v(., 0) = vo := ρ0x ∈ H2(R) (9)

and w(., 0) = w0 := ρ1 ∈ H2(R).

Let λ ≥ 0. By introducing the Riemann invariants

l = w +
∫ v

0

√
1 + 3λξ2dξ and r = w −

∫ v

0

√
1 + 3λξ2dξ,

we derive

l − r = 2
∫ v

0

√
1 + 3λξ2dξ = v

√
1 + 3λv2 +

1√
3λ

arcsinh(
√

3λ), w =
l + r

2
.

Noticing that

f(v) = v
√

1 + 3λv2 +
1√
3λ

arcsinh(
√

3λ)

is one-one and smooth, we put v = f−1(l − r) = v(l, r) and for classical solutions
the Cauchy problem (8), (9) is equivalent to

iut + uxx = uv + α|u|2u

ρt = 1
2(l + r)

lt −
√

1 + 3λv2lx = (|u|2)x + βρ3

rt +
√

1 + 3λv2rx = (|u|2)x + βρ3

(10)

with initial data

u(., 0) = uo ∈ H3(R), ρ(., 0) = ρ0 ∈ H3(R), l(., 0) = l0 ∈ H2(R), (11)

and r(., 0) = r0 ∈ H2(R),

where

l0 = w0 +
∫ v0

0

√
1 + 3λξ2dξ and r0 = w0 −

∫ v0

0

√
1 + 3λξ2dξ. (12)
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In order to obtain a local classical solution for the Cauchy problem (10),(11) for a
fixed λ ≥ 0 we will follow the technique employed in [6] and in [5]:

We consider the auxiliary system with non-local source terms

iFt + Fxx = 2α|u|2F + αu2F + Fv + 1
2u(lx + rx)

ρt = 1
2(l + r)

lt −
√

1 + 3λv2lx = (|ũ|2)x + βρ3

rt +
√

1 + 3λv2rx = (|ũ|2)x + βρ3

(13)

where F is the complex conjugate of F and

u(x, t) = u0(x) +
∫ t

0
F (x, s)ds, (14)

ũ(x, t) = (∆− 1)−1(α|u|2u+ u(v − 1)− iF ),

with initial data

F (., 0) = F0 ∈ H1(R), ρ(., 0) = ρ0 ∈ H3(R), l(., 0) = l0 ∈ H2(R), (15)

and r(., 0) = r0 ∈ H2(R), l0 and r0 given by (12).

We will prove the following result:

Theorem 2.1 Let (F0, ρ0, l0, r0) ∈ H1 ×H3 ×H2 ×H2.
There exists T ∗ = T ∗(F0, ρ0, l0, r0) > 0 such that for all T < T ∗ there exists a
unique solution (F, ρ, l, r) of the Cauchy problem (13), (15) with

(F, ρ, l, r) ∈ Cj([0, T ];H1−2j)×Cj([0, T ];H3−j)×Cj([0, T ];H2−j)×Cj([0, T ];H2−j), j = 0, 1.

From this result, we will prove the following Theorem

Theorem 2.2 Let (u0, ρ0, ρ1) ∈ H3 ×H3 ×H2.
There exists T ∗ = T ∗(F0, ρ0, ρ1) > 0 such that for all T < T ∗ there exists a unique
solution (F, ρ, l, r) of the Cauchy problem (6), with

(F, ρ) ∈ Cj([0, T ];H3−2j)×
(
Cj([0, T ];H3−2j) ∩ Cj+1([0, T ];H2−2j)

)
, j = 0, 1.

