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Abstract

We consider the system of stationary Gross–Pitaevskii equations8><>:
−∆u+ u3 + βuv2 = λu

−∆v + v3 + βu2v = µv

u, v ∈ H1
0 (Ω), u, v > 0,

arising in the theory of Bose–Einstein condensation, and the related scalar equation

−∆w + w3 = λw+ − µw−.

We address the following

Question. Is it true that every bounded family (uβ , vβ) of solutions of the system converges,
as β → +∞, up to a subsequence, to a pair (u∞, v∞), where u∞ − v∞ solves the scalar
equation?

We discuss this question in the case when the solutions to the system are obtained as
minimax critical points via (weak) L2 Krasnoselskii genus theory. Our results, though still
partial, give a strong indication of a positive answer.

1 Introduction

1.1 Motivations

The commonly proposed mathematical model for binary mixtures of Bose–Einstein condensates is a
system of two coupled nonlinear Schrödinger equations, known in the literature as Gross–Pitaevskii
equations, which writes 

−ı∂tφ = ∆φ− V1(x)φ− µ1|φ|2φ− β12|ψ|2φ
−ı∂tψ = ∆ψ − V2(x)ψ − µ2|ψ|2ψ − β21|φ|2ψ
φ, ψ ∈ H1

0 (Ω; C),

with Ω a smooth bounded domain of RN , N = 2, 3 (see [4] and references therein). Here the
complex valued functions φ, ψ are the wave functions of the two condensates, the real functions
Vi (i = 1, 2) represent the trapping magnetic potentials, and the positive constants βij and µi
are the interspecies and the intraspecies scattering lengths, respectively. With this choice both
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the interactions between unlike particles and the interactions between the like ones are repulsive
(the so called defocusing case, opposed to the focusing one, where the µi’s are negative). When
searching for solitary wave solutions of the above system, one makes the ansatz

φ(t, x) = e−ıλtu(x), ψ(t, x) = e−ıµtv(x),

obtaining that the real functions u, v satisfy the system Sβ(u, v;λ, µ) =

(
−∆u+ u3 + βuv2 − λu
−∆v + v3 + βu2v − µv

)
= 0

u, v ∈ H1
0 (Ω), u, v > 0,

(1)

at least when Vi(x) ≡ 0, µ1 = µ2 = 1, and β12 = β21 = β (in fact, we can treat more general
systems, provided the problem is symmetric with respect to u and v and it is of variational type).
In this paper we are interested in the relation between suitable solutions (uβ , vβ) of (1), for β large,
and the pairs1 (w+, w−), where w solves

−∆w + w3 = λw+ − µw−, w ∈ H1
0 (Ω) (2)

(for suitable λ, µ), which represents, as we shall see, a limiting problem for (1) as β → +∞.

The standard mass conservation law gives
∫

Ω
u2 = m1,

∫
Ω
v2 = m2. Assuming m1 = m2 = 1 we

are led to study solutions of (1) as (nonnegative) critical points of the coercive energy functional

Jβ(u, v) =
1
2
(
‖u‖2 + ‖v‖2

)
+

1
4

∫
Ω

(
u4 + v4

)
dx+

β

2

∫
Ω

u2v2 dx

constrained to the manifold

M =
{

(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) :
∫

Ω

u2dx =
∫

Ω

v2dx = 1
}
,

so that λ and µ in (1) can be understood as Lagrange multipliers. The natural limiting energy, at
least for the minimization purposes, is of course the Γ–limit of the family Jβ , that is, the extended
valued functional defined as2

J∞(u, v) = sup
β>0

Jβ(u, v) =

{
J0(u, v) when

∫
Ω
u2v2 dx = 0

+∞ otherwise

(for the definition of Γ–convergence we refer, for instance, to the book by Braides [2]). This
functional is far from being C1, indeed it is finite only on a non smooth domain. On the other
hand, when finite, we have that

J∞(u, v) = J∗(u− v), where J∗(w) =
1
2
‖w‖2 +

1
4

∫
Ω

w4 dx (3)

(with
∫

Ω
(w+)2 =

∫
Ω

(w−)2 = 1). This suggests to understand the critical points of J∞ constrained
to M as the (nonnegative) pairs (u, v), such that u · v ≡ 0 and u − v satisfies equation (2) (and
again λ and µ play the role of Lagrange multipliers).

One can easily find the so called ground state solutions of the functionals (both for β finite
and infinite), that is, the constrained minimizers of the energies (moreover, each component of the
ground state can be chosen to be nonnegative). For such solutions it is an easy exercise, at least
in the defocusing case, to prove convergence. Indeed, for any sequences βn → +∞ and (un, vn)

1Here, as usual, w±(x) = max {±w(x), 0} denote the positive and negative part of a function w.
2In this definition, of course, one can equivalently use any Jβ , 0 < β < +∞, instead of J0.
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minimizers of Jβn , there exists a pair (u∞, v∞), minimizer of J∞, such that, up to subsequences,
(un, vn)→ (u∞, v∞), strongly in H1

0 (this fact can be easily read in the framework of Γ–convergence
theory). Moreover, the convergence can be proven to be more regular, in particular C0,α(Ω), see
[8]. The remarkable fact is that any (u∞, v∞), minimizer of J∞, corresponds to a minimizer
w = u∞ − v∞ of the smooth functional J∗ (with the appropriate constraint); this provides a
suitable differential extremality condition for the minimizers of the non–smooth functional J∞, in
the form of equation (2).

(1.1) Theorem. Let (uβ , vβ) ∈ M , for β ∈ (0,+∞), be a minimizer of Jβ constrained to M .
Then, up to subsequences, (uβ , vβ)→ (u∞, v∞), strongly in H1∩C0,α, minimizer of J∞ constrained
to M . Moreover u∞ − v∞ solves (2).

We shall obtain a proof of this result, as a byproduct of a more general one, at the end of Section
4. The situation becomes much more delicate when coming to the excited states, i.e. solutions
that are not minimal. The existence of such kind of solutions has been recently proved, mainly in
the focusing case, in [5, 7, 11, 12]. Moreover, in the aforementioned [8], the authors have obtained
estimates in Hölder spaces, uniform with respect to β. In light of the analysis for the ground states,
we formulate the following conjecture.

Conjecture. Every bounded family (uβ , vβ) of solutions to (1) converges, as β → +∞, up to a
subsequence, to a pair (u∞, v∞), where u∞ − v∞ solves (2).

Unfortunately, we are still not able to prove this conjecture. However, in this paper we establish
some limiting relations between critical levels and optimal sets as β → +∞, with respect to a
common minimax variational framework (see the theorems below). When dealing with minimax
critical points, a key role is played by the gradient flow; one of the main difficulties in our situation
relies on the fact that we will have to compare a family of gradient flows (at β < +∞) with a
limiting one, induced on the functional J∞ by J∗. These flows do not seem to be related, nor the
family of flows seems to converge in a sufficiently strong way (see [3]). This prevents us to apply
the recent theory of Γ–convergence of gradient flows developed in [9].

1.2 A class of minimax problems

To proceed with the exposition of our main results, we need to introduce some suitable minimax
framework which is admissible for the whole family of functionals. In doing this, we are inspired
by a recent work by Dancer, Wei and Weth [5], where infinitely many critical levels are found, in
the focusing case, by exploiting the Krasnoselskii genus technique (see, for instance, the book by
Struwe [10]) associated with the invariance of the problem when interchanging the role of u and v.

In carrying on our asymptotic analysis, we shall take advantage of a strong compactness prop-
erty that goes beyond the usual Palais–Smale condition; to this aim we are lead to set the genus
theory in the L2–topology. This is the main reason why we are addressing here the defocusing
case: in the focusing one, indeed, the fact that the associated Nehari manifold is not L2–closed
seems to prevent us to perform an analogous analysis. Let us consider the involution

σ : H1
0 (Ω)×H1

0 (Ω)→ H1
0 (Ω)×H1

0 (Ω), (u, v) 7→ σ(u, v) = (v, u),

and the class of sets

F0 =

A ⊂M :
• A is closed in the L2–topology
• (u, v) ∈ A =⇒ u ≥ 0, v ≥ 0
• σ(A) = A


(observe that M is L2–closed and that σ(M) = M). We can define the Krasnoselskii L2–genus in
F0 in the following way.
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(1.2) Definition. Let A ∈ F0. The L2–genus of A, denoted by γ2(A), is defined as

γ2(A) = inf

m ∈ N :
there exists f : A→ Rm \ {0} such that
• f is continuous in the L2–topology and
• f(σ(u, v)) = −f(u, v) for every (u, v) ∈ A

 .

If no f as above exists, then γ2(A) = +∞, while γ2(∅) = 0. The set of subsets with L2–genus at
least k will be denoted by

Fk = {A ∈ F0 : γ2(A) ≥ k} .

Under the previous notations we define, for 0 < β ≤ +∞, the (candidate) critical levels

ckβ = inf
A∈Fk

sup
(u,v)∈A

Jβ(u, v). (4)

When β < +∞, the (candidate) critical set is defined in the standard way:

Kkβ =

(u, v) ∈M :
u, v ≥ 0,
Jβ(u, v) = ckβ , and
there exist λ, µ such that Sβ(u, v;λ, µ) = (0, 0)

 .

