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bLaboratório Nacional de Computação Cient́ıfica LNCC/MCT
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Abstract

A simple analytical expression for crack nucleation sensitivity analysis is pro-
posed relying on the concept of topological derivative and applied within a two-
dimensional linear elastic fracture mechanics theory. In particular, the topolog-
ical asymptotic expansion of a shape functional associated to the total potential
energy together with a Griffith-type surface energy of an elastic cracked body is
calculated. As the main results we derive a crack nucleation criterion based on
the topological derivative and a criterion for determining the direction of crack
growth based on the topological gradient. The proposed methodology leads to
an axiomatic approach of crack nucleation sensitivity analysis.

Key words: topological asymptotic analysis, topological derivative, crack
nucleation, brittle fracture

1. Introduction

The theory of brittle fracture takes its origin in the work of Griffiths (1921),
later pursued by the key theoretical contributions of Irwin (1958), Cherepanov
(1979), Erdogan and Sih (1963) and Rice (1968). In the 80ies the work of
Lemaitre and Chaboche (1988) paved the way for the numerical simulation of
crack evolution (for which we refer to Amestoy and Leblond (1992); Moës et al.
(2002a,b); Bourdin et al. (2000) among others).

However the question of the full mathematical justification of brittle fracture
only arose about 15 years ago with the work of Francfort and Marigo (1998)
and is a continued topic of active research nowadays (see e.g. Bourdin et al.
(2008) and Chambolle et al. (2008b)). One of their main contribution was to
avoid the specification of a known crack path for crack evolution predictions.
Moreover, they focussed on crack obtained by a global minimization approach
in a quasi-static setting, but nowadays their original approach is being extended
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to dynamical crack growth by Bourdin et al. (2009) (see also Song et al. (2008)),
while local approaches are addressed from a theoretical viewpoint by, e.g., Knees
et al. (2002), and numerically by, e.g., Allaire et al. (2007).

In general, analysis of crack propagation consider an already cracked body
Feijóo et al. (2000). However, criteria for crack growth are still discussed in
the Mechanical community. The first laboratory experiments of bar extensions
appealed to the so-called maximal stress criterion, whereas this criterion failed
to predict general cracked bodies where the loads are not aligned with the crack.
Therefore, the concept of stress intensity factor (SIF) as a measure of stress in
the crack process zones appeared and reached consensus. Some authors, like
Sih (1973), instead of rely on a simple critical SIF criterion, have proposed
local criteria based on the so-called strain-energy density functions. These local
methods are not easily tractable since relying on the permanent re-evaluation
of the SIFs for every new cracked body configuration. Other authors, like Irwin
and Rice, proposed local crack growth principles based on the notion of maximal
dissipation at the crack tip. On the other hand, relying on symmetry arguments,
Cherepanov (1979) and Erdogan and Sih (1963), have proposed a local growth
criterion based on the principle that the crack growths with vanishing (shearing)
mode II. As shown by Amestoy and Leblond (1992), these variety of criteria are
not equivalent, and therefore the continued interest in mathematical approaches
is justified (see also the recent contributions of Chambolle et al. (2008a, 2009)
and Hakim and Karma (2008)).

Concerning crack nucleation criteria, even less consensus is reached. It is
sometimes read that initiation is not the concern of fracture modeling, limited
to the growth of existing pre-cracks, while other authors believe that crack evo-
lution and nucleation criteria should be intimately related. Then, the above
mentioned growth criteria are usually postulated for crack of finite lengh as
well as for infinitesimal cracks, i.e., for nucleation. From a mathematical view-
point, Francfort, Marigo and co-workers (see also Chambolle et al. (2008b)) have
proved some results relating crack initiation to a local measure of singularity,
that is, to the presence, or not, of defects in the elastic body under analysis. In
particular, they proved that in the absence of defects brittle fracture can only
occur brutally, that is, for a minimal crack lenght, and discussed the question
of time-continuity of crack paths as related to kinking criteria Chambolle et al.
(2009). However, in the work of Knees et al. (2002), it is remarked that the
drawback of these global minimization approaches is to predict underevalueted
crack initiation times.

In this paper we propose a general exact analytical expression for crack nu-
cleation sensitivity analysis, where sensitivity is a scalar field that measures how
the elastic energy (and in general any chosen shape functional) changes when
a small crack is introduced at an arbitrary point of the domain. Its analytical
formula is derived by making use of the concept of topological asymptotic ex-
pansion. In particular, we propose a tool for crack nucleation and crack growth
analysis in linear elastic bodies, based on the notions of topological derivative
and topological gradient.

In general, the mathematical notion of topological derivative (Céa et al.
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(2000); Soko lowski and Żochowski (1999)) provides the closed form exact calcu-
lation of the sensitivity of a given shape functional with respect to infinitesimal
domain perturbations such as the insertion of voids, inclusions, source term or,
in this case, a crack. The concept of topological derivative is an extension of the
classical notion of derivative. It has been rigorously introduced by Soko lowski
and Żochowski (1999) in the context of shape optimization for two-dimensional
heat conduction and elasticity problems. In their pioneering paper, these au-
thors have considered domains topologically perturbed by the introduction of a
hole subjected to homogeneous Neumann boundary condition. Since then, the
notion of topological derivative has proved extremely useful in the treatment of
a wide range of problems and has become a subject of intensive research. Its
use in the context of topology optimization of load bearing structures Allaire
et al. (2004, 2005, 2007); Amstutz and Andrä (2006); Burger et al. (2004); Lee
and Kwak (2008); Novotny et al. (2005, 2007), inverse problems Amstutz et al.
(2005); Feijóo (2004); Masmoudi et al. (2005) and image processing Auroux
et al. (2007); Belaid et al. (2008); Hintermüller (2005); Larrabide et al. (2008)
are among the main applications of this analytical tool. Concerning the theoret-
ical development on the asymptotic analysis of PDE solutions and topological
derivation of shape functionals, the reader may refer for instance to the books
by Ammari and Kang (2004) and paper by Nazarov and Soko lowski (2003),
respectively.