Proof of Theorem 2.1:

We want to apply a variant of Theorem 6 in [9], hence we need to put the
Cauchy problem in the framework of real spaces. By introducing the new variables
F1 = Re(F ), F2 = Im(F ), u1 = Re(u), u2 = Im(u).
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By setting U = (F1, F2, ρ, l, r) and F10 = Re(F0), F20 = Im(F0), the I.V.P. (13),
(15) can be written in the form{

∂

∂t
U +A(U)U = g(t, U)

U(., 0) = U0,
(16)

where

A(U) =


0 ∆ 0 0 0
−∆ 0 0 0 0

0 0 0 0 0
0 0 0 −

√
1 + 3λv2 0

0 0 0 0
√

1 + 3λv2

 ,

g(t, U) =


2α|u|2F2 − α(u2

1 − u2
2)F2 + 2αu1u2F1 + F2v + 1

2u2(lx + rx)
2α|u|2F1 − α(u2

1 − u2
2)F1 − 2αu1u2F2 − F1v − 1

2u2(lx + rx)
1
2(l + r)

(|ũ|2)x + βρ3

(|ũ|2)x + βρ3


and

U0 = (F10, F20, ρ0, l0, r0) ∈ Y = (H1(R))2 × (H2(R))3.

(The condition ρ0 ∈ H3(R) will be used later).
Note that the source term g(t, U) is non-local, due to the presence of ũ.

We now set X = (H−1(R)2 × (L2(R))3 and S = (1 − ∆)I, wich is an isomor-
phism S : Y → X.

Furthermore, we denote by WR the open ball in Y of radius R centered at the
origin and by G(X, 1, β) the set of linear operators Λ : D(Λ) ⊂ X → X such that:

• −Λ generates a Co-semigroup {e−tΛ}t∈R;

• for all t ≥ 0, ‖e−tΛ‖ ≤ eβt, where, for all U ∈WR,

β =
1
2

sup
x∈R
‖ ∂
∂x
a(ρ, l, r)‖ ≤ c(R), c : [0; +∞[→ [0; +∞[ continuous, and

a(ρ, l, r) =

 0 0 0
0 −

√
1 + 3λv2 0

0 0
√

1 + 3λv2

 .
Following [9] (paragraph 12),

A : U = (F1, F2, ρ, l, r) ∈WR → G(X, 1, β).

It is easy to see that g verifies, for fixed T > 0, ‖g(y, U)‖Y ≤ θ, t ∈ [0, T ], U ∈ W .
For (ρ, l, r) in a ball W̃ in (H2(R))3, we set (see [9]-12.6)

Bo(ρ, l, r) = [(1−∆), a(ρ, l, r)](1−∆)−1 ∈ L((L2(R))3).
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We now introduce the operator B(U) ∈ L(X), U = (F1, F2, ρ, l, r) ∈∈WR by

B(U) =


0 0 0 0 0
0 0 0 0 0
0 0
0 0 B0(ρ, l, r)
0 0

 .

In [9] (paragraph 12), Kato proved that for (ρ, l, r) ∈ W̃ we have

(1−∆)a(ρ, l, r)(1−∆)−1 = a(ρ, l, r) +B0(ρ, l, r).

Hence, we easily derive for U ∈WR, SA(U)S−1 = A(U) +B(U).

Now, for each pair U,U∗ ∈WR, U = (F1, F2, ρ, l, r), U∗ = (F ∗1 , F
∗
2 , ρ
∗, l∗, r∗), we

claim that

‖g(t, U)− g(t, U∗)‖L1(0,T ′;X) ≤ c(T ′) sup
0≤t≤T ′

‖U(t)− U(t′)‖X , (17)

where 0 ≤ T ′ ≤ T and and c(T ′) is a non-decreasing function such that c(0) = 0.
Indeed, let us point out that for h ∈ L2(R) and w ∈ H1(R),

‖hw‖H−1 ≤ ‖h‖H−1‖w‖H1 .

Hence, for example,

‖F1u1(u∗1 − u1)‖H−1 ≤ ‖F1‖H1‖u1‖H1‖u∗1 − u1‖H−1 ,

and, for t ≤ T ′,

(lx + rx)
(∫ t

0
F2 −

∫ t

0
F ∗2

)
‖H−1 ≤ ‖lx + rx‖H1

∫ t

0
‖F − F ∗ ‖H−1

≤ c(T ′) sup
0≤t≤T ′

‖U(t)− U∗(t)‖X .