Coming to the limiting problem, inspired by Theorem 1.1, we define the critical set as

Kk∞ =

(u, v) ∈M :
u, v ≥ 0,
J∞(u, v) = ck∞, and
there exist λ, µ such that u− v solves (2)

 .

Our first main result is the following.

(1.3) Theorem. Let k ∈ N+ and 0 < β ≤ +∞ be fixed. Then:

1. Kkβ is non empty and compact (with respect to the H1
0 –topology);

2. there exists Akβ ∈ Fk and (ukβ , v
k
β) ∈ Akβ ∩ Kkβ such that

ckβ = max
Akβ

Jβ = Jβ(ukβ , v
k
β).

As in the usual genus theory, one may also prove that, if ckβ is the same for different k’s, then
the genus of Kkβ is large. This, together with suitable conditions which allow to avoid fixed points
of σ (namely β large enough, see Lemma 3.4), provides the existence of many distinct critical
points of Jβ .

1.3 Limits as β → +∞.

Since the same variational argument applies both to the β–finite and to the limiting case, the next
step is to compare the limiting behaviour of the variational structure as β → +∞ with the actual
behaviour at β = +∞. This involves the study of the critical levels, of the optimal sets (in the
sense of Theorem 1.3) and, finally, of the critical sets. Regarding the first two questions, we have
full convergence.

(1.4) Theorem. Let k ∈ N+ be fixed. As β → +∞ we have

1. ckβ → ck∞;
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2. if Akn is any optimal set for ckβn , and βn → +∞, then the set lim supnAkn is optimal for ck∞
(the limit is intended in the L2–sense).

It is worthwhile to notice that, in general, the convergence of the critical levels is a delicate
fact to prove (for instance, it remains an open problem in [7]). Coming to the convergence of the
critical sets, were our conjecture true, we would obtain that

Kk∞ ⊃ lim sup
β→+∞

Kkβ :=


(u, v) : ∃ sequences (un, vn) ∈M , nonnegative, βn → +∞ with

• (un, vn)→ (u, v) in L2,
• Jβn(un, vn) = ckβ → ck∞, and
• Sβn(un, vn) = (0, 0)

 .

As we already mentioned, we obtain a weaker result. As a matter of fact, it is more likely, in the
framework of Bose–Einstein condensation theory, to prove convergence of the critical levels rather
than convergence of the critical points (see e.g. [1]). The same problem arises in the framework
of Γ–convergence as pointed out in the recent paper [6]. Here the authors prove, under strong
nondegeneracy assumptions, that the existence of critical points for a Γ–limit may provide the
existence of critical points for the approximating functionals, but in general there is no reason why
the critical points should be close. Our result is the following.

(1.5) Theorem. Let

Kk∗ =


(u, v) : ∃ sequences (un, vn) ∈M , nonnegative, βn → +∞ with

• (un, vn)→ (u, v) in L2,
• Jβn(un, vn)→ ck∞, and
• Sβn(un, vn)→ (0, 0) in L2

 .

Then
Kk∗ ∩ Kk∞ is not empty.

Using the uniform Hölder bounds obtained in [8], we obtain that the L2–convergences in the
definitions of lim supβ Kkβ , Kk∗ , are in fact strong in H1 ∩ C0,α. In particular this implies, in the
direction of our conjecture, the following result.

(1.6) Corollary. For every integer k there exist pairs (u∞, v∞), (λ∞, µ∞) satisfying

−∆(u∞ − v∞) + (u∞ − v∞)3 + λ∞u∞ − µ∞v∞ = 0,

at level ck∞, and (sub)sequences (uβ , vβ), (fβ , gβ), (λ∞, µ∞) satisfying
−∆uβ + u3

β + βuβv
2
β − λβuβ = hβ

−∆vβ + v3
β + βu2

βvβ − µβvβ = kβ

uβ , vβ ∈ H1
0 (Ω), u, v > 0,

such that (λβ , µβ)→ (λ∞, µ∞),

(hβ , kβ)→ (0, 0) in L2, and (uβ , vβ)→ (u∞, v∞) in H1 ∩ C0,α.

The paper is structured as follows. In Section 2 we present an abstract framework of variational
type; we introduce a family of functionals enjoying suitable properties and perform an asymptotic
analysis. Section 3 is devoted to fit the problem that we just presented into the abstract setting;
this immediately provides the convergence of the critical levels and of the optimal sets. Finally, in
Section 4, we conclude the proof of the main results: we address existence and asymptotics of the
critical points, leaving to Section 5 the technical details about the flows used in the deformation
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lemmas. Notations. In the following ‖u‖2 =
∫

Ω
|∇u|2 dx, |u|pp =

∫
Ω
up dx (sometimes it will

also denote the vectorial norm). We will refer to the topology induced on H1
0 (Ω)×H1

0 (Ω) by the
L2(Ω) × L2(Ω) norm as the “L2–topology” (and we shall denote by 〈·, ·〉2, dist2 the associated
scalar product and distance respectively). On the other hand, we will denote the usual topology
on H1

0 (Ω)×H1
0 (Ω) the “H1

0 –topology”. Finally, recall that, for a sequence of sets (An)n,

x ∈ lim sup
n

An ⇐⇒ for some nk → +∞ there exist xnk ∈ Ank such that xnk → x.3

2 Topological setting of a class of minimax principles

In this section we will introduce an abstract setting of min–max type in order to obtain critical
values (in a suitable sense) of a given functional. Our aim is to consider a class of functionals,
each of which fitting in such a setting, and to perform an asymptotic analysis of the variational
structure. The asymptotic convergence requires some additional compactness, in the form of
assumptions (F2), (F2’) below. Later on, when applying these results, this will be achieved by
means of weakening the topology; the price to pay will be a loss of regularity of the functional
involved. For this reason, with respect to the usual variational schemes, our main address is to
work with functionals that are only lower semi-continuous.

Let (M,dist) be a metric space and let us consider a set of subsets of M, F ⊂ 2M. Given a
lower semi-continuous functional J :M→ R ∪ {+∞}, we define the min–max level

c = inf
A∈F

sup
x∈A

J(x),

and make the following assumptions:

(F1) A is closed in M for every A ∈ F ;

(F2) there exists c′ > c such that for any given (An)n ⊂ F with An ⊂ Mc′ for every n, it holds
lim supnAn ∈ F ,

where
Mc′ = {x ∈M : J(x) ≤ c′} .

Moreover from now on we will suppose that c ∈ R, which in particular implies that F 6= ∅ and
∅ /∈ F . A first consequence of the compactness assumption (F2) is the existence of an optimal set
of the minimax procedure.

(2.1) Proposition. Let J :M→ R∪{+∞} be a lower semi-continuous functional, assume (F2)
and suppose moreover that c ∈ R. Then there exists Ā ∈ F such that supĀ J = c. In this situation,
we will say that Ā is optimal for J at c.

Proof. For every n ∈ N let An ∈ F be such that

sup
An

J ≤ c+
1
n

and consider Ā := lim supnAn. On one hand Ā ∈ F by assumption (F2) which provides supĀ J ≥
c. On the other hand, by the definition of lim sup, for any x ∈ Ā there exists a sequence (xn)n,
xn ∈ An, such that, up to a subsequence, xn → x. But the lower semi-continuity implies

J(x) ≤ lim inf
n

J(xn) ≤ lim inf
n

(
sup
An

J

)
≤ c,

3This is the limit superior in the framework of the Kuratowski convergence.
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and the proposition follows by taking the supremum in x ∈ Ā.

Due to the lack of regularity of the functional it is not obvious what should be understood
as critical set. We will give a very general definition of critical set at level c by means of a
“deformation”, defined in some sub-level of J , under which the functional decreases. To this aim
we consider, for some c′ > c, a map η :Mc′ →Mc′ such that

(η1) η(A) ∈ F whenever A ∈ F , A ⊂Mc′ ;

(η2) J(η(x)) ≤ J(x), for every x ∈Mc′ .

We define the critical set of J (relative to η) at level c as

Kc = {x ∈M : J(x) = J(η(x)) = c}

(notice that x ∈ Mc and hence η(x) is well defined). We remark that the previous definition
depends on the choice of η. In a quite standard way, some more compactness is needed in the form
of a Palais–Smale type assumption.

(2.2) Definition. We say that the pair (J, η) satisfies (PS)c if for any given sequence (xn)n ⊂M
such that J(xn) → c, J(η(xn)) → c, there exists x̄ ∈ Kc such that, up to a subsequence, xn → x̄
(as above, η(xn) is well defined for n sufficiently large).

(2.3) Remark. Incidentally we observe that, if in (PS)c one would require x̄ to be also the limit
of η(xn) (we do not assume it in this section, but it will turn out to be true in the subsequent
application), as a consequence Kc would coincide with the set of the fixed points of η at level c,
providing an alternative definition – probably more intuitive – of “critical set” (relative to η).

