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Abstract

Concerning second order problems, we study the existence of positive solutions for
the differential equation

u′′ = a(x)u− g (u) ,

with u′(0) = u(+∞) = 0, where a is a positive function, g satisfies some growth
hypotheses (in particular the bounded case). We also deal with the problem in which
the differential equation has an extra dissipative term on the left-hand side. The
main motivation is to check that some well known second order results concerning the
existence of homoclinics for the autonomous case (where a is constant) extend to the
nonautonomous equation.

For fourth order problems, we study the existence of solution for the bvp{
u(4) − c u′′ + a(x)u = |u|p−1

u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0.

Key words: Second order, Fourth order; Non-autonomous equation; Variational
methods; Unbounded domains; Positive solution;
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1 Introduction

The study of existence of positive homoclinics of the ordinary differential equation

u′′(x) = a(x)u(x)− g (u (x)) (1)
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where g(0) = 0 is partially motivated by the search of “standing wave” solutions Φ(t, x) =
eiωtu(x) of the Klein-Gordon type equation

Φtt −∆Φ + a2Φ = f (Φ) ,

where Φ : R×RN → R is a complex function, a ∈ R and f(ρ eiθ) = f(ρ)eiθ. In this process
we are lead to the equation

−∆u+
(
a2 − ω2

)
u = f(u). (2)

The corresponding Euler-Lagrange functional is

1
2

∫
RN

(
|∇u|2 +

(
a2 − ω2

)
u2 − 2F (u)

)
dx,

where F (u) =
∫ u
0 f(s) ds, and for this integral to be well-defined, |u| needs to vanish at

+∞.
In this paper we study this problem under conditions different from those considered

in [7], where we proved the existence of a positive solution for the problem

u′′ = a(x)u− g(u), u′(0) = u(+∞) = 0, (3)

where g(u) satisfies the hypotheses

(H1) setting G(u) =
∫ u
0 g(s) ds, there exists q > 2 such that

0 < qG(u) ≤ u g(u), ∀u ∈ ]0,+∞[,

(H2) g(u) = o (u) at u = 0,

and a(x) is such that

(A1) there exists 0 < a < A such that 0 < a(x) ≤ A ∀x ≥ 0 and limx→+∞ a(x) = a,

(A2) JA∗ < 2Ja∗.

Here Ja∗ is the value of the Euler-Lagrange functional associated with the autonomous
problem

u′′(x) = au(x)− g(u(x)), u′(0) = u(+∞) = 0,

computed at its nontrivial solution ua, that is

Ja
∗ =

∫ ∞

0

(
ua
′(x)2 + a ua(x)2 − 2G(ua)

)
dx = 2

∫ ξ

0

√
a u2 − 2G(u) du,

where ξ is the smallest positive root of a u2 − 2G(u). In this paper we prove existence of
solution for a different type of nonlinearity, for the equation with a linear term in u′ and
we also prove existence of homoclinics in somehow similar fourth order problems.

Problems of type (3) have been studied in the last two decades, especially in the case
where g(u) is a superlinear power. P. Korman and A. Lazer gave a variational approach
for the cases g(u) = u3 in [10] and g(u) = up, where p > 1, in [11]. In these papers,
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the coefficient a(x) is increasing in [0,+∞[. We shall solve a sequence of boundary value
problems in [0, T ] and if we consider an appropriate sequence of T ’s tending to +∞,
a nontrivial solution of the infinite interval problem will be found as the limit of the
corresponding solutions uT . M. Grossinho, F. Minhós and S. Tersian also gave a similar
variational approach for this problem in [9], but working with two simultaneous powers in
the nonlinear term. Related with these problems we also mention the papers [2], [8], [12],
[14] and [15].

In Section 2 we consider a special case of the problem (3) and prove the existence of
a positive solution with a “shooting” technique. Section 3 will be dedicated to the same
problem, with a bounded nonlinear term g(u), that of course does not satisfy condition
(H1). The following two sections deal with analogous results for the equation with a linear
term in u′. Sections 6 and 7 generalize to fourth order problems some of the variational
techniques used for second order problems.

2 A second order problem with a(x) nondecreasing

So we consider the problem{
u′′ = a(x)u− u3 = u

(
a(x)− u2

)
u′(0) = 0, u(+∞) = 0.

(4)

Lemma 2.1. Let a(x) be a positive and nondecreasing function defined in [0,+∞[. If
u(x) is a solution of (4), the energy function E(x) ≡ u′2

2 + u4

4 −
a(x)u2

2 is decreasing in R+.

Proof. Let x1 < x2 ∈ R+. Using the Stieltjes integral, we have

E(x2)− E(x1) =
∫ x2

x1

dE =
∫ x2

x1

(
u′2

2
+
u4

4

)′
−
[
a(x)

u2

2

]x2

x1

=

=
∫ x2

x1

a(x)uu′ dx−
[
a(x)

u2

2

]x2

x1

= −
∫ x2

x1

u2

2
da(x) ≤ 0.

Positive solutions solutions of u′′(x) = a(x)u(x) − u(x)3 = u(x)
(
a(x)− u(x)2

)
are

concave if u(x) >
√
a(x) and convex if u(x) <

√
a(x), therefore the graph of the solution

of {
u′′(x) = a(x)u(x)− u(x)3

u(0) = L, u′(0) = 0
(5)

where L >
√
a(0) crosses the graph of

√
a(x) at x = cL for some cL > 0, and we may

suppose that cL is the minimum value with this property.

Proposition 2.2. As L tends to +∞, cL tends to 0.