Finally, applying Theorem 6 in [9], replacing the local condition (7.7) by (17), we
obtain the result described in Theorem 2.1, but with ρ ∈ Cj([0;T ], H2−j), j = 0, 1.
To obtain ρ ∈ Cj([0, T ], H3−j), it is enough to remark that, since ρt = w, ρ0 ∈ H3,
v0 = ρ0x ∈ H2, w0 ∈ ρ1 ∈ H2, we derive ρx = v ∈ Cj([0, T ], H2−j). �

Proof of Theorem 2.2:

We will follow here the ideas in [5]:

If (F, ρ, l, r) is a solution of (13), (15), by differenciating (14) with respect to t
we obtain u = F . Replacing in the first equation of (13), we obtain

(iut + uxx)t = 2α|u|2F + αu2F + Fv +
1
2
u(lx + rx) = 2α|u|2ut + αu2ut + utv + uvt.
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Hence, (iut + uxx−α|u|2u− uv)t = 0, and we get iut + uxx−α|u|2u− uv = φ0(x),
where

φ0(x) = iF0 + u′′0 − α|u0|2u0 − u0v0.

By choosing F0 = i(u′′0 − α|u0|2u0 − u0v0), we obtain φ0 = 0 and (u, v) satisfy the
first equation in (10).

Furthermore, from this equation we derive

u = (∆− 1)−1(α|u|2u+ u(v − 1)− iut). (18)

Therefore u = ũ and (u, ρ, l, r) satisfy (10), (11). Note that ut = F ∈ C([0, T ];H1).
Moreover

u(x, t) = u0(x) +
∫ t

0
F (x, s)ds ∈ C([0, T ];H1),

but from (18) we have in fact u ∈ C([0, T ];H3). �

3 Global well-posedness for λ = 0 and blow-up

results

In this section, we prove that the local solutions obtained in Theorem 2.2 are
in fact global in time in the case where β ≤ 0 and λ = 0. Conversely, if β > 0, we
show the blow-up of the local solutions in finite time under some conditions on the
initial data.

We consider initial data (u0, ρ0, ρ1) ∈ H3 ×H3 ×H2. Let

(u, ρ) ∈ Cj([0, T ], H3−2j), j = 0, 1

the unique corresponding maximal solution of the Cauchy problem (6). We begin
by deriving the following conservation laws:

∂

∂t

∫
|u|2dx = 0, t ∈ [0, T [, (19)

∂

∂t
E(t) = 0, t ∈ [0;T [, (20)

where the energy E(t) is given by

E(t) =
1
2

∫
(ρt)2dx+

1
2

∫
(ρx)2dx+

λ

4

∫
(ρx)4dx− β

4

∫
ρ4dx+

∫
ρx|u|2dx

+
∫
|ux|2dx+

α

2

∫
|u|4dx.

For the first one we multiply the first equation in (6) by u and we integrate the
imaginary part. To obtain the conservation of energy, we derive from (6)

Re

∫
iututdx+Re

∫
uxxutdx = Re

∫
ρxuutdx+ αRe

∫
|u|2uutdx
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and

−1
2
∂

∂t

∫
|ux|2dx =

1
2

∫
ρx
∂

∂t
|u|2dx+

α

4
∂

∂t

∫
|u|4dx

=
1
2
∂

∂t

∫
ρx|u|2dx−

1
2

∫
∂

∂t
ρx|u|2dx+

α

4
∂

∂t

∫
|u|4dx.