As usual, (PS)c immediately implies the compactness of Kc. This assumption also implies the
fact that every optimal set for J at level c (recall Proposition 2.1) intersects Kc (which in particular
is non empty). More precisely

(2.4) Theorem. Let J : M → R ∪ {+∞} be a lower semi-continuous functional, assume (F1)
and (F2) and let η :Mc′ →Mc′ be a map such that (η1) and (η2) hold. Suppose moreover that
(J, η) verify (PS)c and that c ∈ R. Then for every A ∈ F such that supA J = c there exists
x̄ ∈ A ∩ Kc. In particular, Kc is non empty.

Proof. Let A ∈ F be such that supA J = c (which exists by Proposition 2.1). By assumptions
(η1) and (η2), η(A) ∈ F and supη(A) J ≤ c, hence supη(A) J = c. Then we can find a sequence
(xn)n ⊂ A such that J(η(xn))→ c. By using again assumption (η2), we infer

c ≥ J(xn) ≥ J(η(xn))→ c,

and therefore (up to a subsequence) xn → x̄ ∈ Kc by (PS)c. On the other hand, since A ∈ F ,
assumption (F1) implies that x̄ ∈ A, which concludes the proof of the theorem.

Let us now turn to the asymptotic analysis. First of all we introduce a family of functionals
parametrized on β ∈ (0,+∞), namely Jβ :M→ R∪{+∞}, each of which is lower semi-continuous
and moreover

(J) Jβ1(x) ≤ Jβ2(x) for every x ∈M, whenever 0 < β1 ≤ β2 < +∞.

In such a framework we define the limit functional

J∞(x) := sup
β>0

Jβ(x).

7



(2.5) Lemma. For every xn, x ∈M such that xn → x and βn → +∞, it holds

J∞(x) ≤ lim inf
n

Jβn(xn).

In particular, J∞ is lower semi-continuous, and Jβ Γ–converges to J∞.

Proof. For every fixed β < +∞ it holds

Jβ(x) ≤ lim inf
n

Jβ(xn) ≤ lim inf
n

Jβn(xn) ≤ lim inf
n

J∞(xn)

(we used the fact that Jβ is lower semi-continuous and that Jβ ≤ Jβn for n sufficiently large).
Then by taking the supremum in β the lemma follows.

Consequently, for 0 < β ≤ +∞, we define the minimax levels

cβ = inf
A∈F

sup
x∈A

Jβ(x).

(2.6) Remark. Assumption (J) clearly yields that

β1 < β2 < +∞ =⇒ cβ1 ≤ cβ2 ≤ c∞.

The previous remark suggests that any constant greater than c∞ is a suitable common bound
for all the functionals. Hence we replace (F2) with the following assumption.

(F2’) for any given (An)n ⊂ F such that, for some β, An ⊂ Mc∞+1
β for every n, it holds

lim supnAn ∈ F ,

where
Mc′

β = {x ∈M : Jβ(x) ≤ c′} .

Our first main result is the convergence of both the critical levels and the optimal sets (see Propo-
sition 2.1).

(2.7) Theorem. Let Jβ :M→ R ∪ {+∞} (0 < β < +∞) be a family of lower semi-continuous
functionals satisfying (J) and let J∞ be as before. Moreover suppose that assumption (F2’) holds,
and that cβ ∈ R for every 0 < β ≤ +∞. Then

1. for every 0 < β < +∞ there exists an optimal set for Jβ at cβ;

2. cβ → c∞ as β → +∞;

3. if An ∈ F is optimal for Jβn at cβn and βn → +∞, then A∞ := lim supnAn is optimal for
J∞ at c∞.

Proof. The first point is a direct consequence of Proposition 2.1. Now by Remark 2.6 we know
that cβ is monotone in β and that lim cβ ≤ c∞ < +∞ by assumption. Let βn, An, A∞ be as in
the statement. We have that supAn Jβ1 ≤ supAn Jβn ≤ c∞, therefore An ⊂ {Jβ1 ≤ c∞ + 1} and
assumption (F2’) provides A∞ ∈ F . Now for every x̄ ∈ A∞ there exists a (sub)sequence xn → x̄,
with xn ∈ An. By taking into account Lemma 2.5 we have

J∞(x̄) ≤ lim inf
n

Jβn(xn) ≤ lim inf
n

(
sup
An

Jβn

)
= lim

n
cβn ≤ c∞.

By taking the supremum for x̄ ∈ A∞ (and recalling that A∞ ∈ F), the theorem follows.
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Next we turn to the study of the corresponding critical sets, by introducing a family of maps
ηβ :Mc∞+1

β →Mc∞+1
β satisfying

(η1)β ηβ(A) ∈ F whenever A ∈ F , A ⊂Mc∞+1
β ;

(η2)β Jβ(ηβ(x)) ≤ Jβ(x), for every x ∈Mc∞+1
β .

Just as we did before, we define, for every 0 < β ≤ +∞

Kβ = Kcβ = {x ∈M : Jβ(x) = Jβ(ηβ(x)) = cβ} . (5)

As a straightforward consequence of Theorem 2.4, the following holds.

(2.8) Theorem. Let Jβ :M→ R ∪ {+∞} (0 < β < +∞) be a family of lower semi-continuous
functionals satisfying (J) and let J∞ be as before. Suppose that (F1), (F2’) hold, and that, for
every 0 < β ≤ +∞, cβ ∈ R and the maps ηβ :Mc∞+1

β →Mc∞+1
β verify (η1)β and (η2)β. Suppose

moreover that the pair (Jβ , ηβ) satisfies (PS)cβ . Then every optimal set for Jβ at cβ intersect Kβ,
which in particular is non empty (β ≤ +∞).

It is now natural to wonder what is the relation between lim supKβ and K∞. The desired result
would be the equality of the sets, which could be obtained under some suitable relations between
the deformations ηβ and η∞. However, as we mentioned in the introduction, in our application
such relations do not seem to hold. Instead we will assume an uniform Palais–Smale type condition,
which will lead us to consider a slightly larger set than lim supKβ . Let us assume that the following
holds:

(UPS) if the sequences (xn)n ⊂ M, (βn)n ⊂ R+ are such that βn → +∞ and Jβn(xn) → c∞,
Jβn(ηβn(xn)) → c∞, then there exists x̄ ∈ M such that, up to a subsequence, xn → x̄,
ηβn(xn)→ x̄

(again, since Jβn(xn) → c∞, ηβn(xn) is well defined for large n). It is worthwhile to point out
explicitly the two main differences between (PS) and (UPS), apart from the dependence on β. On
one hand, in the latter we do not obtain x̄ ∈ K∞ – see Remark 2.10 below. On the other hand,
in (UPS) we require not only xn but also ηβn(xn) to converge, and the limit to be the same (to
enlighten this choice, see also Remark 2.3). Condition (UPS) suggests the definition of the set

C∗ =


x ∈M : there exist sequences (xn)n ⊂M, (βn)n ⊂ R+ such that

• xn → x, βn → +∞,
• Jβn(xn)→ c∞, and
• Jβn(ηβn(xn))→ c∞

 .

(2.9) Remark. If (xn)n is an uniform Palais–Smale sequence in the sense of assumption (UPS),
then (up to a subsequence) xn → x̄ ∈ C∗.

(2.10) Remark. By Theorem 2.7, it is immediate to verify that

lim sup
β→+∞

Kβ ⊂ C∗.

Finally if x ∈ C∗ then, by Lemma 2.5, J∞(x) ≤ c∞. Observe that the inequality may be strict
(nonetheless, the following theorem will imply that for some point the equality holds).

Our final result is the following.
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(2.11) Theorem. Under the assumptions of Theorem 2.8, suppose moreover that (UPS) holds.
Then we have that

C∗ ∩K∞ 6= ∅.

More precisely, for every (An)n ⊂ F , with An optimal for Jβn at cβn , and βn → +∞, there exists
x̄ ∈ C∗ ∩K∞ ∩ lim supnAn.

Proof. Let An be as in the statement, and take Bn = ηβn(An), which is also optimal for Jβn at cβn
by assumptions (η1)βn , (η2)βn . Theorem 2.7 then yields that lim supnBn =: B∞ ∈ F is optimal
for J∞ at c∞, that is, there exists

ȳ ∈ B∞ ∩K∞.

By definition, up to a subsequence, there exists xn ∈ An such that ηβn(xn)→ ȳ. Then assumption
(η2)βn together with Lemma 2.5 provides

c∞ = J∞(ȳ) ≤ lim inf
n

Jβn(ηβn(xn)) ≤ lim inf
n

Jβn(xn) ≤ lim
n

(
sup
An

Jβn

)
= lim

n
cn = c∞.

In particular this implies that (xn)n is a Palais–Smale sequence in the sense of assumption (UPS);
by using Remark 2.9 we infer that (again up to a subsequence)

xn → x̄ ∈ lim sup
n

An ∩ C∗.

But (UPS) also implies that ηβn(xn) → x̄ and hence x̄ = ȳ, which concludes the proof of the
theorem.

3 Convergence of the min–max levels

The rest of the paper is devoted to apply (and refine) the results obtained in the previous section
to the problem discussed in the introduction. In order to apply the abstract results of Section 2 we
need to introduce M, F and ηβ for the present case. In this section we deal with the asymptotics
of the minimax levels and prove Theorem 1.4. The proof of the remaining results, and in particular
the construction of the deformations, will be the object of the subsequent sections. Since the proof
is independent of k, from now on and throughout all the paper we assume that

k ∈ N+ is fixed (and will often be omitted).

