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Abstract

This paper describes a numerical study of the optimization of elastic bodies
featuring a locally periodic microscopic pattern. Our approach makes the link
between the microscopic level and the macroscopic one. Two-dimensional lin-
early elastic bodies are considered; the same techniques can be applied to three-
dimensional bodies. Homogenization theory is used to describe the macroscopic
(effective) elastic properties of the body. The macroscopic domain is divided in
(rectangular) finite elements and in each of them the microstructure is supposed
to be periodic; the periodic pattern is allowed to vary from element to element.
Each periodic microstructure is discretized using a finite element mesh on the
periodicity cell, by identifying the opposite sides of the cell in order to han-
dle the periodicity conditions in the cellular problem. Shape optimization and
topology optimization are used at the microscopic level, following an alternate
directions algorithm. Numerical examples are presented, in which a cantilever
is optimized for different load cases, one of them being multi-load. The problem
is numerically heavy, since the optimization of the macroscopic problem is per-
formed by optimizing in simultaneous hundreds or even thousands of periodic
structures, each one using its own finite element mesh on the periodicity cell.
Parallel computation is used in order to alleviate the computational burden.

Key-words

shape optimization, topology optimization, alternate directions algorithm, lo-
cally periodic homogenization, cellular problem, parallel computation
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1 Introduction

The main motivation of the present paper comes from the study of bodies hav-
ing locally periodic microstructure and optimization of their macroscopic prop-
erties, in the context of linearized elasticity. A body having locally periodic
microstructure is a body whose material coefficients vary at a microscopic scale,
and this variation is locally periodic in the sense that, around each point of the
body, the material coefficients vary according to a periodic pattern. This pat-
tern changes from point to point (at the macroscopic scale). Homogenization
theory allows one to accurately describe the macroscopic behaviour of such a
body by means of so-called cellular problems, which are elliptic PDEs subject
to periodicity conditions, see e.g. [1], [2].

Porous materials, that is, bodies with locally periodic infinitesimal perfora-
tions, can be described in a similar manner, see [3].

In [4] and [5], the authors have presented results for the optimization of
periodic structures. The present paper represents a natural continuation, linking
the microscopic level to the macroscopic problem. Preliminary results were
presented in [6].

The layout of the paper is as follows. Section 2 introduces the notion of
periodic microstructure and the associated homogenized elastic tensor. Section
3 describes locally periodic microstructures. Section 4 presents the shape and
topology derivatives, that is, the sensitivity of the objective functional to in-
finitesimal variations in the shape or topology of the microscopic holes. Section
5 describes the optimization algorithm, together with some implementation de-
tails. Section 6 presents several examples of optimization of locally periodic
structures.

Note that a similar approach was proposed in [7] with a different treatment
of the cellular problem.

2 Periodic microstructures

As a preliminary for describing mathematically the notion of body having locally
periodic microsctructure, we shall introduce the notion of periodic microstruc-
ture. We shall use notations and results from [4].

Consider a parallelepiped Y in R
n (a parallelogram in R

2) which defines the
periodicity of the microstructure. Often Y is taken to be the unit cube for the
sake of simplicity.

A periodic microstructure is a body whose material coefficients (i.e., for
the case of linear elasticity, its rigidity tensor) varies according to a periodic
pattern C, which is a Y -periodic fourth-order tensor field C : R

n → R
n×n×n×n.

Typically, but not necessarily, the pattern tensor field C takes only two values,
modeling a periodic mixture between two given component materials (see Figure
1).

The effective (macroscopic) behaviour of the body is described by the so-
called homogenized elastic tensor, denoted by CH and defined in terms of solu-
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Figure 1: Periodic mixture of two materials

tions of elliptic partial differential equations subject to periodicity conditions.
More precisely, for a given macroscopic strain (represented by a symmetric n×n

matrix A), consider the problem
{

−div(C ǫ(wA)) = 0 in R
n

wA(y) = Ay + φA(y), with φA Y −periodic,
(1)

known in homogenization theory as cellular problem. Here, ǫ represents the
symmetric part of the gradient. The solution wA of the above problem depends
(linearly) on the matrix A. Consequently, the matrix σ defined by

σ =
1

|Y |

∫

Y

C ǫ(wA) ,

representing the macroscopic stress associated to wA, depends linearly on the
macroscopic strain A and this dependency defines the homogenized elastic tensor
CH through CHA = σ, that is,

C
H

A =
1

|Y |

∫

Y

C ǫ(wA) .

