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Abstract

We recall and solve the equivalence problem for a flat C1 connection
∇ in Euclidean space, with methods from the theory of differential
equations. The problem consists in finding an affine transformation of
Rn taking ∇ to the so called trivial connection. Generalized solutions
are found in dimension 1 and some specific problems are solved in
dimension 2, mainly dealing with flat connections. A description of
invariant connections in the plane is attempted, in view the study of
real orbifolds. Complex meromorphic connections are shown in the
cone cL(p, q) of a lens-space.
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1 Introduction
We wish to study linear connections ∇ on Rn which are less than smooth
from the point of view of the differentiable class, i.e. their Christoffel sym-
bols are not C∞. We are particularly interested in observing the behaviour
of the associated tensors, such as the torsion and curvature, and solving the
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equivalence problem in the framework of non-smooth connections on smooth
manifolds. This is generically as follows: given two manifolds M1, M2 en-
dowed with linear connections ∇1,∇2, when does there exist a diffeomor-
phism Φ : M1 → M2 such that Φ · ∇1 = ∇2. The diffeomorphism is then
called an affine transformation.

The equivalence problem is solved in [11] in the category of analytic man-
ifolds with analytic connections, so it seems that the problem should be un-
dertaken with PDE tools. Under mild conditions, we solve it for the case of
the trivial connection in Rn, leaving aside the demand of analyticity. For one
particular example in R2 we explicitly give the solution.

We also recall invariant connections for some groups of diffeomorphisms,
i.e. groups of affine transformations for a same ∇. These are most relevant
in the theory of symmetric spaces. Translations plus one isomorphism F
invariant ∇ are studied in R2, in order to bring curvature and holonomy
issues into the theory of orbifolds.

The equivalence problem is an old theme, as we may see e.g. in [9–11],
yet its importance in geometry remains.

Orbifolds are a generalization of manifolds to include the notion of sin-
gularities of the kind of Rn/G in 0, where G is a finite subgroup of GLn.
Certainly any definition of connection in this new category will agree locally
with a G-invariant connection in Euclidean space (cf. [7, 8]).

We have shown that R2/〈F 〉, where F is the conjugation map, admits
a symplectic connection, torsion free, with non-vanishing curvature. Also
we prove all foldings by conjugate-rotations of the plane F (z) = eiθz admit
some specific flat non-trivial connections. We have looked for translation
invariant connections since they are easier to find. Though we should leave
the translations invariance dependence, to have freedom in coordinates so
that the question of which connection-curvature really interprets the orbifold
singularity may be well posed.

To finish this article on the quest towards local invariant connections, we
treat the case of lens spaces L(p, q) and their cone singularity. Here the case
is of meromorphic objects and, indeed, we find a family of such conections,
non-flat. We remark this new ∇ is just an unnoticed particular case within
the whole subject of [12].

1.1 Linear connections

Let M be any paracompact smooth manifold and let XU denote the Lie
algebra of smooth vector fields on an open subset U of M .

We recall the notion of a linear connection on a manifold M . It is given
by a covariant derivative, i.e. an operator ∇ on the space of pairs of smooth
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vector fields X, Y defined on M , sending another smooth vector field ∇XY
on M , and satisfying the following relations:
(i) ∇X(fY ) = df(X)Y + f∇XY (called the Leibniz identity),
(ii) ∇X(Y + Z) = ∇XY +∇XZ ,
(iii) ∇fX1+X2Y = f∇X1Y +∇X2Y , ∀f ∈ C∞

M , ∀X, X1, X2, Y, Z ∈ XM .
From the first two conditions it follows that ∇ is a local operator (cf. [6]):

if two vector fields Y1, Y2 agree on some open subset U , then so do their
covariant derivatives. To see this suppose Y = 0 on U , then for each point
x ∈ U take a function f ∈ C∞

M with supp f ⊂ U and f = 1 on a neighborhood
of x (these functions exist always). Then fY = 0 on M , so

0 = ∇0 |x = f(x)∇Y |x + df(·)Yx = ∇Y |x

and hence (∇Y )|U = 0, as wished. Of course the same proof applies on the
X variable.

Now by taking extensions of vector fields we may define the covariant
derivative of vector fields defined only on some open subset U . The resulting
vector field on U does not depend on the chosen extension. Moreover ∇
commutes with restrictions, i.e. if V ⊂ U is another open subset, then
∇XY|V = ∇X|V Y|V .

Contrary to other local operators, as for instance the Lie bracket of vector
fields, the covariant derivative of Y ∈ XU induces a well-defined linear map
∇Y : TmM → TmM for any m ∈ U ; for each v ∈ TmM just take a chart
(x1, . . . , xn) around m and any smooth functions fi such that v = Xm, where
X =

∑
fi

∂
∂xi

. Then the previous facts and condition (iii) imply that we
can define ∇vY := ∇XY |m =

∑
fi(m)∇ ∂

∂xi

Y |m — which therefore does not
depend nor on the chart, nor on the extension X of v.