Proof. Let us first prove the result for a(x) bounded. Let dL be the minimum value such
that uL(dL) = L

2 . Suppose towards a contradiction that dL 6→ 0. This means that there
exists sequence Ln → +∞ such that dLn > k for some constant k > 0. Let p = π

2k >
π

2dLn
.
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Since a(x) is bounded, for n large enough we have a(x) − u2
Ln

(x) ≤ −p2 for x ∈ [0, dLn ],
so the unique solution v of the initial value problem{

v′′(x) = −p2v

v(0) = L, v′(0) = 0
(6)

is such that v(x) ≥ uLn(x) in the interval [0, dLn ]. But v(x) = cos(p x) vanishes at
x = π

2 p = k < dLn , which contradicts v(x) ≥ uLn(x). Consequently we have dL → 0 and
a simple geometric argument implies that cL ≤ 2dL, so we conclude that cL → 0.

In case a(x) is unbounded, consider the bounded auxiliar function

ā(x) =

{
a(x), x ≤ 1
a(1), x > 1.

Applying the result obtained for bounded functions, we have that for L > L0 large enough
we have cL < 1 and since the result only depends on the values of x smaller than cL, the
result holds for the unbounded function a(x).

Corollary 2.3. As L tends to +∞, uL′(cL) → −∞.

Proposition 2.4. For L >
√
a(0) large enough, the solution of (5) has at least one zero.

Proof. For simplicity, let us denote cL by c. Given L∗ >
√
a(0) large, let c∗ be the

first value such that the graph of the solution of (5) with L = L∗ crosses the graph of√
a(x). Taking a sufficiently large L > L∗, the corresponding solution uL of (5) satisfies

uL(c) =
√
a(c), for some c < c∗. Suppose towards a contradiction that uL does not vanish

in [0, c∗]. Then, there exists ĉ ∈ [c, c∗] such that uL′(ĉ) = −
√
a(c)

c∗−c , which is the slope of
the line connecting (c,

√
a(c)) and (c∗, 0), and we have

−
√
a(c)

c∗ − c
− u′(c) =

∫ ĉ

c
u′′(x) dx ≤ c∗

√
a(c∗)

3
.

Taking in consideration last corollary, we have a contradiction.

Proposition 2.5. Consider the initial value problem (5) with L >
√
a(0). If its solution

uL is positive and does not have a local minimum, then uL(+∞) = 0.

Proof. It is obvious that the graph of uL crosses the graph of
√
a(x) with negative deriva-

tive and since the derivative does not vanish again and uL is positive, we must have
u′L(+∞) = 0 and therefore uL(+∞) = k > 0. If k 6= 0 then

u′′L(+∞) = uL(+∞)
(
a(+∞)− u2

L(+∞)
)
> 0

and therefore there would exist c ∈ R such that u′L(c) = 0, which is a contradiction.

Proposition 2.6. If 0 < L <
√

2a(0) then the solution uL of (5) is positive in R+ and
attains a positive minimum m for some xm ≥ 0.
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Proof. Since E(0) = L2

2

(
L2

2 − a(0)
)
< 0 we have E(x) < 0 for every x > 0. If there exists

x0 > 0 such that u0(x0) = 0, then E(x0) = u′(x0)2

2 ≥ 0, which is a contradiction.
If uL does not attain a positive minimum, then uL(+∞) = 0 and u′L(+∞) = 0, and

therefore E(+∞) = 0, which is again a contradiction.

Proposition 2.7. If the solution uL of (5) attains a positive minimum m for some xm ≥
0, then uL is positive for x > xm.

Proof. We can conclude as in the proposition above, since E(xm) = m2

2

(
m2

2 − a(xm)
)
< 0.

Theorem 2.8. Let a(x) be a positive, nondecreasing function. Then the problem (4) has
at least one positive solution.

Proof. We use a connectedness argument appearing in the paper of H. Berestycki, P. Lions
and L. Peletier [5]. Consider the following subsets of R+

A =
{
L >

√
a(0) : uL > 0 and uL has a positive minimum

}
,

B =
{
L >

√
a(0) : uL(x0) = 0 for some x0 > 0

}
.

Both sets are nonempty, obviously disjoint, and, by the continuous dependence of the
parameters, open in R. Let u0 = inf B. Since u0 does not belong to A or B, we must
conclude that the solution of problem (5) with L = u0 is positive and tends to 0 at ∞.

3 2nd order problem with bounded nonlinearity and a con-
stant in a neighborhood of ∞

In this section we prove the existence of a positive solution of

u′′ = a(x)u− g(u), u′(0) = u(+∞) = 0. (7)

We will consider a(x) satisfying (A2) and a stronger hypothesis than (A1): assume that

(A′1) 0 < a(x) ≤ A ∀x ≥ 0 and there exists x0 > 0 such that a(x) ≡ a ∀x ≥ x0.

The function g ∈ C([0,∞), [0,∞)) will be a bounded function that satisfies (H2), and in
addition:

(H3) The function f(u) := a u2−2G(u) has only one negative minimum attained at u = η,
and hence only one zero, say ξ in (0, η).

(H4) Au2 − 2G(u) = 0 has also a negative minimum.

(H5) There exists α > 0 such that |f(u)− f(v)| ≥ α|u− v| ∀u, v in a neighborhood of ξ,

(H6)
∫ η
0

du√
f(u)−f(η)

= +∞.
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Condition (H3) is not absolutely necessary since we could reach the same conclusions in
a more general context, but we included it for simplicity of notations and calculations.
Note that (H1) does not hold. Since we look for positive solutions, in what follows we set
g(u) = 0 for u < 0.

Remark 3.1. Before we deal with the problem above, let us consider a slight variation.
Suppose that instead of (A2), a(x) satisfies

√
A tanh(

√
Ax0) <

√
a (8)

If we consider the initial value problem

u′′ = a(x)u− g(u), u(0) = ζ, u′(0) = 0 (9)

it is obvious that for ζ large the solutions must be convex and therefore larger than ζ for
every x > 0. If ζ > 0 is small enough, then by (H2), (u(x, ζ), u′(x, ζ)) = ζ(v(x), v′(x)) +
o(ζ) uniformly in [0, x0], where v is the solution of the linear problem

v′′ = a(x)v, v(0) = 1, v′(0) = 0.