In the above, |Y | denotes the volume of the periodicity cell Y (its area, in two
dimensions). An equivalent definition of C

H can be given in terms of energy
type products : for two given symmetric matrices A and B, one has

〈CH
A, B〉 =

1

|Y |

∫

Y

〈C ǫ(wA), ǫ(wB)〉 .

Note that, for a function wA of the form wA(y) = Ay+φA(y), with φA Y -periodic,
one has

A =
1

|Y |

∫

Y

ǫ(wA) ,

see in [4] Lemma 1 and its consequences.
This can be expressed in a more concise form by introducing the set of linear

plus periodic functions denoted by

LP = {w : R
n 7→ R

n | w(y) = Ay + ϕ(y) , A ∈ Mn(R),

ϕ ∈ H1
loc(R

n; Rn) and Y − periodic},
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Figure 2: Periodicity cell with model hole (zoomed)

Figure 3: Periodically perforated plane R
2
perf

The cellular problem (1) may be written in strain formulation as follows:







wA ∈ LP

−div(C ǫ(wA)) = 0 in R
n

1
|Y |

∫

Y
ǫ(wA) = A ,

(2)

where A ∈ Mn(R) is a given strain matrix.
The case of porous structures, that is, infinitesimal perforations in a given

material, can be treated in a similar way, see [4], Section 4. Consider a model
hole, which is a compact set T ⊂ Y (see Figure 2), where Y is the periodicity
cell. The cellular problem describing the behaviour of this perforated material
is defined on the perforated space, denoted by R

n
perf

, and a Neumann boundary

condition is imposed on the boundary of the model hole.
The perforated space is obtained from R

n by removing translations of the
model hole (see Figures 3 and 4). For an arbitrary parallelipiped Y defined by
n linearly independent vectors ~g1, ~g2, . . . , ~gn, one has

R
n
perf = R

n \
⋃

~k∈Zn

(T + k1~g1 + k2~g2 + . . . + kn~gn)

The direct generalization of the cellular problem (1) for porous materials is
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Figure 4: Periodically perforated plane R
2
perf

for another cell

stated below (the base material C is now considered to be constant) :







−div(C ǫ(wA)) = 0 in R
n
perf

C ǫ(wA) n = 0 on ∂T

wA(y) = Ay + φA(y), φA periodic function.

(3)

The homogenized tensor CH can be defined as

C
H

A =
1

|Y |

∫

Y \T

C ǫ(wA)

or

〈CH
A, B〉 =

1

|Y |

∫

Y \T

〈C ǫ(wA), ǫ(wB)〉 .

Remark 1 Note that, through careful interpretetation, problems (3) makes sense
even if the model hole T exits partially the periodicity cell Y , as long as it does
not touch any of its translations T +~k, ~k ∈ Z

n, ~k 6= ~0. This is important since,
in the optimization process, the model hole often crosses the boundary of Y .

Remark 2 In the above, the model hole T was chosen to be connected. But
there is no difficulty in considering a model hole with several connected compo-
nents.

3 Locally periodic microstructures

We call “locally periodic” a microsctructure which, in the neighbourhood of
each point of the macroscopic domain, has a periodic character. This periodic
microgeometry can vary from point to point (at the macroscopic level). This
corresponds to a pattern tensor field C depending on both x (the macroscopic
variable) and y (the microscopic variable).

The cellular problem (1) depends now on x as a parameter :

{

−divy

(

C(x, y) ǫy(wA(x, y))
)

= 0 in R
n

wA(x, y) = Ay + φA(x, y), with φA(x, ·) Y −periodic,
(4)
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The homogenized elastic tensor CH depends now on x and is defined by

〈CH(x)A, B〉 =
1

|Y |

∫

Y

〈C(x, y)ǫy(wA(x, y)), ǫy(wB(x, y))〉dy ,

where A and B are two arbitrary strain matrices.
A locally periodic porous material is described in a similar manner. The

model hole T now varies with x and shall be denoted by T (x). The corresponding
perforated space will be denoted by R

n
perf

(x)

R
n
perf(x) = R

n \
⋃

~k∈Zn

(T (x) + k1~g1 + k2~g2 + . . . + kn~gn)

The base material C is now considered to be constant. The cellular problem
(3) becomes







−divy

(

C ǫy(wA(x, y))
)

= 0 in R
n
perf

(x)

C ǫy(wA(x, y))n = 0 on ∂T (x)
wA(x, y) = Ay + φA(x, y), φA periodic in y.