We define

M =
{

(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) : u, v ≥ 0 in Ω, |u|2 = |v|2 = 1
}
,

dist2 ((u1, v1), (u2, v2)) = |u1 − u2|22 + |v1 − v2|22,

and
Jβ(u, v) =

1
2
(
‖u‖2 + ‖v‖2

)
+

1
4

∫
Ω

(
u4 + v4

)
dx+

β

2

∫
Ω

u2v2 dx

for 0 < β < +∞. Notice that the limiting functional (as introduced in Section 2) coincides with
the one defined in the introduction, i.e.,

J∞(u, v) = sup
β>0

Jβ(u, v) =

{
J0(u, v) when

∫
Ω
u2v2 dx = 0

+∞ otherwise.
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Moreover we set

F = Fk = {A ∈ F0 : γ2(A) ≥ k} (as in Definition 1.2),

which implies that the critical values cβ introduced in Section 2 coincide with the values ckβ defined
in the introduction.

(3.1) Remark. It is worthwhile to stress that for any given c′ ∈ R and 0 < β ≤ ∞ the set

Mc′

β = {(u, v) ∈M : Jβ(u, v) ≤ c′}

is L2–compact. This is a consequence of the coercivity of the functional together with the Sobolev
embedding Theorem. This motivates our decision of working with this topology.

We start by presenting some properties of the L2–genus (recall Definition 1.2).

(3.2) Proposition. (i) Take A ∈ F0 and let Sk−1 be the standard (k−1)-sphere in Rk. If there
exists an L2–homeomorphism ψ : Sk−1 → A satisfying ψ(−x) = σ(ψ(x)) then γ2(A) = k.

(ii) Consider A ∈ Fk and let η : A→M be an L2–continuous, σ–equivariant and sign–preserving
map. Then η(A) ∈ Fk.

(iii) If A ∈ F0 is an L2–compact set, then there exists a δ > 0 such that4 γ2

(
Nδ(A)

)
= γ2(A).

(iv) Let {An}n∈N be a sequence in Fk and let X be an L2–compact subset ofM such that An ⊂ X.
Then 5 lim supAn ∈ Fk.

Proof. The proofs of the first three properties are similar to the ones of the usual genus, and
therefore we omit them (see for example Struwe, Proposition 5.4). As for (iv), let An and X be as
above. By the definition of lim sup it is straightforward to check that the set lim supnAn belongs
to F0, and that it is L2–compact. We now claim that for every δ > 0 there exists n0 ∈ N such that

An ⊂ Nδ(lim supAn) for n ≥ n0,

which together with point (iii) yields the desired result. Suppose that our claim is false. Then there
exist a δ̄ > 0, nk → +∞ and (unk , vnk) ∈ Ank such that (unk , vnk) /∈ Nδ̄(lim supAn). But since
X is sequentially compact, then there exists a (u, v) ∈ X ⊂ M such that, up to a subsequence,
(unk , vnk)→ (u, v). Hence (u, v) ∈ lim supAn, a contradiction.

(3.3) Lemma. For every β finite it holds 0 ≤ cβ ≤ c∞ < +∞.

Proof. The proof of the lemma relies on the fact that, given any k ∈ N, we can construct a set
Gk ∈ F0 with γ2(Gk) = k. Here we use some ideas presented in [5], Proposition 4.3. Indeed,
consider k functions φ1, . . . , φk ∈ H1

0 (Ω) such that φi · φj = 0 a.e. for any i 6= j, with φ+
i , φ

−
i 6= 0.

Define

ψ : Sk−1 →M, (t1, . . . , tk) 7→

t̄(∑
i

tiφi

)+

, s̄

(∑
i

tiφi

)− ,

where

t̄2 =
1∣∣∣(∑i tiφi)

+
∣∣∣2
2

=
1(∑

i t
2
i

∣∣φ+
i

∣∣2
2

) , s̄2 =
1∣∣∣(∑i tiφi)

−
∣∣∣2
2

=
1(∑

i t
2
i

∣∣φ−i ∣∣22) ,
4Here Nδ(A) = {(u, v) ∈M : dist2((u, v), A) < δ}.
5Recall that lim supAn = {(u, v) ∈M : ∃nk → +∞, (unk , vnk ) ∈ Ank such that dist2((unk , vnk ), (u, v))→ 0}.
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and Gk = ψ(Sk−1). It is easy to verify that Gk ∈ F0. Since ψ is an L2–homeomorphism be-
tween Sk−1 and Gk, and σ(ψ(t1, . . . , tk)) = ψ(−t1, . . . ,−tk), then Proposition 3.2-(i) provides
that γ2(Gk) = k. Since (u, v) ∈ Gk implies u · v ≡ 0, then

c∞ ≤ sup
Gk

J∞ < +∞.

Finally, Remark 2.6 allows to conclude the proof.

We are already in a position to prove the convergence of the minimax levels.

Proof of Theorem 1.4. This is a direct consequence of Theorem 2.7. Let us check its hypotheses.
Under the above definitions, assumption (J) easily holds. For every 0 < β ≤ +∞, cβ ∈ R (by
Lemma 3.3), and moreover (F2’) holds (by recalling Remark 3.1, Proposition 3.2-(iv) and by using
the fact that c∞ ∈ R). Finally let us check that each Jβ is a lower semi-continuous functional
in (M,dist), for 0 < β < +∞. Indeed, let (un, vn), (ū, v̄) be couples of H1

0 functions such that
dist((un, vn), (ū, v̄)) → 0. If lim infn Jβ(un, vn) = +∞ then there is nothing to prove, otherwise,
by passing to the subsequence that achieves the lim inf, we have that ‖(un, vn)‖ is bounded. Thus,
again up to a subsequence, (un, vn) weakly converges (in H1

0 ), and, by uniqueness, the weak limit
is (ū, v̄). Then we can conclude by using the weak lower semicontinuity of ‖ · ‖ (and the weak
continuity of the other terms in Jβ).

Let us conclude this section recalling that, if β is sufficiently large, we can exclude the presence
of fixed points of σ in the set Kkβ . As in the usual genus theory, this insures that, if two (or more)
critical values coincide, then Kkβ contains an infinite number of elements.

(3.4) Lemma. Let k ∈ N be fixed. There exists a (finite) number β̄(k) > 0, depending only on k,
such that, for every β̄(k) ≤ β ≤ +∞, we have

Kkβ ∩ {(u, u) ∈M} = ∅.

Proof. When β = +∞ the assertion holds true with no limitations on β, since J∞(u, u) < +∞
implies u ≡ 0, and (0, 0) 6∈ M. For β < +∞ let us consider the problem

inf
(u,u)∈M

Jβ(u, v) = inf
|u|2=1

(
‖u‖2 +

1 + β

2

∫
Ω

u4 dx

)
≥ inf
|u|2=1

1 + β

2|Ω|

(∫
Ω

u2 dx

)2

=
1 + β

2|Ω|
.

Taking into account Lemma 3.3, the assertion of the lemma is proved once

1 + β

2|Ω|
> c∞k .

But this is true if we take β ≥ β̄(k) = 2|Ω|c∞k .

4 Existence and asymptotics of the critical points

In this section we prove the remaining results stated in the introduction. To this aim we shall
define suitable deformations ηβ , which will allow us to apply the abstract results of Section 2
that concern the critical sets – namely Theorems 2.8 and 2.11. Afterwards, we will establish the
equivalence between the critical sets defined in the introduction and the ones of Section 2.

As we mentioned, we need to choose different deformations for our porpoises, for the case
β < +∞ and β = +∞. Let us start with the definition of ηβ for β < +∞ (here β is fixed). The
desired map will make use of the parabolic flow associated to Jβ onM. In order to do so, first we
need to fix a relation between (λ, µ) and (u, v).
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(4.1) Remark. If (u, v) ∈M satisfies (1) then, by testing the equations with u and v respectively,
one immediately obtains

λ = λ(u, v) =

∫
Ω

(
|∇u|2 + u4 + βu2v2

)
dx∫

Ω
u2 dx

=
∫

Ω

(
|∇u|2 + u4 + βu2v2

)
dx,

µ = µ(u, v) =

∫
Ω

(
|∇v|2 + v4 + βu2v2

)
dx∫

Ω
v2 dx

=
∫

Ω

(
|∇v|2 + v4 + βu2v2

)
dx.

Motivated by the previous remark and by the definition of Sβ (see (1)), we write, with some
abuse of notations,

Sβ(u, v) = Sβ(u, v;λ(u, v), µ(u, v)), (6)

with λ, µ as above. Then, for (u, v) ∈ M, we consider the initial value problem with unknowns
U(x, t), V (x, t), 

∂t(U, V ) = −Sβ(U, V )
U(·, t), V (·, t) ∈ H1

0 (Ω)
U(x, 0) = u(x), V (x, 0) = v(x),

(7)

We have the following existence result.