Since z(x) = v′(x)
v(x) satisfies z′ + z2 = a(x), an elementary comparison theorem shows that

z(x0) ≤
√
A tanh(

√
Ax0).

Now the positive homoclinic at the origin for the autonomous equation u′′ = a u−g(u)
has an image curve in the (u, u′)-plane whose slope at the origin in the half-plane u′ > 0 is
precisely

√
a. Hence by (8), for for ζ sufficiently small, (u(x0, ζ), u′(x0, ζ)) lies “inside” the

homoclinic. Since for ζ large (u(x0, ζ), u′(x0, ζ)) is obviously “outside” the homoclinic,
a connectedness argument based on the Peano phenomenon (see e. g. [13]) allows us
to conclude that there exists a value ζ0 such that (u(x0, ζ), u′(x0, ζ)) is a point of the
homoclinic solution of the autonomous problem. Since for x ≥ x0 we have a(x) = a, there
exists a positive solution of (7).

Note that estimate (8) works well only if x0 is small.

Consider now the problem with condition (A′1)−(A2)−(H2)−(H3)−(H4)−(H5)−(H6).
Proceeding as in [7], we easily see that the boundary value problems{

u′′ = a(x)u− g(u)
u′(0) = 0, u(T ) = 0

(10)

have a positive solution uT , because the associated modified Euler-Lagrange functionals

JT (u) =
∫ T

0

(
u′2 + a(x)u2 − 2G(u+)

)
dx,

have a mountain-pass geometry relative to the local minimum u = 0 in the space H∗
T ≡{

H1[0, T ] : u(T ) = 0
}
. The mountain-pass critical values cT = JT (uT ) are positive, de-

creasing in T and therefore, for T > 1, we have cT ≤ c1. The solution uT must attain a
maximum at a point where uT ′′ ≤ 0 so ‖uT ‖∞ is uniformly bounded in T . The differential
equation allows us to conclude that ‖uT ′′‖∞ is bounded too and consequently the same is
true for ‖uT ′‖∞.
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Proposition 3.2. uT ′(T ) → 0 as T → +∞.

Proof. If uT ′(T ) 6→ 0, then there exists a sequence of T ’s tending to +∞ such that
uT

′(T ) → d for some constant d < 0.
If we multiply the differential equation with u = uT by uT ′ and integrate, we get

uT
′2 = a uT

2 − 2G(uT ) +KT , ∀x ≥ x0 (11)

where KT is a constant.
Consider the autonomous initial value problem{

u′′ = a u− g(u)
u′(0) = d, u(0) = 0.

(12)

Recall that ξ is the smallest positive value such that 2G(u) − a u2 = 0 and η is the
maximizer of 2G(u)− a u2. Let dη < 0 be the value of the derivative when u = 0 for the
trajectory that goes to (η, 0) as x→ −∞. This trajectory exists by virtue of (H6) and is
given by u′ < 0 and

u′2 = au2 − 2G(u) + d2
η

where
d2
η = −aη2 + 2G(η).

We will divide the proof into three cases, dη < d < 0, d = dη and d < dη:

(1) If dη < d < 0, the correspondent solution u of the autonomous problem (12) has a
largest negative zero −c and u′(−c) > 0. For T large enough we have T − c > x0, so
the solutions uT coincide with the autonomous solutions and consequently, since we
have uniform convergence in compact intervals, we would have a contradiction with
the positivity of the solutions uT .

(2) If d = dη, we will distinguish two cases: uT ′(T ) → dη from above and uT
′(T ) → dη

from below. In the first situation, if there exists a local maximum point xT ≥ x0

(let uT (xT ) ≡ ηT ) then ηT < η and f(ηT ) +KT = 0, which implies that ηT → η as
T →∞. We have

JT (uT ) =
∫ T

0

[
uT

′2 + a(x)uT 2 − 2G(uT )
]
dx =

=
∫ x0

0

[
uT

′2 + a(x)uT 2 − 2G(uT )
]
dx+

∫ xT

x0

[
2
(
a uT

2 − 2G(uT )
)

+KT

]
dx+

+
∫ T

xT

[
2
(
a uT

2 − 2G(uT )
)

+KT

]
dx (13)

The first integral is obviously uniformly bounded and making a change of variable
we get for the third integral∫ T

xT

[
2
(
a uT

2 − 2G(uT )
)

+KT

]
dx = (14)

=
∫ ηT

0

[√
f(u)− f(ηT ) +

f(u)√
f(u)− f(ηT )

]
du.
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The first part of the integral is obviosly bounded and using Fatou’s Lemma and
(H6), we have

+∞ =
∫ η

η−δ

du√
f(u)− f(η)

≤ lim inf
∫ ηT

η−δ

du√
f(u)− f(ηT )

,

where δ > 0 is such that f(u) < 0 for u ∈ [η − δ, η + δ]. It is easy to see that this
implies that the second part of integral tends to −∞ and consequently (14) also
tends to −∞. For the second integral in (13), we have analogously∫ xT

x0

[
2
(
a uT

2 − 2G(uT )
)

+KT

]
dx =

=
∫ ηT

uT (x0)

[√
a u2 − 2G(u) +KT +

a u2 − 2G(u)√
a u2 − 2G(u) +KT

]
du,

and if uT (x0) does not tend to η, we also have this integral tending to −∞ (otherwise
it is bounded). This implies that JT (uT ) tends to −∞, which contradicts the fact
that the mountain pass critical level is positive. Consider now the case where the
solution uT is decreasing for every x ≥ x0. In this situation we have

JT (uT ) =
∫ x0

0

[
uT

′2 + a(x)uT 2 − 2G(uT )
]
dx+

∫ T

x0

[
2
(
a uT

2 − 2G(uT )
)

+KT

]
dx,

where KT → 2G(η)− a η2. Setting uT (x0) = ηT , we have∫ T

x0

[
2
(
a uT

2 − 2G(uT )
)

+KT

]
dx =

=
∫ ηT

0

[√
a u2 − 2G(u) +KT +

a u2 − 2G(u)√
a(x)u2 − 2G(u) +KT

]
du,

and since we must have ηT → η (T − x0 → ∞ implies it), we have a contradiction
of the same type as above.