(5)

The homogenized ellastic tensor CH(x) is defined by

〈CH(x)A, B〉 =
1

|Y |

∫

Y \T (x)

〈C ǫy(wA(x, y)), ǫy(wB(x, y))〉dy , (6)

where A and B are two arbitrary strain matrices.

Remark 3 In the present paper, we assume that the periodicity cell (which
is the parallelipiped defined by n linearly independent vectors ~g1, ~g2, . . . , ~gn) is
constant in the macroscopic domain, in the sense that it does not vary with
x. We may study examples involving different periodicity cells, but within each
example, the cell will be constant. Letting the vectors ~g1, ~g2, . . . , ~gn depend on
x, and also letting them vary during the optimization process, is the object of
on-going work.

The behaviour of the macroscopic body is described by the homogenized
elastic tensor CH(x). More precisely, suppose that the macroscopic body oc-
cupies the domain Ω ⊂ R

n, that the boundary of Ω is split in two parts (the
Neumann part ΓN and the Dirichlet part ΓD) and that the body is subject to
the superficial force g. Then, the state of the body u is the solution of







−divx(CHǫx(u)) = 0 in Ω
u = 0 on ΓD

(CHǫx(u))n = g on ΓN .

(7)
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4 Shape and topology derivatives

The aim of the present paper is to optimize macroscopic properties of the body
under study, by varying the details of its locally periodic microstructure, more
specifically, by varying the shape and topology of the holes T (x).

Consider an objective functional Φ depending on the solution u of problem
(7). A typical example is the minimization of the compliance of the body

Φ =

∫

ΓN

gu = 2

∫

ΓN

gu −

∫

Ω

〈CHǫx(u), ǫx(u)〉 (8)

Usually, there is also a constraint on the volume of material:

V =

∫

Ω

θ , (9)

where

θ(x) =
|Y \ T (x)|

|Y |
= 1 −

|T (x)|

|Y |

is the local material density.
So, one has to deal with a chain of dependencies :

T 7→ C
H 7→ u 7→ Φ ,

that is, to a family of cellular holes T (x) one associates the homogenized tensor
C

H(x) as defined by (6), then the macroscopic elastic deformation u as defined
by (7) and finally the value of the objective functional Φ. A similar chain of
dependencies exists for the volume V .

For optimizing the properties of the considered structure, a gradient-based
algorithm can be used. This is why infinitesimal variations in the shape and/or
topology of the family of holes T should be considered and the corresponding
variations in the chain of dependencies should be described :

δT 7→ δCH 7→ δu 7→ δΦ . (10)

Describing the variation δΦ of the objective functional in terms of δCH and
δu is relatively simple. For the particular case here studied, see (8), one has

δΦ = 2

∫

ΓN

g δu −

∫

Ω

〈δCHǫx(u), ǫx(u)〉 − 2

∫

Ω

〈CHǫx(u), ǫx(δu)〉

Remark 4 Eliminating δu from the formula of δΦ is usually a complicated task;
this is done by expressing δu in terms of δCH and by making use of the adjoint
equation. However, for the particular case of the compliance (8) this is not
necessary, since the minimization of the compliance is a self-adjoint problem.

For the case under study, it suffices to note that
∫

ΓN

g δu =

∫

Ω

〈CHǫx(u), ǫx(δu)〉 .
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Y

T(x)

Figure 5: Infinitesimal deformation of the model hole T (x)

The above relation is obtained from the variational formulation of (7). As a
consequence of the above formulae,

δΦ = −

∫

Ω

〈δCHǫx(u), ǫx(u)〉dx . (11)

Since in the above the functional Φ is considered to depend directly on the
elastic coefficients CH , the approach described so far is the same as in free
material optimization, see Chapter 3 of [8]. The considerations below, however,
are essentially different, since the homogenized tensor CH is viewed as depending
on the model holes T (x).