As main results of this paper we have the following contributions:

1. A crack nucleation criterion based on the topological derivative

2. A nucleation result linking the maximal dissipation, vanishing mode II,
and maximal stress criteria (which generally do not agree with each other)

3. An alternative proof of the brutal crack nucleation in Griffith’s setting.

Let us emphasize that the two latter results cannot be claimed new. Never-
theless, to our knowledge the original contribution of this paper is to establish
an axiomatic approach for addressing crack nucleation problems, where a precise
mathematical notion of nucleation is given. Moreover, the nucleation criterion
provided by this approach shows how the principles of maximal dissipation,
vanishing mode II, and maximal stress, are understood with respect to crack
nucleation. Let us also precise that the specification of a global or local ap-
proach is not an a priori requirement, and that the – intrinsic local – notion of
topological derivative, and derived crack nucleation criterion should eventually
be coupled with other tools with a view to crack growth predictions.

The paper is organized as follows. The mechanical model associated to plane
stress linear elasticity is described in section 2. The closed formula for the crack
nucleation sensitivity analysis is presented in section 3. In particular, we firstly
introduce an overview of the topological asymptotic analysis concept and state
a method for calculating the topological derivative. The adopted approach is
cast within the shape sensitivity analysis setting described by Novotny et al.
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(2003). In section 3.1 we extend our theory for cracked bodies. Following the
original ideas presented by Feijóo et al. (2000), the shape sensitivity analysis is
performed in section 3.2. The calculation of the topological derivative associated
to the total potential energy of the cracked body is then presented in section
3.3. Section 4 is dedicated to the interpretation of the obtained topological
derivative and gradient. In section 5, another energy criterion, including surface
contributions, is analysed within our method. Finally, some concluding remarks
are made in section 6.

2. The mechanical model

Let us consider an open bounded domain Ω ⊂ R
2, with smooth boundary

∂Ω = ΓN ∪ΓD (ΓN ∩ΓD = ∅), submitted to volume forces b, surface loads q on
ΓN and prescribed displacement h on ΓD. In our model, the volume forces b will
eventually be neglected. Let us also consider a topologically perturbed domain
Ωε containing a small straight crack γε with endpoints x̂ and x∗, and where
the parameter ε is a small positive scalar defining the size of the topological
perturbation. Symbol n will designate the outward unit normal vector to ∂Ωε.
In order to formulate the equilibrium in plane stress and strain linear elasticity
as related to the original and perturbed problems, the constitutive relations for
linear elastic isotropic materials will be considered. Strain and stress are defined
by

∇sξ :=
1

2

(

∇ξ + ∇ξT
)

and σ(ξ) = C∇sξ , (2.1)

respectively, where ξ represents an admissible displacement field, and C is the
(symmetric) isotropic elasticity tensor given by

C = 2µII + λ (I ⊗ I) , (2.2)

where µ and λ are the Lamé coefficients, that is

µ =
E

2(1 + ν)
, λ =

νE

(1 + ν)(1 − 2ν)
and λ = λ∗ =

νE

1 − ν2
, (2.3)

with E denoting the Young’s modulus, ν the Poisson’s ratio and λ∗ the par-
ticular case for plane stress, while I and II denote the second and fourth order
identity tensors, respectively.

2.1. Unperturbed problem

Let us consider an elastic body represented by Ω (see fig. 1), which is in
equilibrium if the following variational problem holds: find the displacement
field u ∈ U , such that

∫

Ω

σ(u) · ∇sη =

∫

Ω

b · η +

∫

ΓN

q · η ∀η ∈ V , (2.4)
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where σ(u) = C∇su, U is the set of admissible displacements and V the space
of admissible variations, which are respectively defined, for b ∈ L2(Ω) and h, q ∈
L2(∂Ω), as

U :=
{

u ∈ H1 (Ω) : u|ΓD
= h

}

and V :=
{

η ∈ H1 (Ω) : η|ΓD
= 0
}

. (2.5)

The above variational problem has a unique solution and corresponds to the
weak formulation of the momentum conservation law with appropriate boundary
conditions, namely















− div(σ(u)) = b in Ω
σ(u) = C∇su

u = h on ΓD

σ(u)n = q on ΓN

, (2.6)

where n is the outward unit normal vector to the boundary ∂Ω.
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Figure 1: Elastic uncracked body represented by the domain Ω.

2.2. Perturbed problem

Let us now consider an elastic cracked body represented by Ωε = Ω \ γε,
where γε ⊂ Ω represents a straight crack of lengh ε. Two distinct situations will
be analysed (cf. fig. 2). In the first case, the crack nucleates at an interior point
x̂ ∈ Ω and grows symmetrically in the direction e. Thus, γε = [x∗A;x∗B] ⊂ Ω,
where x∗A and x∗B are the crack tips. In this case, since the size ε of the crack is a
small parameter, and will eventually tend to zero, the stress distribution around
both crack extremities x∗A and x∗B are assumed to coincide. This assumption
amounts to a symmetry condition with respect to the plane orthogonal to the
crack at its mid-point. Alternatively, the crack initializes at a boundary point
x̂ ∈ ∂Ω and grows in the direction e oriented by the angle β defined with respect
to the direction of n. Thus, γε = [x̂;x∗] ⊂ Ω, where x∗ is the crack tip.
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Figure 2: Elastic cracked body represented by the domain Ωε.