The case where uT ′(T ) → dη from below can also be treated in a similar way, since
we also must have KT → 2G(η)− a η2. Setting uT (x0) = ηT , it follows that ηT → η
and therefore we would again reach the contradiction JT (uT ) → −∞.

(3) If d < dη, the correspondent solution w of the autonomous problem satisfies

w′2 = aw2 − 2G(w) + d2.

This shows that w′(x) < −
√
d2 − d2

η for all x < 0, and hence w is unbounded above.
Again by uniform convergence in compact intervals, uT would take arbitrarily large
values for T sufficiently large. This is a contradiction with the uniform boundness
of uT .

We can therefore conclude that uT ′(T ) → 0.
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Corollary 3.3. Setting lT as the largest maximizer of uT , we have T − lT → +∞.

In the following, let JT (u)
∣∣
[m,n]

=
∫ n
m

[
u′2 + a(x)u2 − 2G(u+)

]
dx. In order to show

that the limit of the solutions uT cannot be the trivial solution, we need the following

Proposition 3.4. There exists a constant k > 0 such that uT (0) > k for all T > 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ′s tending to +∞
such that uT (0) → 0. Then |uT (x)| + |u′T (x)| → 0 uniformly in [0, x0] as T → ∞. Since
for u small G(u) = o(u2), we have JT (uT )

∣∣
[0,x0]

→ 0.
Since JT (uT ) is bounded away from zero, there exists a maximizer xT > x0 (otherwise

we easily would show that JT (uT ) becomes arbitrarily small). It is obvious that xT tends
to +∞ with T .

Now, setting ξT = uT (xT ), we compute

JT (uT )
∣∣
[x0,xT ]

=
∫ ξT

u(x0)

(
2
√
a u2 − 2G(u) +KT −

KT√
a u2 − 2G(u) +KT

)
du,

with KT = 2G(ξT )− a ξ2T , and because of Proposition 3.2, we have ξT → ξ and KT → 0.
For simplicity we can write the second integral in the simpler form∫ ξT

u(x0)

KT√
f(u) +KT

du =
∫ ξ

u(x0)

KT√
f(u) +KT

du+
∫ ξT

ξ

KT√
f(u)− f(ξT )

du.

Since f(u) ≥ 0 for u ∈ [0, ξ], the first integral is smaller than ξ
√
KT . The second integral

has a singularity at u = ξT , but using (H5) we easily check that there exists a constant
k > 0 such that ∫ ξT

ξ

KT√
f(u)− f(ξT )

du ≤
∫ ξT

ξ

kKT√
ξT − u

du,

it follows that this integral tends to zero as well. This implies that

lim
T→∞

JT (uT )
∣∣
[x0,xT ]

= J∗a .

The same computations are valid for the integral

JT (uT )
∣∣
[xT ,T ]

=
∫ ξT

0

(
2
√
a u2 − 2G(u) +KT −

KT√
a u2 − 2G(u) +KT

)
du.

Since

JT (uT ) = JT (uT )
∣∣
[0,x0]

+ JT (uT )
∣∣
[x0,xT ]

+ JT (uT )
∣∣
[xT ,T ]

and as we have seen
lim
T→∞

JT (uT )
∣∣
[0,x0]

= 0,

lim
T→∞

JT (uT )
∣∣
[x0,xT ]

= lim
T→∞

JT (uT )
∣∣
[xT ,T ]

= J∗a ,

it follows that:
lim
T→∞

JT (uT ) = 2J∗a . (15)
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Let JA,T (u) =
∫ T
0 u′2 +Au2 − 2G(u+) dx.

Claim We have
JT (uT ) ≤ JA,T (zT ),

where zT is a solution to{
z′′ = Az − g(z)
z′(0) = 0, z(T ) = 0, z > 0 in [0, T ).

(16)

Proof of Claim Let α > 0 be such that Aα2 − 2G(α) < 0. Consider the function

u =


α, 0 ≤ x ≤ L

α(L+ 1− x), L ≤ x ≤ L+ 1
0, x ≥ L+ 1

(17)

We have JA,T (u) < 0. It is obvious that for all u ∈ H∗
T we have

JT (u) ≤ JA,T (u),

so JT (u) is also negative. Defining ΓT = {γ(τ) : [0, 1] → H∗
T : γ(0) = 0, γ(1) = u}, we may

assume that

JT (uT ) = inf
γ∈ΓT

max
τ∈[0,1]

JT (γ(τ)) and JA,T (zT ) = inf
γ∈ΓT

max
τ∈[0,1]

JA,T (γ(τ)) .

For a given γ ∈ ΓT , we obviously have

max
τ∈[0,1]

JT (γ(τ)) ≤ max
τ∈[0,1]

JA,T (γ(τ))

and taking the infimum of both sides of the inequality, the claim follows.
By arguments already used in the proof, we easily see that this solution zT is given by

z′2T = Az2
T − 2G(zT ) + d2

T

where dT = z′T (T ) → 0 as T → ∞. Therefore zT (0) → ξ̄ as T → ∞, where ξ̄ is the
smallest positive root of Au2 − 2G(u). We conclude that

lim
T→∞

JT (uT ) ≤ J∗A,

contradicting (15) and (A2).

Theorem 3.5. Let a and g satisfy (A′1) − (A2) − (H3) − (H4) − (H5) − (H6). Then the
problem (7) has at least one positive solution.