In order to describe the variation δCH in terms of variations in the shape
and/or topology of the family of holes T , generically denoted here by δT , one
should note that this dependency is local. More precisely, since the homogenized
elastic tensor CH(x) in a certain point x of the body is defined in terms of the
model hole T (x) only, see Section 3, its variation δCH(x) depends only on the
changes in the model hole T (x) in that point. Consequently, the formulae for
shape and topological derivative presented in Sections 5 and 6 of [4] for periodic
microstructures are valid for the problem studied in the present paper, at each
point x of the body. We state these formulae in the sequel.

Consider first shape variations, given by a family τx (indexed by x ∈ Ω) of
infinitesimal deformations of the local model hole T (x), see Figure 5. Then, the
corresponding variations in the homogenized tensor are described by

〈DSC
H(x)A, B〉 =

1

|Y |

∫

∂T (x)

[

2µ〈ǫy(wA), ǫy(wB)〉

+ λtr(ǫy(wA))tr(ǫy(wB))
]

〈~τx, n〉dσ(y) , (12)

where dσ denotes the superficial measure on ∂T (x), while λ and µ are the Lamé
coefficients of the (constant) base material tensor C. See equation (32) in [4].
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By choosing the matrices A and B in a basis of symmetric matrices, one may
write equation (12) in a compact form :

DSC
H(x) =

∫

∂T (x)

S(x, y) 〈~τx, n〉dσ(y) , (13)

where S is a fourth order tensor describing the shape sensitivity of CH .
The sensitivity of CH(x) with respect to topology variations, that is, with

respect to the nucleation of an infinitesimal hole at an arbitrary location y in
the periodicity cell is described by

〈DT C
H(x)(y)A, B〉 = −

π

|Y |

λ + 2µ

λ + µ

[

4µ〈ǫy(wA), ǫy(wB)〉

+
λ2 + 2λµ − µ2

µ
tr(ǫy(wA)) tr(ǫy(wB))

]

(x, y) , (14)

see equation (24) in [4]. This can be again expressed in a compact form

DT CH(x)(y) = −T(x, y) (15)

where T is a fourth order tensor describing the topology sensitivity of CH .
By combining formulae (11) and (13), one obtains the shape sensitivity of

the objective functional Φ :

DSΦ = −

∫

Ω

∫

∂T (x)

〈S(x, y)ǫx(u), ǫx(u)〉 〈~τx, n〉dσ(y)dx

In order to handle the volume constraint, a Langrange multiplier Λ is intro-
duced. Thus, the functional to minimize becomes

Φ + ΛV

Note that the shape sensitivity of V given by (9) is easy to compute :

DSV =

∫

Ω

∫

∂T (x)

〈~τx, n〉dσ(y)dx

Thus, the shape derivative of the functional to minimize is

DS(Φ + ΛV ) =

∫

Ω

∫

∂T (x)

(

−〈S(x, y)ǫx(u), ǫx(u)〉 +
Λ

|Y |

)

〈~τx, n〉dσ(y)dx (16)

For the topological derivative, note that DT V = −π|Y | -1. By combining
formula (15) with (11), one obtains

DT (Φ + ΛV )(y) = 〈T(x, y)ǫx(u), ǫx(u)〉 − πΛ|Y | -1 . (17)
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Remark 5 Although the present paper focuses on the minimization of the com-
pliance (8), any other objective functional Φ can be treated in a similar way,
according to the chain rule (10). The derivative of Φ with respect to CH will be
different, that is, formula (11) will be replaced by a possibly more complicated
integral expression. This integral expression will depend linearly on δCH and
will involve also the state u, solution of (7), and the adjoint state (see Remark
4). For obtaining the shape and topology derivatives of Φ, the procedure would
be similar to the one above described for compliance. According to whether shape
or topology derivative is to be computed, δCH should be replaced by (12) or (14).
Note that formulae (12) and (14) do not depend on the choice of Φ.

5 Optimization algorithm

The above described formulae for the shape and the topological derivatives
are used in an optimization algorithm which alternates shape optimization and
topology optimization at the cellular level.