If the cracked body is in equilibrium, then the following variational problem
must be satisfied: find the displacement field uε ∈ Uε, such that

∫

Ωε

σ(uε) · ∇sη =

∫

Ωε

b · η +

∫

ΓN

q · η ∀η ∈ Vε , (2.7)

where σ(uε) = C∇suε, Uε is the set of admissible displacements and Vε the
space of admissible variations, which are respectively defined, for b ∈ L2(Ωε)
and h, q ∈ L2(∂Ω), as

Uε:=
{

uε ∈ H1 (Ωε) : uε|ΓD
= h

}

and Vε:=
{

η ∈ H1 (Ωε) : η|ΓD
= 0
}

.
(2.8)

The above variational problem is known to have a unique solution, and is pre-
cisely the weak formulation of the momentum conservation law with appropriate
boundary conditions, namely























− div(σ(uε)) = b in Ωε

σ(uε) = C∇suε

uε = h on ΓD

σ(uε)n = q on ΓN

σ(uε)n = 0 on γε

, (2.9)

where n is the outward unit normal vector to the boundary ∂Ωε.
Let us remark that, since the perturbed domain is non-Lipschitz, its solution,

as opposed to (2.6) does not belong to H2(Ωε). In particular the displacement
provokes unbounded stresses at the crack tip, and is allowed to jump across
γε. Let us remark that the tip singularity is due to the inadequacy of the linear
elastic model near the crack extremeties. Let us also point out that the last con-
dition in (2.9) amounts to neglect the dynamic effect of cohesive forces between
the crack lips, whereas their inter-penetration (i.e., negative normal jump com-
ponent of the displacement at the crack) is not prohibited in the above model.
The latter effect is a classical drawback of linear fracture mechanics, and will
not be discussed any further in the sequel.

The solution to (2.9) is known to minimize

JΩε
(v) =

1

2

∫

Ωε

σ(v) · ∇sv −
∫

Ωε

b · v −
∫

ΓN

q · v , (2.10)
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whose minimal value JΩε
(uε) is recognized as the total potential energy of the

cracked body.
The above minimal property of JΩε

, namely equation (2.10) is a simple energet-
ical criterion for determining the displacement in the cracked body. Of course it
is by far insufficient from a mechanical viewpoint, since it does not consider any
energetical contribution of the (infinitesimal) crack. In fact, let us observe that
for any crack, JΩε

(uε) ≤ JΩε
(u) = JΩ (u), since u is a candidate with vanishing

jump for the minimum problem (2.10) on Ωε. Physically, there should be at
least a competition between the above decrease of total potential energy due to
the presence of a crack, and an increase fo a surface energy concentrated on the
crack modelling the energetical cost for increasing the crack size. Accordingly,
the so-called Griffith’s and Barenblatt’s-type variational models are discussed by
Bourdin et al. (2008) with a view to determining crack initiation and evolution.
Let us presice that these two models account, respectively, for the presence,
or not, of cohesive forces between the crack lips, and in such respect provide
distinct initiation criteria.

In this paper, we show how the shape functional (2.10) can provide some
relevant information as soon as initiation of a single crack is concerned. In fact,
the energy (2.10) is the simplest case addressed by our method. Griffith’s or
Barenblatt’s-type surface energies, and in general any refinement of (2.10), pro-
vided it admits a topological derivative and for which an appropriate asymptotic
analysis is required, can be considered within this sensitivity analysis. One ex-
ample of crack nucleation with Griffith’s-type surface energy will be addressed
in section 5.

3. Topological asymptotic analysis of the total potential energy

Let ψ(·) be a shape functional defined over a certain class of domains with
sufficient regularity and assume that the following expansion exists

ψ (Ωε) = ψ (Ω) + f (ε)DTψ + o (f (ε)) , (3.1)

where ψ(Ω) is the functional evaluated for the given original domain and ψ(Ωε)
for a perturbed domain obtained by introducing a topological perturbation of
size ε. In addition, f(ε) is a so-called regularizing function defined such that

lim
ε→0+

f(ε) = 0 , (3.2)

which depends on the asymptotic behavior of the problem under analysis, while
the term o (f (ε)) contains all terms of higher order in f(ε).

Expression (3.1) is named the topological asymptotic expansion of ψ. The
term DTψ is defined as the topological derivative of ψ at the unperturbed (orig-
inal) domain Ω. The term f(ε)DTψ is a correction of first order in f(ε) to the
functional ψ(Ω) to obtain ψ(Ωε). Nevertheless this definition of the topological
derivative is extremely general, and we point out that expansion (3.1) cannot
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in general be obtained by conventional means since Ωε and Ω do not share the
same topology.

Among the methods for calculation of the topological derivative currently
available in the literature, we here adopt the methodology described in Novotny
et al. (2003); Soko lowski and Żochowski (2001), whereby the topological deriva-
tive is obtained as the limit

DTψ = lim
ε→0

(

1

f ′ (ε)

d

dε
ψ (Ωε)

)

. (3.3)

The derivative of the shape functional ψ(Ωε) with respect to the parame-
ter ε denotes precisely the sensitivity of ψ – in the classical sense (Soko lowski
and Zolésio (1992)) – to the introduction of the perturbation γε. This term is
classically termed the shape derivative.

The advantage of this last definition for the topological derivative is that the
whole mathematical framework (and results) developed for the shape sensitivity
analysis can be used to compute the topological derivative. This feature was
shown by Novotny et al. (2003) for circular holes and it is now extended when
the domain is perturbed by introducing a small crack.

3.1. Application to cracked bodies

It is assumed that the infinitesimal crack γε remains straight during the
growth process (see fig. 3). Moreover, since the derivative of the shape func-
tional ψ(Ωε) with respect to the parameter ε means the sensitivity of ψ when
the straight crack γε grows, an appropriated shape change velocity field has to
be defined. Thus, let us consider an uncracked control volume ω∗, with bound-
ary γ∗, containing the crack tip, i.e. such that x∗ ∈ ω∗. Then, we can define
its cracked counterpart as ω∗

ε = ω∗ \ γε. From these elements, the following
kinematically admissible shape change velocity sets are introduced

M := {V ∈ C∞(Ωε) : V = 0 on ∂Ω, V · n = 0 in neighb. of x∗ on γε}(3.4)

M1 :=
{

V ∈ C∞(Ωε) : V = 0 on ∂Ω, V = e in ω∗
ε

}

, (3.5)

M2 :=
{

V ∈ C∞(Ωε) : V = −e on ∂Ω, V = 0 in ω∗
ε

}

, (3.6)

where e is a constant unit vector aligned with the crack. Therefore, a kinemati-
cally admissible velocity field V (i.e., belonging to M1 or M2) simulates a crack
growth in the direction e.
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Figure 3: Shape change velocity field.