Finally,

−1
2

∫
∂2ρ

∂x∂t
|u|2dx−1

2

∫
∂ρ

∂t
(|u|2)xdx =

1
2

∫
∂ρ

∂t

{
∂2ρ

∂t2
− ∂

∂x

[
ρx + λ(ρx)3

]
− βρ3

}
dx

=
1
4
∂

∂t

∫
(ρt)2dx+

1
4
∂

∂t

∫
(ρx)2dx+

λ

8
∂

∂t

∫
(ρx)4 − β

8
∂

∂t

∫
ρ4dx,

and (20) is proved.

Next, we will prove the following result:

Theorem 3.1 Let β ≤ 0 and λ = 0.
Then Theorem 2.2 holds for T ∗ = +∞.

Proof of Theorem 3.1:

In order to prove this result, we is sufficient to deriva a priori bounds for the
norms ‖u‖H3 , ‖ρ‖H3 and ‖ρt‖H2 .
Let us begin by noticing that |

∫
ρx|u|2dx| ≤ 1

4

∫
(ρx)2dx+

∫
|u|4dx.

By the Gagliardo-Nirenberg inequality and (19),

‖u‖4L4 ≤ c0‖u‖3L2‖ux‖L2 ≤ c0‖u0‖3L2‖ux‖L2 ≤ c‖u0‖6L2 +
1
2
‖ux‖2L2 .

Since β ≤ 0, we obtain from (20)∫
(ρt)2dx+

∫
[(ρx)2 + λ(ρx)4]dx+

∫
|ux|2dx ≤ c, (21)

with c depending only on (‖u0‖H1 , ‖ρ0‖H2 , ‖ρ1‖H1).

Moreover, since ρ(t) = ρ0(x) +
∫ t

0
ρt(x, τ, dτ),

‖ρ(t)‖L2 ≤ ‖ρ0‖L2 +
∫ t

0
‖ρt(τ)‖L2dτ,

hence, since β ≤ 0,∫
(ρt)2dx+

∫
(ρ)2dx+

∫
(ρx)2dx+

∫
|u|2dx+

∫
|ux|2dx ≤ C(1 + t), (22)
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with C depending exclusively on the initial data.

Next, we estimate ‖uxx‖L2 , ‖ρxt‖L2 and ‖ρxx‖L2 . For λ = 0, the system (10)
reads 

iut + uxx = uv + α|u|2u

ρt = 1
2(l + r)

lt − lx = (|u|2)x + βρ3

rt + rx = (|u|2)x + βρ3

(23)

We put

α(t) =
∫

(rx)2dx+
∫

(lx)2 +
∫
|ut|2dx.

In what follows we will denote by A(t) a generic positive continuous function

A : R+ → R+,

which can change from line to line.
By deriving with respect to x the last equation in (23), multiplying by rx and
integrating, we get

1
2
d

dt

∫
(rx)2dx ≤ 2

∫
|uuxrx|dx+ 2

∫
|u2
xrx|dx+ 3|β|

∫
ρ2|ρxrx|dx

≤ A(t)

[(∫
r2
xdx

) 1
2
(∫
|uxx|2dx

) 1
2

+ ‖u‖∞
(∫
|ux|2dx

) 1
2
(∫

r2
xdx

) 1
2

+
(∫

r2
xdx

) 1
2

]

≤ A(t)

[(∫
r2
xdx

) 1
2
(∫
|uxx|2dx

) 1
2

+
(∫

r2
xdx

) 1
2

]
,

where we have used the Sobolev injection ‖ux‖∞ ≤ c‖ux‖H1 and (22).
By writing a similar estimate for lx, we obtain

1
2
d

dt

∫
((rx)2 + (lx)2)dx ≤ A(t)

[
α

1
2 (t) + α

1
2 (t)

(∫
|uxx|2dx

) 1
2

]
. (24)

From the first equation in (23),

‖uxx‖L2 ≤ ‖ut‖L2 +A(t) ≤ α
1
2 (t) +A(t). (25)

By replacing in (24),

1
2
d

dt

∫
((rx)2 + (lx)2)dx ≤ A(t)

[
α

1
2 (t) + α(t)

]
. (26)

Moreover, since ρt = 1
2(l + r),

‖ρxt‖L2 ≤ cα
1
2 (t). (27)
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Now, by multiplying the first equation in (23) by ut, integrating the imaginary part
and using the Cauchy-Schwarz inequality,

1
2
d

dt

∫
|ut|2dx =

∫
ρxtIm(uut) + α

∫
(|u|2)tIm(uut)

≤ ‖u‖∞‖ρxt‖L2

(∫
|ut|2dx

) 1
2

≤ cα(t).