The macroscopic domain Ω is divided into N finite elements (rectangular
ones, in our approach, but this is not essential) : Ω = ∪N

e=1Ke. In each macro-
scopic finite element Ke, the body is supposed to have a periodic microstructure,
that is, the model hole T (x) is supposed to be constant in each Ke, and shall
be denoted by Te. This gives rise to a homogenized elastic tensor CH

e and to a
local material density θe (both constant in Ke).

The cellular geometry describing the periodic microstructure in each Ke is
discretized using a (triangular) finite element mesh on the periodicity cell Y .
Some of these cellular finite elements are filled with an isotropic elastic material
of Lamé constants λ and µ while others are void, thus defining the model hole.
This mesh is used for solving numerically the cellular problem (5). Knowing an
approximation of the cellular solutions wA (for arbitrary matrices A) allow us to
compute the homogenized elastic tensor CH

e through (6) on one hand and the
shape and topology derivatives (16), (17) on the other hand. The periodicity
conditions in (5) are implemented by identifying the opposite sides of Y and
by keeping track of the linear part A of wA. This is equivalent to using a finite
element mesh on the two-dimensional torus and allowing the unknowns wA to
be multi-functions, by keeping track of the corresponding jumps, as explained
in [9] and [5].

The algorithm alternates steepest descent steps for shape variations in the
model holes Te and for topology variations in Te (e = 1, 2, . . . , N). For shape
variations, the derivative given by (16) yields the deformation field

τe(y) =

∫

Ke

(

〈S(x, y)ǫx(u), ǫx(u)〉 − Λ
1

|Y |

)

dxn(y) , (18)

where u is the solution of the macroscopic elastic problem (7), n is the normal
vector to the boundary of the hole Te and S is the fourth-order tensor appearing
in (12). Note that, since the microstructure is supposed to be periodic in each
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∫

Ke

ǫ(u)⊗ ǫ(u)

compute homogenized
elastic coefficients
and material density

or topology optimization step
in each periodicity cell

perform a shape optimization

yes
stop

(globally) periodic microstructure

Initiate process with

convergence ?
no

compute sensitivities

solve macroscopic elastic
problems(s)

Figure 6: Control flow diagram

macroscopic finite element Ke, S(x, y) is constant for x ∈ Ke : S(x, y) = Se(y),
with

〈Se(y)A, B〉 = |Y | -1
[

2µ〈ǫy(wA), ǫy(wB)〉 + λtr(ǫy(wA))tr(ǫy(wB))
]

.

Thus, formula (18) becomes

τe(y) =
(〈

Se(y),

∫

Ke

ǫx(u) ⊗ ǫx(u) dx
〉

− |Ke|Λ
1

|Y |

)

n(y) (19)

So, τe has the form −γen, where the function γe is computable in terms of the
macroscopic strain ǫx(u) and of the solutions wA of the cellular problem. This
deformation is applied to the model hole Te and is then propagated into the rest
of the cellular mesh, as explained in [9].

For topology variations, the topological derivative (17) is re-written taking
into account that the microsctructure is supposed to be periodic in each Ke.
Thus, the sensitivity of Φ + ΛV with respect to infinitesimal topology changes
in Te is

〈

Te(y),

∫

Ke

ǫx(u) ⊗ ǫx(u) dx
〉

− |Ke|πΛ
1

|Y |
, (20)

where Te(y) = T(x, y), for x ∈ Ke. Formula (20) defines a scalar function of y

which is interpreted as follows. In the perforated cell Y \Te, the minimum point
of (20) is looked for. If the corresponding minimum value is negative, then a
small hole is nucleated at that point; otherwise, no action is taken.

Figure 6 shows an outline of the algorithm. Figure 7 presents some imple-
mentation details. The program has two main components: one of them is a
microscopic analysis and optimization code, written in FORTRAN, introduced
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∫

Ke

ǫ(u)⊗ ǫ(u)

Python

CONTROL SCRIPT

homogenized elasticsensitivities

MICROSCOPIC OPTIMIZATION

(shape, topology)