3.2. Shape derivative calculation
The concept of energy release rate, introduced in the work of Griffiths (1921),

represents the rate of change, with respect to crack growth, of the total poten-
tial energy available for fracture. As a matter of fact, this concept plays an
important role in the mechanical modelling of cracked bodies in linear elastic
fracture mechanics. In the work of Feijóo et al. (2000) a systematic methodology
was presented in order to obtain the expression of energy release rate in cracked
bodies based on shape sensitivity analysis.

In order to keep this presentation self-contained, we will restate the equiva-
lence between the concept of energy release rate (Feijóo et al. (2000)) and the
shape sensitivity analysis of the functional

ψ(Ωε) := JΩε
(uε) =

1

2

∫

Ωε

σ(uε) · ∇suε −
∫

Ωε

b · uε −
∫

ΓN

q · uε , (3.7)

where the first term represents the energy stored in the linear elastic cracked
body, while the second and third terms represent the work done by the body
and surface loads, respectively.

In order to compute the shape derivative of ψ(Ωε), it is convenient to in-
troduce an analogy to classical continuum mechanics where the shape change
velocity field V is identified with the classical velocity field of a deforming con-
tinuum and ε is identified as a time parameter (see e.g. the book by Gurtin
(1981) or, for analogies of this type in the context of shape sensitivity analysis,
of Soko lowski and Zolésio (1992)).

The following notation is introduced:

J̇Ωε
(uε) :=

〈

∂

∂Ωε
JΩε

(uε) , V

〉

=
d

dε
JΩε

(uε) , (3.8)

according to the definition of the shape change velocity sets M1 (3.5) or M2

(3.6) to which the velocity field V belongs.

Proposition 1 (First form of the shape derivative). Let JΩε
(uε) be the

functional defined by (3.7). Then, its derivative with respect to the small pa-
rameter ε can be written as

J̇Ωε
=

∫

∂Ωε

Σεn · V , (3.9)
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where V is any shape change velocity field belonging to M, while Σε is a gen-
eralization of the classical Eshelby momentum-energy tensor (Eshelby (1975);
Gurtin (2000)), given by

Σε =
1

2
(σ(uε) · ∇suε − 2b · uε)I −∇uT

ε σ(uε) . (3.10)

Proof. Let us compute the shape derivative of the functional JΩε
(uε) us-

ing the following version for the Reynolds’ Transport Theorem (Gurtin (1981);
Soko lowski and Zolésio (1992)),

J̇Ωε
(uε) =

1

2

∫

Ωε

(σ(uε) · ∇suε)′ +
1

2

∫

∂Ωε

(σ(uε) · ∇suε)V · n

−
∫

Ωε

b · u′ε −
∫

∂Ωε

(b · uε)V · n−
∫

ΓN

q · u̇ε −
∫

ΓN

q · uε div∂Ω(V) ,(3.11)

where div∂Ω(V) = (I − n ⊗ n) · ∇V is the superficial divergence of the velocity
field V . In addition, the prime and the superimposed dot are respectively used
to denote the partial (spatial) and the total (material) derivatives with respect
to ε. Let us observe that the last term on the RHS of (3.11) vanishes by the
definition of the velocity field.

Let us here remark that the cracked body Ωε has a singular boundary and
hence that usual regularity theorems do not hold at the crack extremities. How-
ever it is known from the work of Grisvard (1989) that the solution uε writes
as a regular H2(Ωε)-term plus a singular term writing as us

ε = Ψε(θ)r1/2 where
(r, θ) is a system of polar coordinates with pole at the crack tip. Therefore it
appears that the second term on the RHS of (3.11) is, because of that singular
term, not well-defined at the crack tip, unless V · n vanishes, which is indeed
the assumption made on the applied velocity field.

Next, by using the concept of spatial derivative (cf. Gurtin (1981); Soko lowski
and Zolésio (1992)), we find that the first term of the above RHS integral can
be written as

(σ(uε) · ∇suε)′ = 2σ(uε) · ∇su′ε = 2σ(uε) · (∇su̇ε −∇s(∇uεV )) ,(3.12)

where it is remarked that the material derivative u̇ε has the same regularity as
uε, and that the last term inside the parenthesis, as integrated over Ωε, is given
a meaning by partial integration and by the property that σ(uε)n vanishes along
the crack. With the above result, the sensitivity of the functional JΩε

(uε) reads

J̇Ωε
(uε) =

1

2

∫

∂Ωε

(σ(uε) · ∇suε − 2b · uε)V · n−
∫

Ωε

σ(uε) · ∇s(∇uεV )

+

∫

Ωε

b · ∇uεV +

∫

Ωε

σ(uε) · ∇su̇ε −
∫

Ωε

b · u̇ε −
∫

ΓN

q · u̇ε .(3.13)

Since u̇ε ∈ Vε, the equilibrium equation (2.7) implies that the last three terms
of (3.13) vanish, and hence

J̇Ωε
(uε) =

1

2

∫

∂Ωε

(σ(uε)·∇suε−2b·uε)V ·n−
∫

Ωε

σ(uε)·∇s(∇uεV )+

∫

Ωε

b·∇uεV .

(3.14)
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Eventually, using the tensor relation

div(σ(uε)(∇uεV )) = σ(uε) · ∇s(∇uεV ) + div(σ(uε)) · ∇uεV , (3.15)

and the divergence theorem, expression (3.14) can be written as

J̇Ωε
(uε) =

∫

∂Ωε

Σεn · V +

∫

Ωε

[ div(σ(uε)) + b] · ∇uεV , (3.16)

and since the stress field σ(uε) is in equilibrium, the proof of (3.9) simply results
from (2.9).

The above shape derivative expression shows a surface integral. Without
assuming a vanishing normal velocity field at the crack tip, the following ex-
pression of the shape derivative as given by an integral over the cracked domain,
is obtained.

Proposition 2 (Second form of the shape derivative). Let JΩε
(uε) be the

functional defined by (3.7). Then, the derivative of the functional JΩε
with re-

spect to the small parameter ε is given by

J̇Ωε
=

∫

Ωε

Σε · ∇V , (3.17)

where V is any shape change velocity field belonging to M and Σε is given by
(3.10).