(4.2) Lemma. For every (u, v) ∈Mc∞+1
β problem (7) has exactly one solution

(U(t), V (t)) ∈ C1
(
(0,+∞);L2(Ω)× L2(Ω)

)
∩ C

(
[0,+∞);H1

0 (Ω)×H1
0 (Ω)

)
.

Moreover, for every t > 0, |(U(t), V (t))|2 = 1 and

d

dt
Jβ(U(t), V (t)) = − |Sβ(U(t), V (t))|22 ≤ 0.

We postpone to Section 5 the proofs of this result and of the subsequent properties.

(4.3) Proposition. Using the notations of Lemma 4.2, the following properties hold

(i) U(t) ≥ 0, V (t) ≥ 0, for every (u, v) ∈Mc∞+1
β and t > 0;

(ii) for every fixed t > 0 the map (u, v) 7→ (U(t), V (t)) is L2–continuous from Mc∞+1
β into itself;

(iii) let (u, v) ∈Mc∞+1
β , s, t ∈ [0,+∞) then

dist ((U(s), V (s)), (U(t), V (t))) ≤ |t− s|1/2|Jβ(U(s), V (s))− Jβ(U(t), V (t))|1/2.

All the previous results allow us to define an appropriate deformation, along with some key
properties.

(4.4) Proposition. Let us define, under the above notations,

ηβ :Mc∞+1
β →Mc∞+1

β , (u, v) 7→ ηβ(u, v) = (U(1), V (1)).

Then ηβ satisfies assumptions (η1)β and (η2)β.

Proof. Lemma 4.2 implies that

Jβ(ηβ(u, v)) = Jβ(U(1), V (1)) ≤ Jβ(U(0), V (0)) = Jβ(u, v)
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for every (u, v), which is exactly assumption (η2)β . This together with Proposition 4.3-(i) also

implies that, as stated, ηβ
(
Mc∞+1

β

)
⊆ Mc∞+1

β . Moreover we observe that ηβ is σ– equivariant

(by the uniqueness of the initial value problem (7)) and that it is L2–continuous (Proposition 4.3-
(ii)). Thus Proposition 3.2-(ii) applies, yielding ηβ(A) ∈ Fk. Since A is L2–compact inM (indeed
it is a closed subset of the L2–compactMc∞

β ) then ηβ(A) is closed, and therefore assumption (η1)β
holds.

Before moving to the infinite case, let us prove the validity of a Palais–Smale type condition.
It will be the key ingredient in order to show that (Jβ , ηβ) satisfies (PS)cβ according to Definition
2.2.

(4.5) Lemma. Let (un, vn) ∈M be such that, as n→ +∞,

Jβ(un, vn)→ c and |Sβ(un, vn)|2 → 0

for some c ≥ 0. Then there exists (ū, v̄) ∈M∩ (H2(Ω)×H2(Ω)) such that, up to a subsequence,

(un, vn)→ (ū, v̄) strongly in H1
0 and Sβ(ū, v̄) = 0.

Proof. Since Jβ(un, vn) → c, then we immediately infer the existence of (ū, v̄) ∈ M such that
(un, vn) ⇀ (ū, v̄) weakly in H1

0 , up to a subsequence. Let us first prove the H1
0 –strong convergence.

From the fact that |Sβ(un, vn)|2 → 0 and that un − ū is L2–bounded, we deduce

〈Sβ(un, vn), (un − ū, 0)〉2 =
∫

Ω

[∇un · ∇(un − ū) + (u3
n + βunv

2
n − λ(un, vn)un)(un − ū)]dx→ 0.

This, together with∣∣∣∣∫
Ω

(u3
n + βunv

2
n − λ(un, vn)un)(un − ū)dx

∣∣∣∣ ≤ |u3
n + βunv

2
n − λ(un, vn)un|2|un − ū|2

≤ C|un − ū|2 → 0,

implies that
∫

Ω
∇un · ∇(un − ū)→ 0, yielding the desired convergence. The fact that vn → v̄ can

be proved in a similar way.

Now we pass to the proof of the last part of the statement. A first observations is that

|∆un|22+|∆vn|22 ≤ 2|Sβ(un, vn)|22+2|u3
n+βunv2

n−λ(un, vn)un|22+2|v3
n+βu2

nvn−µ(un, vn)vn|22 ≤ C,

which yields the weak H2–convergence un ⇀ ū, vn ⇀ v̄ (up to a subsequence). As a consequence,
we have that 〈Sβ(un, vn), (φ, ψ)〉2 → 〈Sβ(ū, v̄), (φ, ψ)〉2 for any given (φ, ψ) ∈ L2. On the other
hand, |Sβ(un, vn)|2 → 0 provides that

〈Sβ(un, vn), (φ, ψ)〉2 → 0,

thus Sβ(ū, v̄) = 0 and the lemma is proved.

Let us turn to the definition of the deformation η∞. The main difficulty in this direction is that
J∞ is finite if and only if uv ≡ 0, thus any flux we wish to use must preserve the disjointness of the
supports. As we said in the introduction, here the criticality condition will be given by equation
(2). In order to overcome the lack of regularity due to the presence of the positive/negative parts
in the equation, we will use a suitable gradient flow, instead of a parabolic flow. More precisely
we define

S∞ : H1
0 (Ω)→ H1

0 (Ω)

to be the gradient of the functional J∗(w) (see equation (3)), constrained to the set
∫

Ω
(w+)2 =∫

Ω
(w−)2 = 1. If L denotes the inverse of −∆ with Dirichlet boundary conditions, then we will

prove in Section 5 the following result.
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(4.6) Lemma. Let R1, R2 > 0 be fixed. For every w ∈ H1
0 (Ω) such that

|w+|2, |w−|2 ≥ R1 and ‖w‖ ≤ R2

there exist unique λ̃ = λ̃(w), µ̃ = µ̃(w) such that

S∞(w) = w + L
(
w3 − λ̃w+ + µ̃w−

)
.

Moreover, λ̃ and µ̃ are Lipschitz continuous in w with respect to the L2–topology, with Lipschitz
constants only depending on R1, R2.

For every (u, v) ∈Mc∞+1
∞ we consider the initial value problem (with unknown W = W (t, x))

∂tW = −S∞(W )
W (·, t) ∈ H1

0 (Ω)
W (x, 0) = u(x)− v(x).

(8)

and prove existence and regularity of the solution.

(4.7) Lemma. For every (u, v) ∈Mc∞+1
∞ problem (8) has exactly one solution

W (t) ∈ C1
(
(0,+∞);H1

0 (Ω)
)
∩ C

(
[0,+∞);H1

0 (Ω)
)
.

Moreover, for every t, (W+(t),W−(t)) ∈Mc∞+1
∞ and

d

dt
J∞(W+(t),W−(t)) = −‖S∞(W (t))‖2 ≤ 0.

Again, the proof of this result can be found in Section 5, together with the proof of the following
properties.

(4.8) Proposition. Using the notations of Lemma 4.7, the following properties hold

(i) for every fixed t > 0 the map (u, v) 7→ (W+(t),W−(t)) is L2–continuous from Mc∞+1
∞ into

itself;

(ii) let (u, v) ∈Mc∞+1
∞ , s, t ∈ [0,+∞) then6

dist((W+(s),W−(s)), (W+(t),W−(t))) ≤ CS |t−s|1/2|J∞(W+(s),W−(s))−J∞(W+(t),W−(t))|1/2.

Similarly to the case β finite, the previous properties allow to define a suitable deformation (we
omit the proof since it is similar to the case β finite).

(4.9) Proposition. Let us define, under the above notations,

η∞ :Mc∞+1
∞ →Mc∞+1

∞ , (u, v) 7→ η∞(u, v) = (W+(1),W−(1)).

Then η∞ satisfies assumptions (η1)∞ and (η2)∞.

Turning to the Palais–Smale condition, here is a preliminary result.

(4.10) Lemma. Let (un, vn) ∈Mc∞+1
∞ be such that, as n→ +∞,

J∞(un, vn)→ c∞ and ‖S∞(un − vn)‖ → 0.

Then there exists w̄ ∈ H1
0 (Ω) such that, up to a subsequence,

un − vn → w̄ strongly in H1
0 and S∞(w̄) = 0.

6Here CS is the Sobolev constant of the embedding H1
0 ↪→ L2.

15



Proof. Let (w1, w2) be such that, up to subsequences, un ⇀ w1, vn ⇀ w2 in H1
0 (Ω). Since

J∞(un, vn) < ∞, then un · vn = 0 and therefore also w1 · w2 = 0. Denote wn = un − vn and
w̄ = w1 − w2 in such a way that

S∞(un − vn) = wn + (−∆)−1(w3
n − λ̃(wn)w+

n + µ̃(wn)w−n ).

Let us prove the H1
0 –convergence. First observe that wn− w̄ is bounded in H1

0 , which implies that
−∆(wn − w̄) is H−1–bounded. Now since ‖S∞(un − vn)‖ → 0 we obtain

〈−∆(wn − w̄), S∞(un − vn)〉H−1 =
∫

Ω

(∇wn · ∇(wn − w̄) + w3
n(wn − w̄)−

− λ̃(wn)w+
n (wn − w̄) + µ̃(wn)w−n (wn − w̄)) dx→ 0.