FORTRAN

MACROSCOPIC ANALYSIS

C++ libMesh

FreeFem++

sensitivities

optmization
parameters

coefficients

densities

homogenized elastic
coefficients

Figure 7: Data flow diagram

in [10] and [9] and improved in [5]. Another component is a macroscopic analysis
tool for which we could have used any well-known software, but which we have
chosen to implement directly. Two versions have been tested, one of them writ-
ten in FreeFem++ and the other one written in C++ with the use of the libMesh

library. A control script written in Python links these two main components.
While the volume of information handled by the microscopic analysis and

optimization code is huge, since it deals with a finite element mesh on the
periodicity cell for each macroscopic finite element Ke, it only needs to send to
and receive from the macroscopic code (through the control script) tiny pieces of
information: the homogenized elastic tensor (16 scalar values for each Ke), the
shape/topology sensitivities (32 scalar values for each Ke), the material densities
(one scalar value for each Ke) and some optimization parameters. Note that,
at each optimization step, the treatment of each model hole Te is independent
of other model holes, in different zones of the macroscopic body. This is why
this problem is well-suited for parallel computation.

Several versions of the control script have been tested. Recall that N model
holes must be optimized, where N is the number of macroscopic finite elements.
A first version of the script launches p simultaneous cellular processes (using the
Popen function in the subprocess module of the Python language) and puts
them in a queue. When the first process in the queue finishes, the script launches
another cellular process. This has the disadvantage that some processes in the
queue may finish before the first one, and in this case the machine waits un-
necessarily for the first process, thus wasting execution time. This is why the
measured speedup for this version of the script is not significant. A second ver-
sion launches p simultaneous cellular processes, and when any of them finishes,
it launches a new process. It uses the select module of Python in order to
select a process whose standard output produces information. The speedup of
this second version is significant: the execution speed increases about p times if
p is less than or equal to the number of processors of the machine. For larger
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Figure 8: Initial guess

p, the speedup is no longer linear and for very large p the speed remains al-
most constant. A third version of the script connects to several machines and
spreads cellular optimization processes, by using a regular internet link and the
protocol ssh, through the external modules pexpect and pxssh. The speedup
of this third version can be tremendous, depending on the number of machines
involved.

6 Numerical examples

In order to illustrate the method, results for three examples are shown. A
cantilever is considered, ocuppying a 2 × 1 rectangle, clamped on its left side
and subject to loads on its right side. This rectangle is divided in 200 = 20×10
Lagrange finite elements of type Q9.

The base elastic material C is taken to have Young modulus E = 1 and
Poisson coefficient ν = 0.3. More specifically,

Cǫ = 2µǫ + λ(trǫ)I2×2

with µ = 0.38461538 and λ = 0.576923.
We minimize Φ + ΛV with Φ defined in (8) and V defined in (9). The

Lagrange multiplier is always taken as Λ = 133.33333. These values were chosen
in order to facilitate the comparison of our results with other results from the
literature, particularly from [1] and [11].

The cellular meshes (on the periodicity cell Y ), are composed of triangu-
lar Lagrange P1 finite elements. The number of elements varies during the
optimization process around 1000 triangles.

The algorithm starts with an initial guess consisting of a periodic microstruc-
ture (constant hole T ), shown in Figure 8. The conventions used in this Figure
are: in the center, the density of material, θ = 0.9079239, is drawn as a function
defined in the macroscopic domain; on both sides, magnifications of the mi-
crostructure in 4 chosen points of the body are shown. Starting with this initial
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Figure 9: Cantilever with one load in the middle, problem setting and conver-
gence history

structure, the shape and topology of the holes T (x) are varied. One topology
optimization step is performed after every 20 shape optimization steps. A sim-
ilar scheme was used with an alternate directions shape/topology optimization
algorithm based on level-set techniques in [12]. No penalization of intermediate
densities is applied.

Each numerical example is illustrated by two Figures. Firstly, Figures 9, 11
and 13 show the configuration of the body, the applied loads, and three graphics
representing the evolution of Φ+ΛV , of Φ and of V , as functions of the number
of iterations. Secondly, in Figures 10, 12 and 14 the optimized structure is
presented, with the following same conventions as in Figure 8 : in the center,
the density of material, θ, is drawn as a function defined in the macroscopic
domain (the 2 × 1 rectangle), using levels of grey. Around this central zone,
magnifications of the microstructure in 8 chosen macroscopic finite elements
are shown. Note that the homogenized tensor C

H of the optimized structure is
difficult to represent, since it involves 6 scalar functions. A dynamic version of
these Figures is available at [13].