Proof. Another version of Reynolds’ Transport Theorem (Gurtin (1981); Soko lowski
and Zolésio (1992)) provides the identity

J̇Ωε
(uε) =

1

2

∫

Ωε

[(σ(uε) · ∇suε)· + (σ(uε) · ∇suε) div(V )]

−
∫

Ωε

[b · u̇ε + (b · uε) div(V )] −
∫

ΓN

q · u̇ε −
∫

ΓN

q · uε div∂Ω(V) ,(3.18)

Once again, the last term on the RHS of (3.18) vanishes by the definition of the
velocity field. Next, by using the concept of material derivative of a spatial field
(Gurtin (1981); Soko lowski and Zolésio (1992)), we find that the first term of
the above RHS integral can be written as

(σ(uε) · ∇suε)· = 2σ(uε) · ∇su̇ε − 2∇uT
ε σ(uε) · ∇V , (3.19)

which, substituted in (3.18) gives

J̇Ωε
(uε) =

∫

Ωε

Σε · ∇V +

∫

Ωε

σ(uε) · ∇su̇ε −
∫

Ωε

b · u̇ε −
∫

ΓN

q · u̇ε , (3.20)

Since u̇ε ∈ Vε, and with the equilibrium equation (2.7), the last three terms of
(3.20) vanish, thereby proving the result.
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By taking into account Propositions 1 and 2, the divergence-free property of
the Eshelby tensor can immediately be proved in the following sense.

Corollary 3 (Conservation law). The Eshelby tensor Σε is a divergence-free
tensor field away from the crack tip.

Proof. By applying the divergence theorem to the right hand side of (3.17),
we have

J̇Ωε
=

∫

∂Ωε

Σεn · V −
∫

Ωε

div(Σε) · V . (3.21)

Since (3.9) and (3.17) hold for any velocity fields in M, it results that
∫

Ωε

div(Σε) · V = 0 ∀V ∈ M ⇒ div(Σε) = 0 a.e. in Ωε \ ω∗
ε . (3.22)

Proposition 4 (Rice integral). For any control volume ω∗ containing the
crack tip x∗, with boundary γ∗, the shape derivative of the total potential energy
for a rectilinear variation in the direction e of a crack of lengh ε reads

J̇Ωε
= e ·

∫

∂Ω

Σεn = e ·
∫

γ∗
Σεn , (3.23)

where Σε is given by (3.10).

Proof. Let us define γ̂ε = γε ∩ (Ω\ω∗). Since div(Σε) = 0 in Ωε \ω∗
ε it results

that the shape derivative of the total potential energy given by (3.17), after
integrating by parts, becomes

J̇Ωε
=

∫

Ωε

Σε · ∇V =

∫

Ωε\ω∗

ε

Σε · ∇V +

∫

ω∗

ε

Σε · ∇V

=

∫

∂Ω

Σεn · V +

∫

γ̂ε

Σεn · V −
∫

γ∗
Σεn · V +

∫

ω∗

ε

Σε · ∇V . (3.24)

Let us consider the velocity field V ∈ M2 given by (3.6) in the above result
(3.24), which implies

J̇Ωε
=

∫

∂Ω

Σεn · V +

∫

γ̂ε

Σεn · V with V ∈ M2 . (3.25)

Taking into account that n ⊥ V on γ̂ε and considering that σ(uε)n = 0 on γ̂ε,
equation (3.25) becomes

J̇Ωε
=

∫

∂Ω

Σεn · V = −e ·
∫

∂Ω

Σεn with V ∈ M2 . (3.26)

If, in turn, the velocity field V ∈ M1 given by (3.5) is inserted in (3.24), it
results, by using the same arguments as above, that

J̇Ωε
= −

∫

γ∗
Σεn · V = −e ·

∫

γ∗
Σεn with V ∈ M1 . (3.27)
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On the other hand, by considering (3.22), it can be shown that both (3.26) and
(3.27) are actually equivalents, namely

0 = e ·
∫

Ωε\ω∗

ε

div(Σε) = e ·
(
∫

∂Ω

Σεn+

∫

γ̂ε

Σεn−
∫

γ∗
Σεn

)

= e ·
∫

∂Ω

Σεn− e ·
∫

γ∗
Σεn . (3.28)

which provides the result.

The shape derivative of the total potential energy, namely (3.26) or (3.27),
might be interpreted as minus energy release rate Gε due the crack growth.
In addition, the above result shows that, for a smooth enough shape change
velocity field V , the expression for the energy release rate is independent of the
value of V at the interior of the domain Ωε, and writes

Gε = −αJ̇Ωε
= αe ·

∫

γ∗
Σεn = αe ·

(

lim
ρ→0

∫

∂B∗

ρ

Σεn

)

= αe ·
∫

∂Ω

Σεn , (3.29)

where B∗
ρ is any ball of radius ρ > 0 centered at the crack tip x∗ (see fig. 4) and

α is the number of crack extremities, namely α = 1 or 2 for x̂ ∈ ∂Ω and x̂ ∈ Ω,
respectively. Let us mention that the energy release rate classically coincide
with the Rices’s integral (Rice (1968), see also Destuynder and Djaoua (1981)).

e

x*x^

r

rB*

n

e 1

e 2

q

j
r

Figure 4: Polar coordinate system (r, θ).

It turns out that (3.29) also provides the definition of the configurational
force (cf. Gurtin (2000)) acting at the crack tip x∗, together with the relation
between force, velocity and dissipation, i.e.,

g∗ε = lim
ρ→0

∫

∂B∗

ρ

Σεn and J̇Ωε
= −g∗ε · e . (3.30)

3.3. Expressions of the topological derivatives

The aim of this work is to analyse the energetical effect of infinitesimal crack
nucleation at x̂ in a certain direction e. More precisely, we shall determine the
optimal x̂ and e in view to decrease at most the potential energy of the elastic
cracked body Ωε. This will be achieved by calculating the so-called topological
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derivative of the total potential energy associated to a crack located at x̂ in
the direction e, as presented in the previous sections. From equations (3.3) and
(3.30) the topological derivative is introduced as

TOPOLOGICAL DERIVATIVE DTψ = − lim
ε→0

1

f ′ (ε)
g∗ε ·e. (3.31)

This expression of the topological derivative for crack nucleation is interpreted
as a diretional derivative, thereby identifying the associated topological gradient
GTψ as

TOPOLOGICAL GRADIENT GTψ = − lim
ε→0

1

f ′ (ε)
g∗ε . (3.32)

From an asymptotic analysis around the crack tip as reported in Lemaitre and
Chaboche (1988), the above topological derivative gradient expressions can be
found.