This, together with the fact that∣∣∣∣∫
Ω

(w3
n(wn − w̄)− λ̃(wn)w+

n (wn − w̄) + µ̃(wn)w−n (wn − w̄)) dx
∣∣∣∣ ≤

≤ |w3
n − λ̃(wn)w+

n + µ̃(wn)w−n |2|wn − w̄|2 → 0

gives
∫

Ω

∇wn · ∇(wn − w̄)→ 0, which yields the H1
0 –convergence of wn to w̄.

In order to conclude the proof of the lemma it remains to show that S∞(w̄) = 0. Now, wn → w̄
in H1

0 implies that w3
n− λ̃(wn)w+

n − µ̃(wn)w−n is bounded in L2 which, together with the fact that
(−∆)−1 is a compact operator from L2(Ω) to H1

0 (Ω) provides, up to a subsequence, the convergence

(−∆)−1(w3
n − λ̃(wn)w+

n − µ̃(wn)w−n )→ (−∆)−1(w̄3 − λ̃(w̄)w̄+ + µ̃(w̄)w̄−) in H1
0 (Ω).

Hence also S∞(un − vn)→ S∞(w̄) in H1
0 (Ω), which concludes the proof.

We are ready to show that the deformations we have defined satisfy the remaining abstract
properties required in Section 2.

(4.11) Proposition. For every 0 < β ≤ +∞, the pair (Jβ , ηβ) satisfies (PS)cβ (according to
Definition 2.2).

Proof. Let first β < ∞ fixed. Let (un, vn) ⊂ M be a Palais–Smale sequence in the sense of
Definition 2.2, that is, Jβ(un, vn) → cβ and Jβ(ηβ(un, vn)) → cβ . Let then (ū, v̄) ∈ M be such
that, up to a subsequence, (un, vn)→ (ū, v̄) in L2. Define (Un(t), Vn(t)) as the solution of (7) with
initial datum (un, vn) (recall that therefore ηβ(un, vn) = (Un(1), Vn(1))). By applying Proposition
4.3-(iii) with (s, t) = (0, 1) we obtain

dist((un, vn), ηβ(un, vn)) ≤ |Jβ(un, vn)− Jβ(ηβ(un, vn))|1/2 → 0,

which, together with the L2–continuity of ηβ , yields (ū, v̄) = ηβ(ū, v̄). It only remains to show that
Jβ(ū, v̄) = cβ . Notice that

∫ 1

0

|Sβ(Un(t), Vn(t))|22dt = Jβ(un, vn)− Jβ(ηβ(un, vn))→ 0,

(by Lemma 4.2) and hence, for almost every t, |Sβ(Un(t), Vn(t))|2 → 0 (up to a subsequence).
Moreover, being Jβ a decreasing functional under the heat flux, it holds Jβ(Un(t), Vn(t)) → cβ .
Now Lemma 4.5 applies providing the existence of (u, v) ∈ M such that (Un(t), Vn(t)) → (u, v)
in H1

0 , and in particular Jβ(u, v) = cβ . Finally the use of Proposition 4.3-(iii) with (s, t) = (0, t)
allows us to conclude that (u, v) = (ū, v̄), and the proof is completed.

The case β = +∞ can be treated similarly, substituting (U(t), V (t)) with (W+(t),W−(t)) and
|Sβ |2 with ‖S∞‖.
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An uniform Palais–Smale condition also holds, in the sense of assumption (UPS). The proof of
this fact is very similar to the one of Proposition 4.11, and hence we omit it.

(4.12) Proposition. Assumption (UPS) holds.

The properties collected in this section show that Theorems 2.8 and 2.11 apply to this frame-
work. Thus we are in a position to conclude the proofs of the results stated in the introduction.

End of the proof of Theorem 1.3. As Theorem 2.8 holds, the last thing we have to check is that
the critical set Kβ (according to (5)) coincides with the one defined in the introduction. Again, we
only present a proof in the case β < +∞. We have to show that Jβ(u, v) = Jβ(U(1), V (1)) if and
only if Sβ(u, v) = 0. But this readily follows from the fact that, for t ∈ [0, 1],

dist((u, v), (U(t), V (t)))2 ≤
∫ 1

0

|Sβ(U(τ), V (τ))|22 dτ = Jβ(u, v)− Jβ(U(1), V (1)),

once one observes that, by uniqueness, (U(t), V (t)) ≡ (u, v) if and only if Sβ(u, v) = 0. Finally,
the H1–compactness of Kβ comes directly from Lemmas 4.5 and 4.10.

End of the proof of Theorem 1.5. As Theorem 2.11 holds, the result is proved once we show that
C∗ ⊂ K∗. To this aim, let us consider (u, v) ∈ C∗ and let, by definition, (un, vn) ∈ M be such
that (un, vn) → (u, v) in L2, Jβn(un, vn) → c∞ and Jβn(Un(1), Vn(1)) → c∞. By arguing exactly
as in the proof of Proposition 4.11, we infer the existence of a 0 ≤ t ≤ 1 such that it holds
(Un(t), Vn(t)) → (u, v), Jβn(Un(t), Vn(t)) → c∞ and |Sβn(Un(t), Vn(t))|2 → 0. Therefore (u, v) ∈
K∗.

Proof of Corollary 1.6. The only thing left to prove is that, given any (un, vn) ∈M and βn → +∞
such that (un, vn) → (ū, v̄) in L2, with Jβn(un, vn) → c∞, |Sβn(un, vn)|2 → 0, then in fact
(un, vn)→ (ū, v̄) in H1 ∩C0,α. We shall prove that the sequence (un, vn) is uniformly bounded in
the L∞–norm. This, together with the fact that, by assumption,

−∆uβ + u3
β + βuβv

2
β − λβuβ = hβ → 0 in L2

−∆vβ + v3
β + βu2

βvβ − µβvβ = kβ → 0 in L2,

allows us to apply Theorem 1.4 in [8], which provides the desired result.

Since Jβn(un, vn) → c∞, we infer the existence of λmax, µmax ∈ R such that, up to a subse-
quence,

(un, vn) ⇀ (ū, v̄) in H1
0 , λ(un, vn) ≤ λmax, µ(un, vn) ≤ µmax, ∀n.

In order to prove uniform bounds in the L∞–norm, we shall apply a Brezis–Kato type argument to
the sequence (un, vn). Suppose un ∈ L2+2δ(Ω) for some δ > 0; we can test with u1+δ

n the inequality

−∆un ≤ λ(un, vn)un + hn,

obtaining
1 + δ(

1 + δ
2

)2 ∫
Ω

|∇(u1+ δ
2

n )|2 dx ≤ λ(un, vn)
∫

Ω

u2+δ
n dx+

∫
Ω

hnu
1+δ
n dx.

Hence, by Sobolev embedding we have7

|un|6+3δ ≤

[
C2
S

(
1 + δ

2

)2
1 + δ

] 1
2+δ [

λ(un, vn)
∫

Ω

u2+δ
n dx+

∫
Ω

hnu
1+δ
n dx

] 1
2+δ

.

7Here CS denotes the Sobolev constant of the embedding H1
0 ↪→ L6.
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Now apply Hölder inequality to the right hand side; provided
∫

Ω
u2+2δ
n dx ≥ 1, there holds

λ(un, vn)
∫

Ω

u2+δ
n dx ≤ λmax|Ω|1/2|un|2+δ

2+2δ and
∫

Ω

hnu
1+δ
n dx ≤ |hn|2|un|2+δ

2+2δ

hence, since |hn|2 → 0, we have proved the existence of a constant C, not depending on n and δ
such that

|un|6+3δ ≤

[
C2
S

(
1 + δ

2

)2
1 + δ

] 1
2+δ

|un|2+2δ.

Now iterate, letting

δ(1) = 2, 2 + 2δ(k + 1) = 6 + 3δ(k) hence δ(k) ≥
(

3
2

)k−1

.

If there exist infinite values δ(k) such that
∫

Ω
u

2+2δ(k)
n dx < 1, the L∞–estimate is trivially proved;

otherwise the previous estimates hold for δ(k) sufficiently large providing, for every p > 1,

|un|p ≤ C ′ +
+∞∏
k=1

C
(

1 + δ(k)
2

)2

1 + δ(k)


1

2+δ(k)

|un|6.

The last inequality provides the desired L∞ estimate since it is easy to verify that

∞∑
k=1

1
2 + δ(k)

log

C
(

1 + δ(k)
2

)2

1 + δ(k)

 <∞, if δ(k) ≥
(

3
2

)k−1

.

The same calculations clearly hold for vn.

We conclude by giving a proof of Theorem 1.1 as a particular case of the theory we developed
(although, as we mentioned, it is possible to give a more elementary proof of this result).

Proof of Theorem 1.1. The key remark in this framework is that, in fact, for every 0 < β ≤ +∞
we can write

c1β = inf
(u,v)∈M

Jβ(u, v).

More precisely,

(uβ , vβ) achieves c1β =⇒ Aβ = {(uβ , vβ), (vβ , uβ)} is an optimal set for Jβ at c1β .

Now, the L2–convergence of the minima follows by the convergence of the optimal sets (Theorem
1.4), while the H1 ∩ C0,α–convergence is obtained as in the previous proof.