In the first example, a load of intensity 1 is applied in the middle point of
the right side of the cantilever. Figure 9 shows the setting of the problem and
the evolution of the Lagrangean Φ+ΛV , of the compliance Φ and of the volume
of material V , as functions of the number of iterations. It can be seen that the
decrease of the Lagrangean is rather slow; this is due to the fact that a very
simple minimization algorithm was used (steepest descent). Note that we have
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Figure 10: Cantilever with one load in the middle, optimized structure

no information on the second derivatives of the functionals involved. Probably,
the speed of convergence could be improved by using a quasi-Newton algorithm.

In Figure 10, the optimized structure is represented. Note that the algorithm
is not allowed to eliminate completely the material from a certain zone, nor to
cut completely the material into layers (since this would produce a degenerate
homogenized elastic tensor CH). Thus, the minimum percentage of material
allowed is about 9% and is attained by very thin truss-like structures (zoom h).
In certain zones, it can be seen that the algorithm produces periodic microstruc-
tures close to rank-1 laminates (zooms a and e) or to rank-2 laminates (zooms
c and g). Note that there is a known theoretical optimal structure predicted by
the theory of homogenization, made of rank-2 laminates; see [14].

In the second example, a load of intensity 1 is applied in the lower right
corner of the rectangle, see Figure 11. The optimized structure is represented
in Figure 12. One can recognize the appearence of the classical solution. Zoom
a corresponds to a zone with full material (density θ = 1): the algorithm is
allowed to eliminate completely the model hole. It is noticeable how the mi-
crostructures orient themselves in the direction of the principal stress (zooms
b, c, e, g). Some of the microstructures (e.g. zoom e) ressemble the Vigdergauz-
type microstructures, see [15].

As explained in Remark 5, the approach presented here is not limited to
the minimization of the compliance: other, more complicated, functionals can
be dealt with. The third example involves a multi-load situation. Three loads
are considered, as shown in Figure 13, acting independently of each other. The
objective functional is the average of the three compliances (for the three load
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Figure 11: Cantilever with load in the lower corner, problem setting and con-
vergence history
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Figure 12: Cantilever with load in the lower corner, optimized structure
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Figure 14: Cantilever with three independent loads, optimized structure
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cases) :

Φ =
Φ1 + Φ2 + Φ3

3

The optimized structure is shown in Figure 14. Note that, for this multi-
load objective functional, there is no guarantee that an optimal structure can
be obtained by using rank-two laminates, see [14]. This is confirmed, to a
certain extent, by the fact that, in the structure represented in Figure 14, more
oval-shaped holes appear in comparison with the two previous examples. These
microstructures are supposed to resist well to three different stress states.

No symmetry is imposed in the above three examples, either on the macro-
scopic solution or on the microstructures. In the first and third examples, the
macroscopic solution is almost symmetric, as expected. By using a finer macro-
scopic mesh, we expect to obtain a more perfect symmetry.

The authors believe that the solutions could be improved by allowing the
periodicity cell to vary during the optimization process, see Remark 3. The
evolution of the periodicity cell in each (macroscopic) finite element should be
independent of the evolution of the other cells. This would give the microstruc-
tures the freedom to orient themselves better; the variation of the periodicity
cell should follow the derivative of the objective functional with respect to the
vectors defining the periodicity.

7 Conclusions and future work

The present paper presents an algorithm for the optimization of bodies hav-
ing locally periodic perforations. Shape and topology optimization steps are
performed following an alternate directions approach. The scripting language
Python was used in order to launch in parallel cellular optimization processes.

Our approach is related to free material optimization in the sense that it uses
the derivative of the objective functional with respect to the homogenized elastic
coefficients. The method is general : any objective functional can be treated, as
long as its derivative with respect to the macroscopic material coefficients can
be computed.

The numerical results are encouraging, showing good agreement with results
from the literature.

The upgrade of the algorithm to three-dimensional problems is the object
of on-going work. The main difficulty is the implementation of the finite ele-
ment mesh on the cube with its opposite faces identified (which is equivalent to
meshing the three-dimensional torus), especially its deformation and regenera-
tion. Robust algorithms for mesh deformation and mesh regeneration in R

3 are
difficult to find.

Other directions for improving the algorithm in the future are: the imple-
mentation of a quasi-Newton algorithm in order to accelerate the convergence
and allowing the periodicity cell to vary along the optimization process.
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