Indeed, it is known that the displacement field uε can be written in terms
of the so-called stress intensity factors (SIF) KI and KII associated to mode
I and II of crack opening. Let us recall that these modes refer to the non-
vanishing displacement jump components at the crack, i.e., mode I refers to the
case in which [uε] · n 6= 0, [uε] · e = 0, while the reverse equalities define mode
II. Moreover, the SIFs depend on the stress tensor σ(u) evaluated far from the
crack tip, where u is the solution associated to the original domain Ω without
crack, and on the crack orientation e. It should however be noted that the
SIFs are usually given as functions of the “stress at infinity” in the canonical
problem posed in the infinite medium, but also on the geometry of Ω and of the
pre-existing crack of length ε > 0 such as orientation, or curvature.

Their computation is the object of a extensive literature (see e.g. the hand-
books of Sih (1973) or Tada et al. (2000)), which is justified by their crucial
role in many model of crack evolution based either on the “maximisation of the
dissipation” at the crack tip, or on the “KII = 0” evolution law.

Moreover, at any surface or bulk crack initiation point x̂, the displacement
uε is decomposed into a regular term independent of ε and a term in

√
ε, this

decomposition being valid up to o(
√
ε)-terms. In the sequel, asymptotic expan-

sions in a polar coordinate system (r, θ) centered at x̂ ∈ Ω and aligned with the
crack (see Fig. 4) are considered. In particular, the displacement is written as

uε = ur
ε(r, θ)er + uθ

ε(r, θ)eθ , (3.33)

where {er, eθ} denote the polar base located at the crack tip, with −π ≤ θ < π.
Furthermore, the results will be given explicitly for plane stress and plane strain
and in the absence of body forces.

3.3.1. Plane stress problem

For plane stress problem, we have the following asymptotic expansion for
the solution uε

14



• for the mode I

ur
ε(r, θ) =

KI(u, e)

E

√

rε

2
(3 − ν − (1 + ν) cos θ) cos(θ/2) , (3.34)

uθ
ε(r, θ) = −KI(u, e)

E

√

rε

2
(3 − ν − (1 + ν) cos θ) sin(θ/2) , (3.35)

• for the mode II

ur
ε(r, θ) =

KII(u, e)

E

√

rε

2
(3ν − 1 + 3(1 + ν) cos θ) sin(θ/2) , (3.36)

uθ
ε(r, θ) = −KII(u, e)

E

√

rε

2
(5 + ν − 3(1 + ν) cos θ) cos(θ/2) ,(3.37)

where KI,KII are the SIFs given in terms of the background solution u (let us
precise that a small mistake in Lemaitre and Chaboche (1988) has been here
corrected).

For fixed ε the contour integral in (3.30) can be taken arbitrarily close to the
crack tip, and hence expressions (3.34)-(3.37) can be used to evaluate the shape
derivative. It results that the configuration force g∗ε shows to be proportional
to ε, providing the expression of f , namely:

f(ε) = πε2 (3.38)

in such a way that, by letting ε → 0, the expressions (3.31) of the topological
derivative and (3.32) of the topological gradient becomes

DTψ(u, e) = − α

4E

(

K2
I +K2

II

)

and GTψ(u, e) = − α

4E

(

K2
I +K2

II

)

e ,

(3.39)
respectively. Finally, the topological asymptotic expansion of the energy shape
functional reads

ψ(Ωε) = ψ(Ω) − πε2
α

4E

(

K2
I +K2

II

)

+ o(ε2) . (3.40)

3.3.2. Plane strain problem

For plane strain problem, we have the following asymptotic expansion for
the solution uε

• for the mode I

ur
ε(r, θ) =

KI(u, e)

E

√

rε

2
(1 + ν) (3 − 4ν − cos θ) cos(θ/2) , (3.41)

uθ
ε(r, θ) = −KI(u, e)

E

√

rε

2
(1 + ν)(3 − 4ν − cos θ) sin(θ/2) , (3.42)
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• for the mode II

ur
ε(r, θ) =

KII(u, e)

E

√

rε

2
(1 + ν) (4ν − 1 + 3 cos θ) sin(θ/2) ,(3.43)

uθ
ε(r, θ) =

KII(u, e)

E

√

rε

2
(1 + ν) (4ν − 5 + 3 cos θ) cos(θ/2) ,(3.44)

where KI,KII are the SIFs given in terms of the background solution u (cf.
Lemaitre and Chaboche (1988)).

Thus, from the above expansions, we can identify function f(ε) = πε2 and
calculate the limit ε→ 0 in (3.31) and (3.32), that is

DTψ(u, e) = −α1 − ν2

4E

(

K2
I +K2

II

)

and GTψ(u, e) = DTψ(u, e)e . (3.45)

Finally, the topological asymptotic expansion of the energy shape functional
reads

ψ(Ωε) = ψ(Ω) − πε2α
1 − ν2

4E

(

K2
I +K2

II

)

+ o(ε2) . (3.46)

4. Minimal topological derivative as a crack nucleation criterion

The above analysis provides a new feature, since for cracks of vanishing
length, a precise notion of topological derivative – given by equations (3.39)
and (3.45)) has been introduced. Moreover this derivative is evaluated from the
sole knowledge of the asymptotic behaviour of the solution near the crack. Let
us point out that as soon as the total potential energy JΩε

(uε) is concerned,
the explicit expression (3.39) or (3.45) shows its topological derivative as always
non-positive, meaning that the presence of a crack of any length anywhere in Ω
will provide a lower total potential energy as compared to the uncracked body.
This property is completely natural since nucleation means extending the class
of candidates for the minimization of (2.10) with those candidates that might
jump across the crack lips. To that extend, the topological derivation has not
brought significant insight to the nucleation issue.