Proof. Applying the classical diagonal method, we know that there exists a sequence of
T ’s and u ∈ C2[0,+∞) such that uT → u C1-uniformly in compact intervals. Applying
the arguments of the previous proposition, if there exists a maximizer xT > x0 of uT ,
then these maximizers must be bounded from above and we must have uT (xT ) → ξ. It
follows that u → 0 as T → +∞ and consequently u must be a branch of the well known
homoclinic solution ua of the autonomous problem for x ≥ x0. Since [0, x0] is a compact
interval, we conclude that u must be a solution of (7).

10



4 The second order autonomous problem with a dissipative
term

In this section we prove the existence of a positive nonincreasing solution of the au-
tonomous problem {

u′′ + c u′ = f(u)
u′(0) = 0, u(+∞) = 0,

(18)

where c is a positive constant, f(u) is a continuous function in [0, b] such that f(0) =
f(b) = 0 for some b > 0 and f(u) > 0 for u ∈ ]0, b[. We consider in addition that
lim infu→+∞

f(u)
u = −∞. We follow the approach of [3] (p.133) to reduce the order of this

problem.

Remark 4.1. The function f(u) = u− up, where p > 1 satisfies the conditions above.

Lemma 4.2. The derivative of a nonincreasing positive solution u of (18) does not vanish
for any value x1 > 0.

Proof. A nonincreasing positive solution u of (18) satisfies u′′(0) < 0 (the uniqueness of
the initial value problem rules out the case u′′(0) = 0) and consequently u(0) > b. Suppose
towards a contradiction that there exists x1 > 0 such that u′(x1) = 0 (we assume that it
is the smallest positive value with that property). Rolle’s Theorem would provide us the
existence of a value x2 ∈ ]0, x1[ such that u′′(x2) = 0 (using the differential equation, we
have u(x2) > b) and therefore u′′(x1) ≥ 0. If u′′(x1) > 0, then x1 would the a strict local
minimum, which contradicts the fact that the solution in nonincreasing. If u′′(x1) = 0
then u(x1) = b and by the uniqueness of the initial value problem we would have u(x) = b,
which contradicts the condition u(+∞) = 0.

Let U(x) be a nonincreasing solution of the differential equation in (18) defined in the
maximal interval [0, x+[ where U > 0. Since U ′(x) < 0 for x ∈ ]0, x+[ we can consider the
inverse function x(u) of U(x) and define ϕ(u) = U ′(x(u)). We have ϕ′ϕ+ cϕ = f(u), and
setting ψ(u) = ϕ(u)2 (noting that ϕ(u) = −

√
ψ(u)), we have

ψ′ = 2c
√
ψ + 2f(u), ψ(0) = 0. (19)

Let M be the maximum of f(u) for u ∈ ]0, b[ and consider the initial value problem

ψ̂′ = 2c
√
ψ̂ + 2M, ψ̂(0) = 0. (20)

The solution of this problem is given implicitly by the expression√
ψ̂

c
− M

c2
ln
∣∣∣∣c√ψ̂ +M

∣∣∣∣ = x− M

c2
ln(M).

By a well known comparison theorem we have ψ < ψ̂ and consequently, ψ(u) ≤ ku2 for
some positive constant k. Hence ψ′(u) ≤ k̃u+ 2f(u) for some constant k̃, from which we
infer that limu→+∞ ψ′(u) = −∞ and therefore ψ vanishes at some positive value u∗.
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Since there exists a solution ψ of (19) that vanishes vanishes at some positive value
u∗, following the argument used in [3], we can conclude that u(x) defined by{

u′ = −
√
ψ

u(0) = u∗
(21)

is a solution of the differential equation in (18) in the interval [0, x+[, where x+ =
∫ u∗
0

du√
ψ
.

An easy computation gives x+ = +∞ and consequently we have proved the following

Theorem 4.3. The autonomous boundary value problem (18) has a positive decreasing
solution.

5 The second order non-autonomous problem with a dissi-
pative term

In this section we focus on finding a positive solution of the problem{
u′′ + c u′ = a(x)u− g(u)
u′(0) = 0, u(+∞) = 0,

(22)

where a(x) > δ > 0 for all x ≥ 0 and g(u) satisfies the assumptions

(H1) There exists q > 2 such that

0 < qG(u) ≤ u g(u), ∀u ∈ ]0,+∞[

(H2) g(u) = o (u) at x = 0.

A simple example of functions satisfying these assumptions are the powers g(u) = up

where p > 1.
As in Section 3, we will find a solution of (22) as the limit of the solutions of the

boundary value problems {
u′′ + c u′ = a(x)u− g(u)
u′(0) = 0, u(T ) = 0.

(23)

Let us consider the associated Euler-Lagrange functional

JT (u) =
∫ T

0
ec x
(
u′2 + a(x)u2 − 2G(u+)

)
dx,

defined in the functional space Hc
T ≡

{
H1(0, T ) :

∫ T
0 ec xu′2 < +∞, u(T ) = 0

}
, with the

norm ‖u‖ =
(∫ T

0 ec xu′2
)1/2

. We have JT (0) = 0, and, for ε > 0 small enough, if ‖u‖ = ε,

then JT (u) > δ(ε) > 0. The Palais-Smale condition is satisfied and, setting uλ = λ(1−x2),
it is easy to see that Ja,T (u+

λ ) < 0 for λ > 0 large enough (independent of T > 1). The
Mountain-Pass Theorem allows us to conclude that the boundary value problems (23) have

12



a positive solution. Let cT be the mountain-pass critical value of JT , that is, cT = JT (uT ).
Defining ΓT =

{
γ(τ) : [0, 1] → H∗

T : γ(0) = 0, γ(1) = u+
λ

}
, we know that

cT = inf
γ∈ΓT

max
τ∈[0,1]

JT (γ(τ)) .