Finally, using (26), we get

d

dt
α(t) ≤ A(t)

[
α

1
2 (t) + α(t)

]
≤ A(t) [1 + α(t)] ,

and
α(t) ≤ (1 + α(0))e

R t
0 A(τ)dτ − 1.

Hence, by (25) and (27),

‖uxx‖L2 + ‖ρxt‖L2 ≤ A(t).

By, the second and third equation in (23), ‖lt‖L2 + ‖rt‖L2 ≤ A(t), therefore

‖ρtt‖L2 =
1
2
‖lt + rt‖L2 ≤ A(t)

and
‖ρxx‖L2 = ‖ρtt − (|u|2)x − βρ3‖L2 ≤ A(t).

To obtain a continuous bound on ‖ρxxx‖L2 , ‖uxxx‖L2 and ‖ρtxx‖L2 , the exact same
method can be used by setting

α(t) =
∫

(rxx)2dx+
∫

(lxx)2 +
∫
|uxt|2dx

and deriving system (23) with respect to x. �

We now assume β > 0. In what follows, we will consider the following conditions
on the initial data: ∫

ρ0ρ1dx > 0 (28)

and
E(0) < − 1

64
(
9
4

+ 2α)2c2
o‖uo‖6L2 . (29)

We will prove the following blow-up result:

Theorem 3.2 Let β > 0.
Under the conditions of Theorem 2.2 and assuming that the initial data (uo, ρ0, ρ1)
satisfies conditions (28) and (29), there exists a time 0 < T ∗ ≤ T0 := (

∫
ρ2

0)(
∫
ρ0ρ1)−1

such that, if the solution exists in [0, T ∗], then

lim
t→T ∗−

∫
ρ2dx = +∞.
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Proof of Theorem 3.2:

Following [13] (chapter 10, paragraph 13), let us put

G(t) =
∫
ρ2dx and F (t) = (G(t))−

1
2 . (30)

We have F ′(t) = −1
2
G(t)−

3
2G′(t) = −G(t)−

3
2

∫
ρρtdx, and, from (28), F ′(0) < 0.

Furthermore, we set Q(t) = −2G(t)
5
2F ′′(t) = G′′(t)G(t)− 3

2G
′(t)2, with

G′′(t) = 6
∫

(ρt)2dx+ 2H(t) and H(t) =
∫

[ρρtt −
5
2

(ρt)2]dx.

We have

Q(t) = 6[
(∫

ρ2dx

)(∫
(ρt)2dx−

∫
(ρρt)2dx

)
] + 2G(t)H(t),

and by the Cauchy-Schwarz inequality we obtain Q(t) ≥ 0, and consequently
F ′′(t) ≤ 0, provided H(t) ≥ 0.
This last fact is easy to check. From (6) and (20),

H(t) = −4E(t) + 4[
∫
|ux|2dx+

α

2

∫
|u|4dx+

3
4

∫
ρx|u|2]dx+

∫
(ρx)2dx

= −4E(0) + 4[
∫
|ux|2dx+

α

2

∫
|u|4dx+

3
4

∫
ρx|u|2]dx+

∫
(ρx)2dx.

We have
3
∫
ρx|u|2dx ≤

∫
(ρx)2dx+

9
4

∫
|u|4dx

and, by the Gagliardo-Nirenberg inequality and (19),

(
9
4

+2|α|)
∫
|u|4dx ≤ (

9
4

+2|α|)c0‖u0‖3L2‖ux‖L2 ≤ 4
∫
|ux|2dx+

1
16

(
9
4

+2|α|)2c2
0‖u0‖6L2 .