It results that from the notion of topological derivative, the principle of max-
imal dissipation or, equivalently, of minimal topological derivative, do provide
a crack nucleation criterion. In fact, (3.39) and (3.45) do provide an explicit
criterion for the determination of the weakest zones in Ω with respect to crack
initiation, in the sense that the nucleation points x⋆ and orientation e(ϕ⋆) can
be sought such that

NUCLEATION CRITERION DTψ(x⋆, e(ϕ⋆)) = min
x∈Ω,ϕ∈[0;2π[

DTψ(x, e(ϕ)),

(4.1)
where ϕ is the angle between e and e1 with {e1, e2} a local base at x.
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The introduction of a precise notion of derivation for crack nucleation is also
justified , since from the observation that the sole Griffith’s critical relation:

Gε = 2πε
K2

I +K2
II

E
= Gcrit (4.2)

where Gcrit is a material dependent crack growth threshold would imply that
the critical KI and KII are of the order of 1/

√
ε, and hence would be unbounded

(i.e., unphysical) as ε→ 0.
Let us remark that criterion (4.1) is only apparently based on a double

minimization, and will eventually result in a sole minimization in x, since the
optimal crack direction will be shown to obey a universal property of homo-
geneous linear elastic materials. It will be shown in the following two sections
that the nucleation criterion only amounts to the minimization of the scalar
field DTψ(x, e(ϕ⋆)) over x ∈ Ω, as soon as the law providing optimal fracture
direction (i.e., the angle ϕ⋆) is known.

It can be observed that the nucleation optimality criterion (4.1) is, by (3.3)
and (3.38), equivalent to the maximization of Gε/ε, where Gε is the Griffith’s
energy release rate of a crack of length ε (this is sometimes called the Irwin’s
criterion). However while the latter criterion appears as a postulate (and is
often referred to as a principle) in the classical literature on brittle fracture (see
e.g. Irwin (1958); Cherepanov (1979); Lawn (1993); Lemaitre and Chaboche
(1988)), it is here given a precise mathematical meaning. Moreover, it should
be precised that while the maximal dissipation principle is sometimes used to
predict crack evolution, by providing a method for finding the optimal direction
e (see e.g. the book by Lemaitre and Chaboche (1988)), it is not specifically
dedicated for crack nucleation predictions. Let us also finally remark that such
a criterion, possibly combined with other methods, may provide a useful tool
for numerical simulation of brittle crack quasi-static evolution.

In the following section, a geometric property for linear elastic cracked bodies
will be proved.

4.1. Case 1: bulk crack initiation

Let us fix x ∈ Ω, and take α = 2 in order to account for the crack symme-
try property . According to the classical expressions of the SIF given for the
canonical problem (see Lemaitre and Chaboche (1988)), it results that

KI = σ(u)e⊥ · e⊥ and KII = σ(u)e · e⊥ , (4.3)

where u is the solution to the background problem (without crack). Hence, the
topological derivative writes

• for plane stress, as

DTψ = − 1

2E

[

(σ(u)e⊥ · e⊥)2 + (σ(u)e · e⊥)2
]

, (4.4)
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• and for plane strain, as

DTψ = −1 − ν2

2E

[

(σ(u)e⊥ · e⊥)2 + (σ(u)e · e⊥)2
]

. (4.5)

In any of the two cases, the crack will, according to the above criterion
(4.1), nucleate in a direction that minimizes the topological derivative. Hence,
by writing

e = (cosϕ, sinϕ) and e⊥ = (− sinϕ, cosϕ) , (4.6)

where ϕ denotes the angle between the crack direction e and the local basis
{e1, e2} located at x (cf. Fig. 4), it suffices to find ϕ⋆ such that

ϕ⋆ := arg

{

max
0≤θ<2π

[

σ2
11 + 2σ2

12 + σ2
22 + (σ2

22 − σ2
11) cos(2θ) − 2σ12(σ11 + σ22) sin(2θ)

]

}

,

(4.7)
which results in

ϕ⋆ = ±1

2
arccos

(

±
√

(σ11 − σ22)2

(σ11 − σ22)2 + 4σ2
12

)

(4.8)

where σij are the components of the stress tensor σ(u) in the local system
{e1, e2} and ϕ⋆ denotes the angle that maximizes the energy release rate.

According to this topological minimization framework, the Local Symmetry
Principle (see the pioneering works of Barenblatt and Cherepanov (1961) and
Erdogan and Sih (1963), and the recent discussion by Chambolle et al. (2009)),
otherwise calledKII = 0 nucleation criterion, instead of being simply postulated,
can now be proved.

Proposition 5 (KII = 0 nucleation criterion). In homogeneous LEFM, the
KII = 0 crack nucleation criterion satisfies the property of minimal topological
derivative, i.e., of maximal decrease of the total potential energy (2.10).

Proof. If {e1, e2} are the principal direction at x, then the stress σ(u) is diag-
onal,

σ(u) =

2
∑

i=1

σi(u)(ei ⊗ ei) ,

where ei are the eigen-vectors associated to the eigen-values σi(u) (with σ1 > σ2)
of tensor σ(u) evaluated at x, and equation (4.8) results in ϕ⋆ = 0 or π/2.
Clearly, since e⊥2 = e1, the lowest value of the topological derivative is attained
for ϕ⋆ = π/2.

The Local Symmetry Principle is called KII = 0 criterion because it means
that locally the crack lips are in pure mode I, in the sense that the principal trac-
tions apply on their faces. Strictly speaking, the above law holds for infinitesimal
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cracks, whereas for cracks of finite length, other physical mechanisms should be
taken into account (see e.g. Fischer and Göldner (1981); Bourdin et al. (2008)).
Let us also mention that, unless the presence of impurities, brittle crack initi-
ation in the sense of Griffith always implies cracks of finite lengh, as discussed
by Bourdin et al. (2008) or Chambolle et al. (2008b), and hence at nucleation
points, no infinitesimal crack will ever appear. This latter property will appear
within our setting in section 5.

Moreover, Proposition 5 also contributes to the debate between the validity
of Irwin’s maximal dissipation criterion versus Local Symmetry Principle. In
fact, Proposition 5 states that relying on Irwin’s principle, a precise notion of
nucleation is introduced via the topological derivative, whose minimal value
coincide with the KII = 0 criterion and the principle of maximal traction.