Since ΓT1 ⊆ ΓT2 for T1 < T2, we have cT ≤ c1 for T ≥ 1.
Multiplying the differential equation by ec x and then by u and integrating, we get

−
∫ T

0
ec xu′2T dx =

∫ T

0
ec x
(
a(x)u2

T − uT g(uT )
)
dx,

and consequently, using (H1), we have

JT (uT ) ≥
(

1− 2
q

)∫ T

0
ec x
(
u′2T + a(x)u2

T

)
dx =

(
1− 2

q

)∫ T

0
ec xg(uT )uT dx. (24)

Extending uT to [0,+∞[ by uT (x) = 0 for x ≥ T , and considering the functional space

Hc(0,+∞) ≡
{
H1
loc[0,+∞[ :

∫ +∞

0
ec xu′2 < +∞, u(+∞) = 0

}

with the norm ‖u‖ =
(∫ +∞

0 ec xu′2
)1/2

, it follows:

Proposition 5.1. We have uniform estimates for the Hc(0,+∞) norms of the solutions
uT (for T ≥ 1).

Proof. Since JT (uT ) ≤ c1 for all T > 1, (24) allows us to conclude the result.

In [1], it is proved the following result:

Lemma 5.2. For u ∈ Hc(0,+∞) we have

‖u‖L∞(s,+∞) ≤
e−

c s
2

√
c
‖u‖ .

Corollary 5.3. There exists k > 0 such that, for all T > 1,

|uT | ,
∣∣uT ′∣∣ , ∣∣uT ′′∣∣ ≤ k ∀x ∈ [0, T ].

Proof. The previous result implies the uniform estimate for uT . Setting v = u′T , from the
differential equation it follows that v′ + cv is bounded with v(0) = 0 and this implies that
v is bounded. Again using the differential equation, we conclude the uniform boundness
of u′′T .

As a consequence, using the diagonal argument, we can pick up a sequence of values
T → +∞ such that uT → u C1-uniformly in compact intervals and u′T ⇀ u′ weakly in
L2(0,+∞).

With this it is easy to prove the following

Lemma 5.4. Given an arbitrary positive constant ε, there exists xε such that for all T ≥ 1
and all x > xε we have uT (x) ≤ ε.

13



Proof. By the previous lemma, for xε large enough we have

|uT (x)| ≤ e−
c xε
2 c1√
c

≤ ε ∀x > xε, T ≥ 1.

In order to show that the limit is not the trivial solution, we need the following

Proposition 5.5. There exists a constant c0 > 0 such that uT (0) > c0 for all T ≥ 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ’s tending to
infinity such that uT (0) → 0. We have a(x) ≥ δ > 0 and for uT (0) small enough we
have u′′T (0) > 0, so the solutions uT must have a local maximizer lT → +∞. Using the
differential equation it is easy to see that g(uT (lT ))

uT (lT ) ≥ a(lT ) > δ, and since for u close

enough to 0 we have g(u)
u < δ, we can conclude that uT (lT ) is bounded from below by a

positive constant kδ. Taking ε < kδ, we have a contradiction with the fact that uT (lT ) < ε
when lT > xε.

We are now able to prove

Theorem 5.6. The boundary value problem (22) has a positive solution.

Proof. Using Proposition 5.5 and Lemma 5.4 we have uT (x) → u(x) C1-uniformly in
compact intervals, with u(x) a positive solution of (22).

Remark 5.7. If instead of a positive constant c we take a continuous function c(x) with
0 < c1 ≤ c(x) ≤ c2, the arguments used above are still valid for the differential equation
u′′ + c(x)u′ = a(x)u− g(u).

6 The fourth order autonomous problem

In this section we prove the existence of a nontrivial solution of the problem{
u(4) − c u′′ + a u = |u|p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0,
(25)

where a and c are positive constants and p > 1. The solution of (25) will be found as a
limit of solutions of the boundary value problems{

u(4) − c u′′ + a u = |u|p−1 u

u′(0) = u′′′(0) = 0, u(T ) = u′(T ) = 0,
(26)

by taking T → +∞.

Proposition 6.1. The boundary value problem (26) has a nontrivial solution.
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Proof. Consider the functional

JT (u) =
∫ T

0
u′′2 + c u′2 + a u2 dx

defined in H2(0, T ) and let us minimize it in the manifold

MT =
{
u ∈ H2(0, T ) : u′(0) = u(T ) = u′(T ) = 0,

∫ T

0
|u|p+1 dx = 1

}
.

Since the interval is bounded there exists such a minimum uT , and by the Lagrange
multipliers theory, there exists λT ∈ R and uT ∈MT such that uT ′′′(0) = 0 and∫ T

0
uT

′′v′′ + c uT
′v′ + a uT v dx = λT

∫ T

0
|uT |p−1 uT v ∀v ∈MT ,

that is, uT is a solution of

u(4) − c u′′ + a u = λT |u|p−1 u u′(0) = u′′′(0) = 0, u(T ) = u′(T ) = 0.

By taking v = uT we get∫ T

0
uT

′′2 + c uT
′2 + a uT

2 dx = λT

∫ T

0
|uT |p+1 dx = λT ,

and since
∫ T
0 |uT |p+1 dx = 1, uT cannot be the trivial solution.

Remark 6.2. If we take a sequence of values T tending to +∞, the corresponding sequence
λT is decreasing (if T1 < T2, then MT1 ⊆ MT2). Considering the obvious extensions of
the functions u ∈ H2(0, T ), it is obvious that JT (u) is an equivalent norm of H2(0,+∞),
therefore uT is a bounded sequence inH2(0,+∞) and, consequently, there exists a constant
k > 0 such that ‖uT ‖∞ ≤ k. We have

1 =
∫ T

0
|uT |p+1 dx ≤ kp−1

∫ T

0
uT

2 dx ≤ KJT (uT ) with K = kp−1λT
a
> 0,

so the sequence λT tends to a strictly positive value.

Proposition 6.3. There exists a constant c > 0 such that uT (0) > c for all T > 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ′s tending to
infinity such that uT (0) → 0.