From condition (29), H(t) ≥ −4E(0)− 1
16(9

4 + 2|α|)2c2
0‖u0‖6L2 ≥ 0.

Hence, we have shown that for all t ∈ [0, T [, F ′′(t) ≤ 0, which implies Theorem 3.2.
�

4 Global existence of weak solutions for the

quasilinear system

For the study of the existence of a global weak solution to the Cauchy problem
(6), we will consider, for ε > 0, the regularized problem (cf. [4] for the case β = 0)

iut + uxx = uρx + α|u|2u

ρt = w

wt − εwxx = βρ3 + (σ(ρx))x + (|u|2)x

(31)

12



with initial data (we have dropped the ε parameter on u, w and ρ)

u(0, x) = u0(x) ∈ H1(R), ρ(0, x) = ρ0(x) ∈ H2(R), w(x, 0) = ρt(0, x) = ρ1(x) ∈ H1(R).
(32)

Here, σ(v) = v + λv3 and λ > 0 (hence σ′(v) = 1 + 3λv2 > 0).
For a smooth solution of (31)-(32), the energy identity (20) takes the form

d

dt

{
1
2

∫
w2dx+

1
2

∫
v2dx+

λ

4

∫
v4dx− β

4

∫
ρ4dx+∫

v|u|2dx+
∫
|ux|2dx+

α

2

∫
|u|4dx

}
= −ε

∫
(wx)2dx, (33)

where we have put v = ρx. On the other hand, the conservation law

d

dt

(∫
|u|2dx

)
= 0 (34)

still holds. Also, we deduce (cf. [4] and following [14])∫
[wtvx − σ′(v)(vx)2]dx =

∫
(|u|2)xvxdx+ β

∫
ρ3vxdx+ ε

∫
wxxvxdx

and

− d

dt

∫
wxvdx+

∫
(wx)2dx−

∫
σ′(v)(vx)2dx =

∫
(|u|2)xvxdx+β

∫
ρ3ρxxdx+

ε

2
d

dt

∫
(vx)2dx

since

− d

dt

∫
wxvdx = −

∫
wxtvdx−

∫
wxvtdx =

∫
wtvxdx−

∫
wxvtdx

and
vt = ρxt = wx.

Integrating this identity over the time interval [0, t] we obtain, with v0(x) = v(x, 0),

−
∫
wxvdx+

∫
ρ1xv0dx+

∫ t

0

∫
(wx)2dxdτ −

∫ t

0

∫
σ′(v)(vx)2dxdτ

=
∫ t

0

∫
(|u|2)xvxdxdτ − 3β

∫ t

0

∫
ρ2(ρx)2dxdτ +

ε

2

∫
(vx)2dx− ε

2

∫
(v0x)2dx.

Since −
∫
wxvdx =

∫
wvxdx, we get

∫ t

0

∫
σ′(v)(vx)2dxdτ +

ε

2

∫
(vx)2dx ≤ ε

4

∫
(vx)2dx+

1
ε

∫
w2dx+

∫
|v0ρ1x|dx+

ε

2

∫
(v0x)2dx+ 3β

∫ t

0

∫
ρ2v2dxdτ + ε

∫ t

0

∫
(wx)2dxdτ + 2

∫ t

0

∫
|uuxvx|dxdτ (35)
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and

2
∫ t

0

∫
|uuxvx|dxdτ ≤ 2

∫ t

0

∫
|uux|2dxdτ +

1
2

∫ t

0

∫
(vx)2dxdτ. (36)

Now, let us assume β ≤ 0. Since ε > 0, we can derive from (33), as in (21),∫
w2dx+

∫
(v2 + λv4)dx+

∫
|ux|2 + ε

∫ t

0
(wx)2dxdτ ≤ C, (37)

where C only depends on (‖u0‖H1 , ‖ρ0‖H2 , ‖ρ1‖H1).
Hence, from (34), (36) and (37),