5 Construction of the flows

Proof of Lemma 4.2. In order to prove local existence, we want to apply Theorem 2, b) in [13], to
which we refer for further details. Let us rewrite the problem as

w′ = ∆w + F (w),
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where w = (U, V ), w′ = ∂t(U, V ), ∆ is intended in the vectorial sense and F contains all the
remaining terms. Using the notations of [13] we set E = L2(Ω)×L2(Ω) and EF = H1

0 (Ω)×H1
0 (Ω).

We obtain that et∆ is an analytic semigroup both on E and on EF , satisfying8

‖et∆w0‖ ≤ Ct−1/2|w0|2 for every w0 ∈ E,

so that (2.1) in [13] holds with a = 1/2. Moreover, since all the terms in F are of polynomial type,
it is easy to see that F : EF → E is locally lipschitz continuous, and

|F (w0)− F (z0)|2 ≤ `(r)‖w0 − z0‖, with `(r) = O(rp) as r → +∞,

whenever ‖w0‖ ≤ r, ‖z0‖ ≤ r (for example, arguing as in Lemma 5.4, the previous estimate holds
for p = 4). Now, choosing b = 1/(2p) < a, it is immediate to check that

`(r) = O
(
r(1−a)/b

)
,

thus (2.3) in [13] is also satisfied. In order to apply Theorem 2, b) the last assumption we need to
verify is that, for every w0 ∈ H1

0 (which is our regularity assumption for the initial data in (7)), it
holds

lim sup
t↓0

‖tbet∆w0‖ = 0;

but this follows recalling that ‖et∆w0‖ ≤ ‖w0‖9. Therefore Theorem 2, b) and Corollary 2.1, b)
and c) in [13] apply, providing the existence of a (unique) maximal solution of (7)

(U(t), V (t)) ∈ C1
(
(0, Tmax);L2(Ω)× L2(Ω)

)
∩ C

(
[0, Tmax);H1

0 (Ω)×H1
0 (Ω)

)
,

with the property that if Tmax < +∞ then ‖(U, V )‖ → +∞ as t→ T−max.

Now we want to prove that (U(t), V (t)) ∈ M in its interval of definition. To this aim let us
consider the C1–function

ρ(t) =
∫

Ω

U2(x, t) dx,

which is continuous at t = 0. By a straight calculation one can see that it verifies the initial value
problem {

ρ′(t) = a(t)(ρ(t)− 1)
ρ(0) = 1,

where a(t) = 2λ(U(t), V (t)) is a continuous function. Since the previous initial value problem
admits only one solution, then ρ(t) ≡ 1 in [0, Tmax) (and an analogous result holds for V (t)).
Finally, by integrating by parts (by standard regularity, (U(t), V (t)) belongs to H2 for t > 0) and
by using the fact that

∫
Ω
UUt dx =

∫
Ω
V Vt dx = 0, one can easily obtain

d

dt
Jβ(U(t), V (t)) =

∫
Ω

(Ut, Vt) · Sβ(U, V ) dx = − |Sβ(U, V )|22 ≤ 0.

This implies
‖(U(t), V (t))‖2 ≤ 2Jβ(U(t), V (t)) ≤ 2Jβ(u, v) < +∞ (9)

for every t < Tmax, which provides Tmax = +∞.

(5.1) Remark. Given (u, v) ∈ M let (U, V ) be the corresponding solution of (7). By taking in
consideration inequality (9) we see that the quantities ‖(U(t), V (t))‖, |(U(t), V (t))|p (with p ≤
6), λ(U(t), V (t)) and µ(U(t), V (t)) are bounded by constants which only depend on Jβ(u, v) (in
particular, they are independent of t).

8By using for example the expansion in eigenfunctions of −∆ in H1
0 , one can easily obtain the required inequality

with C = (2e)−1/2.
9Again, one can obtain this inequality expanding in eigenfunctions.
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(5.2) Lemma. Let c ∈ C
(
[0, T ];L3/2(Ω)

)
and let U ∈ C1

(
(0, T ];L2(Ω)

)
∩ C

(
[0, T ];H1

0 (Ω)
)

be a
solution of

∂tU −∆U = c(x, t)U, U(·, t) ∈ H1
0 (Ω), U(x, 0) ≥ 0.

Then U(x, t) ≥ 0 for every t.

Proof. Since c : [0, T ] → L3/2 we can write |c(x, t)| ≤ k + c1(x, t), where k is constant and
|c1|3/2 < 1/C2

S (here CS denotes the Sobolev constant of the embedding H1
0 (Ω) ↪→ L6(Ω)). Let

ρ(t) =
1
2

∫
Ω

|U−(x, t)|2 dx.

We obtain that ρ ∈ C1((0, T ]) ∩ C([0, T ]) and ρ(0) = 0; moreover,

ρ′(t) = −
∫

Ω

U−∂tU dx = −
∫

Ω

(
U−∆U + c(x, t)|U−|2

)
dx

≤ −‖U−‖2 + k|U−|22 + |c1|3/2|U−|26 ≤
(
−1 + C2

S |c1|3/2
)
‖U−‖2 + k|U−|22

≤ 2kρ(t).

Thus we deduce that ρ(t) ≤ e2kρ(0) and the lemma follows.

(5.3) Lemma. Let w ∈ C1
(
(0,+∞);L2(Ω)× L2(Ω)

)
∩C

(
[0,+∞);H1

0 (Ω)×H1
0 (Ω)

)
be a solution

of {
∂tw −∆w = F (w)
w(0) = w0,

(10)

where there exists a positive constant C such that∫
Ω

F (w) · w dx ≤ 1
2
‖w‖2 + C|w|22 for every t ≥ 0. (11)

Then there exists a constant C(t) such that

|w(t)|2 ≤ C(t)|w0|2.

Proof. Let

E(t) =
1
2

∫
Ω

w2(t) dx.

A straightforward computation yields

E′(t) = −
∫

Ω

|∇w|2 dx+
∫

Ω

F (w) · w dx ≤ −1
2
‖w‖2 + C|w|22 ≤ 2CE(t),

from which we obtain E(t) ≤ e2CtE(0), concluding the proof.

(5.4) Lemma. For i = 1, 2 take (ui, vi) ∈ M and let (Ui(t), Vi(t)) be the corresponding solution
of (7). There exists a constant C, only depending on maxi Jβ(ui, vi), such that, for every t

1. |λ(U1(t), V1(t))− λ(U2(t), V2(t))| ≤ C (‖U1(t)− U2(t)‖+ |V1(t)− V2(t)|2);

2. |µ(U1(t), V1(t))− µ(U2(t), V2(t))| ≤ C (‖V1(t)− V2(t)‖+ |U1(t)− U2(t)|2).
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Proof. We prove only the first inequality, since the second one is analogous. We have

|λ(U1, V1)− λ(U2, V2)| ≤
∫

Ω

∣∣|∇U1|2 − |∇U2|2
∣∣ dx+

∫
Ω

∣∣U4
1 − U4

2

∣∣ dx+ β

∫
Ω

∣∣U2
1V

2
1 − U2

2V
2
2

∣∣ dx
≤
∫

Ω

|∇U1 +∇U2| |∇U1 −∇U2| dx+
∫

Ω

(U2
1 + U2

2 )|U1 + U2| |U1 − U2| dx+

+ β

∫
Ω

U2
1 |V1 + V2| |V1 − V2| dx+ β

∫
Ω

V 2
2 |U1 + U2| |U1 − U2| dx

≤ ‖U1 + U2‖‖U1 − U2‖+ |(U2
1 + U2

2 )(U1 + U2)|2|U1 − U2|2+

+ |βU2
1 (V1 + V2)|2|V1 − V2|2 + |βV 2

2 (U1 + U2)|2|U1 − U2|2,

from which we can conclude the proof by recalling Remark 5.1 and Poincaré’s inequality.

(5.5) Corollary. For i = 1, 2 consider (ui, vi) ∈ M and let (Ui(t), Vi(t)) be the corresponding
solution of (7). There exists a constant C = C(t), depending on t (and also on maxi Jβ(ui, vi))
such that

|(U1(t), V1(t))− (U2(t), V2(t))|2 ≤ C(t)|(u1, v1)− (u2, v2)|2.