Consider the differential equation with u = uT and multiply it by uT
′. By simply

integrating we get

uT
′′′uT

′ − uT
′′2

2
− c

uT
′2

2
+ a

uT
2

2
− |uT |p+1

p+ 1
= cT , (27)

for some constant cT . If we integrate in [0, T ] we get∫ T

0
−3

2
u′′T

2 − c
uT

′2

2
+ a

uT
2

2
− |uT |p+1

p+ 1
dx = cT T.
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Since ∫ T

0

∣∣∣∣∣−3
2
u′′T

2 − c
uT

′2

2
+ a

uT
2

2
− |uT |p+1

p+ 1
dx

∣∣∣∣∣
is clearly bounded and λT is decreasing in T , we conclude that cT must tend to 0 as T
tends to infinity. Considering the initial sequence of T ’s, (27) implies that u′′T (0) → 0 (we
already know that uT (0) → 0, u′T (0) = u′′′T (0) = 0). As a consequence, by the continuous
dependence of parameters, the solutions uT have their last maximizer mT tending to +∞
(we may assume it is a maximizer since −uT is also a solution with the same properties).
We have

1 =
∫ T

0
|uT |p+1 dx ≤ ‖uT ‖p−1

∞

∫ T

0
uT

2 dx ≤ λT
a
‖uT ‖p−1

∞ ,

so we can conclude that ‖uT ‖∞ ≥
(
a
λT

) 1
p−1 . We know that ‖uT ‖∞ is bounded indepen-

dently of T .
Claim All the derivatives u′T , u′′T , u′′′T and u(4)

T are bounded, independently of T .
Proof of Claim Setting w = u′′T , we have, taking (27) into account

w′′ − cw is bounded, w′(0) = 0 and w(T ) is bounded.

Therefore u′′T is also bounded independently of T , and considering the differential equation,
we have that uT (4) is also bounded. As a consequence, all the intermediate derivatives are
bounded too, independently of T .

Let us now consider two auxiliar functions vT and wT defined in the following way:

vT (x) =

{
uT (x+mT ) x ∈ [0, T −mT ]
0, x ∈ [T −mT , T ],

, wT (x) =


uT (mT − x), x ∈ [0,mT ]
ρ(x), x ∈ [mT ,mT + η]
0 x ∈ [mT + η, T ],

where ρ(x) = uT (0)
2 (cos(πη (x −mT )) + 1). Since uT (mT ) ≥

(
a
2

) 1
p−1 and uT

′ is bounded,
we can take a constant η small enough such that mT + η < T for T large. Let αT =∫ T
0 |vT |p+1 dx and βT =

∫ T
0 |wT |p+1 dx. The uniform boundness of uT ′ implies that each

of these integrals cannot be arbitrarily small. We have αT + βT = 1 + δ(T ), where

δ(T ) = uT (0)
2

p+1 ∫ η
0

(
cos(π xη ) + 1

)p+1
dx. If T → +∞ then δ → 0. For all z ∈ H2(0, T )

such that z′(0) = z(T ) = z′(T ) = 0 we have

JT (z) ≥ λT ‖z‖2Lp+1(0,T ) ,

and since
JT (uT ) = JT (vT ) + JT (wT )− δ1(T ),

where δ1(T ) = uT (0)
2

2 ∫ η
0

(
cos(π xη ) + 1

)2
dx, we can conclude that

JT (uT ) ≥ λT

(
‖vT ‖2Lp+1(0,T ) + ‖wT ‖2Lp+1(0,T )

)
− δ1(T ) = λT

(
αT

2
p+1 + βT

2
p+1

)
− δ1(T ).

The fact that αT and βT do not tend to 0 and

αT + βT = 1 + δ(T )
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with δ small enough, implies that(
αT

2
p+1 + βT

2
p+1

)
> K > 1,

where K is independent of T . It follows that for T large

JT (uT ) > λT ,

which is a contradiction.

Using the diagonal argument, we can pick up a sequence of values T → +∞ such that
uT → u C3-uniformly in compact intervals and u(x) is a solution of{

u(4) − c u′′ + a u = λ |u|p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0,
(28)

where λ = limT→+∞ λT . Since uT (0) > c > 0 for all T > 1, the solution u(x) cannot be
the trivial solution and we can conclude the main result of this section:

Theorem 6.4. There exists a nontrivial solution of (25).

Corollary 6.5. The equation in (25) has a nontrivial homoclinic at u = 0.

Proof. The function u∗(x) = λ
1

p−1u(x) solves the half-line problem (25). Since u∗(−x)
is also a solution of the differential equation and u′(0) = u′′′(0) = 0, the conclusion
follows.

If we consider the manifold

M+
T =

{
u ∈ H2(0, T ) : u′(0) = u(T ) = u′(T ) = 0,

∫ T

0
u+

p+1 dx = 1
}
,

where u+ = max(0, u), the arguments used above will still provide a solution of{
u(4) − c u′′ + a u = u+

p

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0.
(29)

The following lemma allows us to prove that for c large enough, this solution is positive.

Lemma 6.6. Let y ∈ C2(0,+∞) be a bounded function such that y′(0) = 0 and µ > 0 a
constant. Then, if y′′ − µ y = h(x) ≥ 0, we have y ≤ 0.

Proof. If y(0) > 0, then y′′(0) > 0 and since y′(0) = 0, we must have y(x) > y(0) for x > 0
close to 0. It is then obvious that y is a convex function and stays above a line of positive
slope. This is a contradiction because y is bounded. If y(0) < 0 and there exists a value
x0 > 0 such that u(x0) = 0, then we could apply the same argument as above and reach
a contradiction.