2
∫ t

0

∫
|uuxvx|dxdτ ≤ Ct+

1
2

∫ t

0

∫
σ′(v)(vx)2dxdτ. (38)

Taking ε ≤ 1, we deduce from (35), (36), (37) and (38)

ε

∫ t

0

∫
σ′(v)(vx)2dxdτ + ε2

∫
(vx)2dx+ ε|β|

∫ t

0

∫
ρ2v2dxdτ ≤ C(1 + t). (39)

Let us now analyse the problem of the existence and uniqueness of a solution

(u, ρ, w) ∈ C([0,+∞[;H1)× C([0,+∞[;H2)× C([0,+∞[;H1)

to the Cauchy problem (31)-(32). Without loss of generality, we may assume ε = 1.
We start with the existence and uniqueness of a local (in time) solution. We fix
0 < T < +∞ and introduce the Banach spaces XT = C([0, T ];H1) (complex) and
YT = C([0, T ];H2) (real) endowed with the usual norms. Furthermore, we consider
the product space B̃T

R ×BT
R where

B̃T
R = {u ∈ XT : ‖u‖XT

≤ R} and BT
R = {u ∈ YT : ‖u‖YT

≤ R}.

Finally, we consider the application

Φ : (ũ, ρ̃) ∈ B̃T
R ×BT

R → (u, ρ) ∈ XT × YT .

Here, u denotes the solution of the linear problem{
iut + uxx = ρ̃xũ+ α|ũ|2ũ,
u(., 0) = u0 ∈ H1,

(40)

and

ρ(t) = ρ0 +
∫ t

0
wdτ, ρ(., 0) = ρ0 ∈ H2, (41)

where w is the unique solution of{
wt − wxx = βρ̃3 + (σ(ρ̃x))x + (|ũ|2)x,
w(., 0) = w0(x) ∈ H1,

(42)

verifying w ∈ L2(0, T ;H2), wt ∈ L2(0, T ;L2). We have

u(t) = eit∂xxu0 − i
∫ t

0
ei(t−s)∂xx(ρ̃xũ+ α|ũ|2ũ)(s)ds
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and βρ̃3 + (σ(ρ̃x))x + (|ũ|2)x ∈ C([0, T ];L2).

The existence and uniqueness of a local solution is a consequence of the Banach
fixed-point theorem for a convenient choice of R and T , R > max(‖u0‖H1 , ‖ρ0‖H2).
We have

wt − wxx = βρ3 + (σ(ρx))x + (|u|2)x.

From (33), (34), (37), (39), (40) and (41), we derive the a priori estimate

|wt − wxx|L2(0,T ;L2) ≤ C(T ), C ∈ C([0,+∞[; R+),

which implies w ∈ L2(0, T ;H2) and a similar a priori estimate for ‖w‖L2(0,T ;H2) and
so for ‖wt‖L2(0,T ;L2) and ‖w‖C([0,T ];H1).

We conclude that ρ ∈ YT and u ∈ XT , with similar estimates for ‖ρ‖YT
and ‖u‖XT

,
hence we can extend the solution to [0,+∞[.
Hence, if we write

ρε(t) = ρ0 +
∫ t

0
wεdτ, ρ0 ∈ H2(R), 0 < ε ≤ 1, (43)

we get, with

uε(0, x) = u0(x) ∈ H1, vε(0, x) = v0(x) ∈ H1, wε(0, x) = ρt(0, x) = ρ1(x) ∈ H1,
(44)

a unique solution
(uε, vε, wε) ∈ (C([0,+∞[;H1))3 (45)

of the Cauchy problem
iuεt + uεxx = uεvε + α|uε|2uε
vεt = wεx
wεt = (σ(v))x + (|uε|2)x + βρε

3 + εwεxx

(46)

with the initial data (44).