Proof. We want to apply Lemma 5.3 to w = (w1, w2) = (U1 − U2, V1 − V2). Subtracting the
equations for (U1, V1) and (U2, V2) we end up with a system like (10), thus we only need to check
that

F =
(
U3

2 − U3
1 + β(U2V

2
2 − U1V

2
1 ) + λ(U1, V1)U1 − λ(U2, V2)U2

V 3
2 − V 3

1 + β(U2
2V2 − U2

1V1) + µ(U1, V1)V1 − µ(U2, V2)V2

)
,

satisfies (11). To make the calculation easier, we split F into four terms, after adding and sub-
tracting some suitable quantities. The first term is

F1 = −
(

(U2
1 + U1U2 + U2

2 )w1

(V 2
1 + V1V2 + V 2

2 )w2

)
,

from which we obtain, by recalling Remark 5.1,∫
Ω

F1(w) · w dx ≤ |U1U2|3|w1|6|w1|2 + |V1V2|3|w2|6|w2|2

≤ C(‖w1‖|w1|2 + ‖w2‖|w2|2)

≤ 1
2
(
‖w1‖2 + ‖w2‖2

)
+ C ′

(
|w1|22 + |w2|22

)
(where in the last step we have used Young’s inequality). The second term is

F2 = −β
(
U1(V1 + V2)w2 + V 2

2 w1

V1(U1 + U2)w1 + U2
2w2

)
,

which immediately gives, reasoning in the same way as above∫
Ω

F2(w) · w dx ≤ β(|U1(V1 + V2)|3|w2|6|w1|2 + |V 2
2 |3|w1|6|w1|2+

+ |V1(U1 + U2)|3|w1|6|w2|2 + |U2
2 |3|w2|6|w2|2)

≤ C [‖w1‖(|w1|2 + |w2|2) + ‖w2‖(|w1|2 + |w2|2)]

≤ 1
2
(
‖w1‖2 + ‖w2‖2

)
+ C ′

(
|w1|22 + |w2|22

)
.

The third term is

F3 =
(
λ(U1, V1)w1

µ(U1, V1)w2

)
, from which

∫
Ω

F3(w) · w dx ≤ C|w|22
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(where we used again Remark 5.1). Finally, the last term is

F4 =
(

(λ(U1, V1)− λ(U2, V2))U2

(µ(U1, V1)− µ(U2, V2))V2

)
,

which can be ruled out by using Lemma 5.4. We obtain∫
Ω

F4(w) · w dx ≤ (‖U1(t)− U2(t)‖+ |V1(t)− V2(t)|2)
∫

Ω

|U2w1| dx+

+ C (‖V1(t)− V2(t)‖+ |U1(t)− U2(t)|2)
∫

Ω

|V2w2| dx

≤ 1
2
(
‖w1‖2 + ‖w2‖2

)
+ C ′

(
|w1|22 + |w2|22

)
.

Therefore F = F1 +F2 +F3 +F4 satisfies (11), and hence Lemma 5.3 yields the desired result.

Proof of Proposition 4.3. Properties (i) and (ii) have been proved in Lemma 5.2 and Corollary 5.5
respectively; let us prove (iii). This is a direct consequence of the estimate on the derivative of Jβ
expressed in Lemma 4.2. In fact the following holds

dist ((U(s), V (s)), (U(t), V (t))) =
∣∣∣∣∫ t

s

∂τ (U(τ), V (τ))dτ
∣∣∣∣
2

≤ |t− s|1/2
(∫ t

s

|Sβ(U(τ), V (τ))|22dτ
)1/2

= |t− s|1/2|Jβ(U(s), V (s))− Jβ(U(t), V (t))|1/2.

We now turn to the construction of the flux η∞.

Proof of Lemma 4.6. By definition, S∞ is the projection of the gradient of J∗ at w on the tangential
space of the manifold

{
w ∈ H1

0 (Ω) : (w+, w−) ∈M
}

at w, thus

S∞(w) = w + Lw3 − λ̃Lw+ + µ̃Lw−,

where the coefficients λ̃, µ̃ satisfy
∫

Ω
w+S∞(w) dx =

∫
Ω
w−S∞(w) dx = 0, that is( ∫

Ω
w+Lw+ dx −

∫
Ω
w+Lw− dx

−
∫

Ω
w−Lw+ dx

∫
Ω
w−Lw− dx

)(
λ̃

µ̃

)
=

( ∫
Ω

(
w + Lw3

)
w+ dx

−
∫

Ω

(
w + Lw3

)
w− dx

)
.

Denoting by A the coefficient matrix, we compute10

detA =
(∫

Ω

|∇Lw+|2 dx
)(∫

Ω

|∇Lw−|2 dx
)
−
(∫

Ω

∇Lw+ · ∇Lw− dx
)2

≥ 0,

by Hölder inequality, and detA = 0 if and only if a∇Lw+ + b∇Lw− ≡ 0, for some a, b not both
zero. But this would imply that the H1

0 (Ω)–function L(aw+ + bw−) would have an identically
zero gradient and therefore aw+ + bw− ≡ 0, in contradiction with the fact that, by assumption,
|aw+ + bw−|22 ≥ (a2 + b2)R2

1. Thus the L2–continuous function detA is strictly positive on the
L2–compact set {w : |w±|2 ≥ R1, ‖w‖ ≤ R2}, i.e. it is larger than a strictly positive constant
(only depending on R1, R2). This provides (existence, uniqueness and) an explicit expression of
λ̃(w) and µ̃(w) for any w satisfying the previous assumptions. The regularity of these functions
descends from such explicit expressions, once one notices that they are both products of Lipschitz

10By using the identity
R
Ω fLg dx =

R
Ω∇Lf · ∇Lg dx.
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continuous functions (and therefore bounded when ‖w‖ ≤ R2). Just as an example, we prove the
Lipschitz continuity of the term

∫
Ω
w+Lw3 dx. We have11∣∣∣∣∫

Ω

w+
1 Lw3

1 dx−
∫

Ω

w+
2 Lw3

2 dx

∣∣∣∣ ≤ ∫
Ω

∣∣w+
1 − w

+
2

∣∣Lw3
1 dx+

∫
Ω

w+
2

∣∣L(w3
1 − w3

2)
∣∣ dx

≤ C
∣∣w+

1 − w
+
2

∣∣
2

∣∣w3
1

∣∣
2

+
∣∣w+

2

∣∣
6/5

∣∣L(w3
1 − w3

2)
∣∣
6

≤ CR3
2 |w1 − w2|2 + CR2

∣∣w3
1 − w3

2

∣∣
6/5

≤ CR3
2 |w1 − w2|2 .

All the other terms can be treated the same way.

(5.6) Remark. By reasoning as in the end of the previous proof, it can be proved that, whenever
w1, w2 belong to the set {

w ∈ H1
0 (Ω) : |w±|2 ≥ R1, ‖w‖ ≤ R2

}
,

there exists a constant L, only depending on R1, R2, such that

|S∞(w1)− S∞(w2)|2 ≤ L |w1 − w2|2 ,

‖S∞(w1)− S∞(w2)‖ ≤ L ‖w1 − w2‖ .

Proof of Lemma 4.7. Let us fix 0 < R1 < 1 and R2 > 2(c∞ + 1). By Remark 5.6 we have that
−S∞, as a map from H1

0 (Ω) into itself, is H1
0 –Lipschitz continuous on the mentioned set, with

Lipschitz constant only depending on R1, R2; we infer existence (and uniqueness) of a maximal
solution of the Cauchy problem, defined on [0, Tmax). Moreover, for any t ∈ (0, Tmax), we have

d

dt
|W±(t)|22 = ±2

∫
Ω

W±Wt dx = ∓2
∫

Ω

W±S∞(W ) dx = 0

(by Lemma 4.6), and

d

dt
J∞(W+(t),W−(t)) =

d

dt

∫
Ω

(
1
2
|∇W |2 +

1
4
W 4

)
dx =

∫
Ω

(
−∆W +W 3

)
Wt dx =

=
∫

Ω

−∆
(
W + LW 3

)
Wt dx =

=
∫

Ω

∇
(
S∞(W ) + L(λ̃W+ − µ̃W−)

)
· ∇ (−S∞(W )) dx

= −‖S∞(W (t))‖2.

Thus, for any t ∈ (0, Tmax), we obtain |W±(t)|2 = 1 > R1 and ‖W (t)‖ ≤ 2J∞(W+(t),W−(t)) ≤
2J∞(u, v) < R2. In particular this implies Tmax = +∞, concluding the proof of the lemma.

Proof of Proposition 4.8. (i) Consider (u1, v1), (u2, v2) ∈ Mc∞+1
∞ and let W1(t),W2(t) be the cor-

responding solutions of (8). We notice first of all that Remark 5.6 applies, providing the existence
of L = L(c∞) such that

d

dt
|W1(t)−W2(t)|22 ≤ 2L |W1(t)−W2(t)|22 ,

which implies
|W1(t)−W2(t)|22 ≤ e

2Lt |W1(0)−W2(0)|22 .
11Remember that, by standard elliptic regularity results, both L : L2 → L2 and L : L6/5 → L6 are continuous.
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Therefore

dist2((W+
1 (1),W−1 (1)), (W+

2 (1),W−2 (1))) ≤ |W1(1)−W2(1)|22
≤ e2L |W1(0)−W2(0)|22
≤ 2e2L(|u1 − v1|22 + |u2 − v2|22).

(ii) Notice first that

dist2((W+(s),W−(s)), (W+(t),W−(t))) ≤ |W (s)−W (t)|22 .

Now, Lemma 4.7 allows to compute

|W (s)−W (t)|2 ≤ CS‖W (s)−W (t)‖ = CS

∥∥∥∥∫ t

s

∂τW (τ)dτ
∥∥∥∥

≤ CS |t− s|1/2
(∫ t

s

‖S∞(W (τ))‖2dτ
)1/2

= CS |t− s|1/2|J∞(W+(s),W−(s))− J∞(W+(t),W−(t))|1/2,

and the two inequalities together conclude the proof.
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