Theorem 6.7. If c2 ≥ 4 a, then the boundary value problem (25) has a positive solution.
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Proof. Consider the solution u of (29). Let µ1 and µ2 be the solutions of x2− c x+ a = 0.
Since c2 > 4 a, these values are positive and we can write the differential equation in the
form (

D2 − µ1

) (
D2 − µ2

)
u = u+(x)p = h(x) ≥ 0.

Setting y(x) =
(
D2 − µ2

)
u, we have y′(0) = 0 and y′′ = µ1y + h(x). Since u is a solution

of (29), we know (by the arguments of the Claim in the proof of Proposition 6.3) that u
and u′′ are bounded and therefore y is bounded. Applying the previous lemma we have
y ≤ 0. Applying the same lemma to −u we conclude that u ≥ 0 and therefore is also a
solution of (25).

7 The fourth order non-autonomous problem with a(x) → a

Consider the boundary value problem{
u(4) − c u′′ + a(x)u = |u|p−1 u

u′(0) = u′′′(0) = 0, u(+∞) = u′(+∞) = 0
(30)

where a(x) is a nondecreasing function with limx→+∞ a(x) = a ∈ R+, c is a positive
constant and p > 1. We will follow the approach of the previous section, so let uT be
defined as above (with a(x) substituted for a).

Proposition 7.1. There exists a constant c > 0 such that |uT (0)| + |u′′T (0)| > c for all
T > 1.

Proof. Suppose towards a contradiction that there exists a sequence of T ′s tending to
infinity such that |uT (0)| + |u′′T (0)| → 0. Let vT (x) and wT (x) be defined in the proof of
Proposition 6.3. We have

JT (vT ) =
∫ T

mT

[
uT

′′(x)2 + c uT
′(x)2 + a(x−mT )uT (x)2

]
dx ≤

≤
∫ T

mT

[
uT

′′(x)2 + c uT
′(x)2 + a(x)uT (x)2

]
dx, (31)

and

JT (wT ) =
∫ mT

0

[
uT

′′(x)2 + c uT
′(x)2 + a(mT − x)uT (x)2

]
dx+

∫ mT +η

mT

[
ρ′′2 + cρ′2 + a(x)ρ2

]
dx.

(32)
Given ε > 0, there exists x0(ε) such that a− a(x) < ε if x ≥ x0.

By continuous dependence of parameters, for T large enough, we have |uT (x)| < δ for
all x ∈ [0, x0], therefore ∫ x0

0
a(mT − x)uT (x)2 dx ≤ a x0 δ

2. (33)

By the uniform boundness in T of the L2[0, T ] norms (let K be such bound), we can
conclude that∫ mT

2

x0

(a(mT − x)− a(x))uT (x)2 dx ≤ ε

∫ mT
2

x0

uT (x)2 dx ≤ Kε (34)
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Since a(mT − x) ≤ a(x) for x ∈ [mT
2 ,mT ] we have∫ mT

mT
2

a(mT − x)uT (x)2 dx ≤
∫ mT

mT
2

a(x)uT (x)2 dx

and therefore∫ mT

0
a(mT − x)uT (x)2 dx ≤ a x0 δ

2 +
∫ mT

x0

a(x)uT (x)2 dx+Kε. (35)

We can now make the following estimates:

JT (uT ) ≥
∫ mT

0

[
uT

′′2 + c uT
′2
]
dx+

∫ x0

0
a(x)uT 2 dx+

∫ mT

x0

a(x)uT 2 dx+ JT (vT ) ≥

≥
∫ mT

0

[
uT

′′2 + c uT
′2
]
dx+

∫ x0

0
a(x)uT 2 dx+

+
∫ mT

0
a(mT − x)uT 2 dx− a x0 δ

2 −Kε+ JT (vT ) ≥

≥ JT (vT ) + JT (wT )−
∫ mT +η

mT

[
ρ′′2 + cρ′2 + a(x)ρ2

]
dx− a x0 δ

2 −Kε

(we have used (31) in the first inequality, (35) in the second and (32) in the third). The
terms of negative sign can be taken arbitrarily small, so we can repeat the arguments from
the previous section and reach a contradition.

Theorem 7.2. Let a(x) be a nondecreasing function with limx→+∞ a(x) = a ∈ R, c > 0
and p > 1. Then the problem (30) has a solution.

Remark 7.3. Let us now consider the boundary value problem (30), but now assuming
that a(x) is a positive function in R+ such that limx→∞ a(x) = +∞. We will prove the
existence of a nontrivial solution by proving that the functional

J(u) =
∫ +∞

0

[
u′′2 + c u′2 + a u2

]
dx

defined in H2(0,+∞) has a minimum in the manifold

M =
{
u ∈ H2(0,+∞) : u′(0) = 0,

∫ T

0

up+1

p+ 1
dx = 1

}
.

Let m be the infimum of J(u) in M (m ≥ 0) and consider a sequence un, with n ∈ N such
that J(un) → m. Obviously, J(un) is bounded and un is bounded in L∞(0,+∞) (since it
is bounded in H2(0,+∞)), so we have

p+ 1 =
∫ +∞

0
un

p+1 dx ≤ ‖un‖∞
p−1

∫ +∞

0
un

2 dx,

and hence, we have
∫ +∞
0 un

2 dx ≥ c1.
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On the other hand, for all positive L, there exists x0 > 0 such that a(x) > L for
x > x0, so

L

∫ +∞

x0

un
2 dx ≤

∫ +∞

x0

a(x)un2 dx ≤ c2,

where c2 is the upper bound of J(un), and consequently
∫ +∞
x0

un
2 dx ≤ c2

L . Considering L

large enough, we have
∫ +∞
x0(L) un

2 dx ≤ c1
2 , and therefore

∫ x0(L)
0 un

2 dx ≥ c1
2 , which implies

that the limit u of the convergent subsequence of un cannot be the trivial solution.

Theorem 7.4. Let a(x) be a positive function in R+ such that limx→∞ a(x) = +∞ and c
a positive constant. Then the problem (30) has a solution.
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