Moreover, we have for each T > 0, by (34), (37) and the first equation in (31),

{uε}ε bounded in L∞(0,+∞;H1),

{uεt}ε bounded in L∞(0,+∞;H−1),

hence {uε}ε belongs to a compact set of L2(0, T ;L2(IR)) for each interval IR =
[−R,R], R ≥ 0. By applying a standard diagonalization method we conclude that
there exists u ∈ L∞(0,+∞;H1) and a subsequence of {uε}ε, still denoted {uε}ε,
such that

uε → u in L∞(0,+∞;H1) weak* and in L1
loc(R× [0,∞[).

We also have, by (37) and (39), {wε}ε bounded in L2
loc(R× [0,∞[) and, with

∑
(v) =

1
2v

2 + λ
4v

4, {vε}ε bounded in L
P
loc(R × [0,∞[), where v ∈ L

P
loc(R × [0,∞[) means
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∫
K

∑
(v)dxdt < +∞ for each compact K ⊂ R× [0,+∞[. Finally we have, by (43),

{ρε}ε bounded in L2
loc(R× [0,+∞[).

By (37) and (39) we derive, for ε ≤ 1,

ε

∫ t

0

∫
[(uεx)2 + σ′(vε)(uεx)2]dxdτ ≤ C(1 + t), (47)

where C only depends on (‖u0‖H1 , ‖ρ0‖H2 , ‖ρ1‖H1).

Now we consider the quasilinear hyperbolic system{
vt = wx
wt = (σ(v))x

(48)

and let (η(v, w), q(v, w)), (v, w) ∈ R2, be a pair of smooth convex entropy-entropy
flux for (48) such that ηw, ηww and ηvw/

√
σ′ are bounded in R2.

From (34) and the estimates (37) and (47), we can deduce that (cf. [14], [2] and [4])

∂

∂t
η(wε, vε) +

∂

∂x
q(wε, vε)

belongs to a compact subset of W−1,2
loc (R× [0,+∞[).

Hence, we can apply a result on compensated compactness of Serre and Shearer
([14]) to conclude that {(wε, vε)}ε is pre-compact in (L1

loc(R × [0,+∞[)2. Hence,
there exists a subsequence {(uε, vε, wε)}ε and

(u, v, w) ∈ L∞(]0,+∞[;H1)× L
P
loc(R× [0,+∞[)× L2

loc(R× [0,+∞[)

such that
(uε, vε, wε)→ (u, v, w) in (L1

loc(R× [0,+∞[)3

and

ρε = ρ0 +
∫ t

0
wεdτ → ρ = ρ0 +

∫ t

0
wdτ in L1

loc(R× [0,+∞[).

Hence, we obtain from (46) the following result:

Theorem 4.1 Assume (uo, ρ0, ρ1) ∈ H1×H2×H1, λ > 0 and β ≤ 0. Then, there
exists

(u, v, w) ∈ L∞(0,+∞;H1)× L
P
loc(R× [0,+∞[×L2

loc(R× [0,+∞[)

such that, with ρ(x, t) = ρ0(x) +
∫ t

0 w(x, τ)dτ , we have

−i
∫ +∞

0

∫
uθtdxdt−

∫ +∞

0

∫
uxθxdxdt+

∫
u0(x)θ(x, 0)dx =

∫ +∞

0

∫
vuθdxdt+ α

∫ +∞

0

∫
|u|2uθdxdt
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for all θ ∈ C1
0 (R× [0,+∞[) (complex-valued), and∫ +∞

0

∫
(vφt − wφx)dxdt+

∫
ρ0xφ(x, 0)dx+

∫ +∞

0

∫
(wψt − σ(v)ψx + βρ3ψ)dxdt

+
∫
ρ1ψ(x, 0)dx−

∫ +∞

0

∫
(|u|2)xψdxdt = 0

for all φ, ψ ∈ C1
0 (R× [0,+∞[ (real-valued).
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