4.2. Case 2: boundary crack initiation

In this case, x̂ ∈ ∂Ω, there is one crack extremity at the boundary, and the
other inside the body, i.e. α = 1. In addition, the SIF KI and KII are given by
(cf. Beghinia et al. (1999))

(

KI

KII

)

=

(

FS
I FT

I

FS
II FT

II

)(

σ(u)e⊥ · e⊥
σ(u)e · e⊥

)

, (4.9)

where coefficients FS
I , F

T
I and FS

II , F
T
II depend on the angle β that the crack

forms with the normal n. According to the above expressions of the SIF, the
topological derivative reads

• for plane stress, as

DTψ = − 1

4E

[

(FS
I σ(u)e⊥ · e⊥ + FT

I σ(u)e · e⊥)2

+ (FS
IIσ(u)e⊥ · e⊥ + FT

IIσ(u)e · e⊥)2
]

,

• and for plane strain, as

DTψ = − 1 − ν2

4E

[

(FS
I σ(u)e⊥ · e⊥ + FT

I σ(u)e · e⊥)2

+ (FS
IIσ(u)e⊥ · e⊥ + FT

II σ(u)e · e⊥)2
]

.

In this case, there are no close representation for the SIFs KI and KII.
However we can find some approximated formulas (see, for instance, Beghinia
et al. (1999)), which can be adopted in the calculation of the optimal angle ϕ⋆,
following exactly the same steps as presented in the previous case.

4.3. Case 3: kinking

The case of kinking can in principle be addressed by our method, since ap-
proximation formulaes such as (4.9) have been derived by Amestoy and Leblond
(1992) for small kinking angles. Concerning crack evolution in time including
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kinking, and a discussion on time-continuity of cracks, we refer to Chambolle
et al. (2008a, 2009).

It should also be noted that for a pre-existing crack, the evaluation of the
SIFs is strongly dependent of the crack and body geometry, and hence for kink-
ing analyses, we refer to Amestoy and Leblond (1992).

5. Crack nucleation under a simple bulk and surface energy compe-
tition

It has been mentioned that physically an energy contribution consisting of
a line integral over the crack should be added to the elastic (bulk) energy of the
cracked body.

In order to show how our axiomatic approach can be applied to different
types of energy-based shape functionals, let us consider the Griffith’s-type sur-
face energy of the form

Ξ(Ωε) = ψ(Ωε) + C(γε) , (5.1)

with

C(γε) =

∫

γε

κ(ε) , (5.2)

whose simplest expression is taken as

C(γε) = κ̃ε , (5.3)

where κ̃ > 0 is the specific (material dependent) surface energy. The solutions
to the associated elastic problem, obtained by a global minimization approach
(see, e.g., Bourdin et al. (2008)), here satisfy (2.9).

From (5.3) it follows that the derivative w.r.t. ε of C(γε) is given by

Ċ(γε) = κ̃ > 0 . (5.4)

whereby from (3.40) or (3.46) and (5.4) it results that Ξ(Ωε) admits the following
total derivative w.r.t. ε:

Ξ̇(Ωε) = κ̃+O(ε) , (5.5)

From this latter result we have fΞ(ε) = ε and the expression of the topological
derivative of Ξ reads

DT Ξ = lim
ε→0

(

1

f ′
Ξ(ε)

Ξ̇(Ωε)

)

= κ̃ > 0 . (5.6)

Since the topological derivative of Ξ is always non negative, the surface energy
contribution C(γε) = κ̃ε will always prohibit nucleation.

Proposition 6. In homogeneous LEFM, according to the topological derivative
criterion (4.1) as applied to (5.1) and (5.3), there will be no infinitesimal crack
nucleation.
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The above property is in fact another proof of a result found in Bourdin
et al. (2008) and stating that in the Griffith setting nucleation at defect-free
points can only occur brutally, i.e., not infinitesimally.

In addition, considering only the case associated with bulk crack nucleation
(α = 2), the finite critical crack sizes ε⋆ can be explicitely bounded from below.
In fact, the topological asymptotic expansion of the shape functional (5.1) reads

Ξ(Ωε) = Ξ(Ω) + εκ̃+ πε2DTψ + o(ε2) . (5.7)

where DTψ can be obtained from (3.40) and (3.46) for plane stress and plane
strain, respectively. Hence, as a result of the balance between potential and
surface energy contributions, the following thresholds are found.

• for plane stress

ε⋆ >
2κ̃E

πK2
I

; (5.8)

• for plane strain

ε⋆ >
2κ̃E

π(1 − ν2)K2
I

; (5.9)

since that, according to Proposition 5, in this case we have ϕ⋆ = π/2 and
KII = 0.

6. Conclusions

In this paper, we mainly provide a simple tool justified by a rigorous mathe-
matical approach, aimed at analysing crack nucleation in various physical mod-
els within the class of linear elastic bodies.

The proposed crack nucleation criterion is based on the notion of topolog-
ical asymptotic expansion as applied to a shape functional associated to the
total potential energy of an elastic cracked body. The case of surface energy
contributions of Griffith-type has also been considered.

Most of the result of this paper were previously known by other approaches.
However the methodology introduced in this paper is original and permits to
prove results which were previously only considered as postulates, or principles.

As the main results we have mathematically formulated a crack nucleation
criterion based on the topological derivative the topological gradient. The pro-
posed methodology leads to an axiomatic approach which can be used for further
analysis of crack growth. In addition, it has the advantage of (i) being rigor-
ously defined, (ii) easily tractable, and (iii) of use in various physical models of
fracture.

Concerning this latter point, provided the solution to the primal perturbed
problem is known with other crack boundary conditions than those of (2.9)
and given its asymptotic expression in terms of the small crack length ε, the
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proposed framework can be applied, resulting in appropriate nucleation crite-
ria. Moreover, it is clear that other cost function than the potential or Griffith
energy can freely be chosen within our setting, thereby providing a family of nu-
cleation criteria, which can be tested and compared by laboratory or numerical
experiments.
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