The following two tensors are used in the study of linear connections. The
torsion

T∇(X,Y ) = ∇XY −∇Y X − [X, Y ]

and the curvature

R∇(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

These are tensors indeed, linear over the C∞
U ring, as it is easy to prove. One

can see the curvature as a measure of how covariant derivatives of Z commute,
along the directions X, Y , up to the one along the Lie commutator of X and
Y . The connection is called flat if R∇ = 0. Obviously, T∇ ∈ Ω2(TM) and
R∇ ∈ Ω2(End TM).

Connections determine geometry of manifolds by their ability to induce
parallel displacement. In the tangent bundle they also give the notion of
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geodesics, i.e. curves γ which satisfy ∇γ′γ
′ = 0 (we may deduce as above

that the operator ∇γ′ is well defined over a curve γ, i.e., if Y, Ỹ are vector
fields on a neighborhood of γ such that Yγ = Ỹγ, then ∇γ′Y = ∇γ′Ỹ ).

To finish, suppose we have two connections ∇1,∇2. Then it is triv-
ial to check that their difference is a tensor: ∇1 = ∇2 + Γ with ΓX ∈
End TM, ∀X ∈ TM , or simply Γ ∈ Ω1(End TM).

1.2 Diffeomorphisms action on connections

We recall here other well known facts about connections.
Let M, N be two manifolds and suppose Φ : M → N is a smooth diffeo-

morphism. Then Φ induces a linear map X 7→ Φ ·X defined by:

Φ ·X y = dΦ(XΦ−1(y)), ∀y ∈ N.

Proposition 1.1. Φ : XM → XN is a Lie algebra homomorphism.

Proof. We just have to evaluate the action of the Lie bracket on smooth
functions. Let f ∈ C∞

N . Then (Φ·X)(f)y = df(Φ·X y) = d(f ◦Φ)(XΦ−1(y)) =
X(f ◦ Φ)Φ−1(y). So

(Φ ·X)(f) = X(f ◦ Φ) ◦ Φ−1. (1.1)

Hence for two vector fields on M

(Φ ·X)((Φ · Y )(f)) = X((Φ · Y )(f) ◦ Φ) ◦ Φ−1 = X(Y (f ◦ Φ)) ◦ Φ−1.

Now it is easy to see that (Φ · [X, Y ])(f) = [Φ ·X, Φ · Y ](f). �

Notice that, for any h ∈ C∞
M , we have Φ · (hX) = (h ◦ Φ−1)Φ · X =

(Φ · h)Φ ·X, extending notation to functions. Also notice that formula (1.1)
can be written as (Φ ·X)(Φ · h) = Φ · (X(h)).

Given a diffeomorphism Ψ : N → O to any other manifold O, we have
Ψ · (Φ ·X) = (Ψ ◦ Φ) ·X.

An even more surprising property of the ‘push-forward’ map is that it
acts on the space of connections. Given a connection ∇ on M we may define
a new connection Φ · ∇ on N by

(Φ · ∇)ZW = Φ ·
(
∇Φ−1·ZΦ−1 ·W

)
for any Z,W ∈ XN . The only non trivial identity to check is the Leibniz
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identity:

(Φ · ∇)ZfW = Φ ·
(
∇Φ−1·ZΦ−1 · (fW )

)
= Φ ·

(
∇Φ−1·Z(Φ−1 · f)(Φ−1 ·W )

)
= Φ ·

(
(Φ−1 · f)∇Φ−1·ZΦ−1 ·W + d(Φ−1 · f)(Φ−1 · Z) (Φ−1 ·W )

)
= fΦ ·

(
∇Φ−1·ZΦ−1 ·W

)
+ Φ ·

(
(Φ−1 · Z)(Φ−1 · f)

)
W

= f(Φ · ∇)ZW + Z(f)W.

The action on connections under composition of two diffeomorphisms carries
canonically, as it should: Ψ · (Φ · ∇) = (Ψ ◦ Φ) · ∇.

Let ∇̃ be another connection on N . We recall that a map Φ which satisfies
∇̃ = Φ · ∇ is called an affine transformation. If it is an affine transformation
of M onto itself, with ∇̃ = ∇, then the connection is said to be Φ invariant.
All these definitions are in [9] or [11].

As we have been showing, any given tensors transform under the push-
forward map in an obvious way. For instance Φ · T∇(Z,W ) = Φ · (T∇(Φ−1 ·
Z, Φ−1 ·W )). The following identities are easy to check:

TΦ·∇ = Φ · T∇, RΦ·∇ = Φ ·R∇.

Under affine transformations, clearly unparametrized geodesics are taken
to geodesics. A map which has such a property is called a projective transfor-
mation. This notion has been thoroughly studied in Riemannian geometry.
Recently, V. S. Matveev proved the Lichnerowicz-Obata conjecture, stat-
ing that a connected group which acts projectively on a closed Riemannian
manifold, then acts affinely (cf. the proof and the history of this conjecture
in [13,14]). A close question dealing with projective metric structures in real
dimension 2, is found in recent [3]. Our last section studies R2 too.

Example 1. The trivial connection d in M = Rn is defined as

dXY = (dY1(X), . . . , dYn(X)) = X1
∂Y

∂x1

+ · · ·+ Xn
∂Y

∂xn

where X,Y are seen as vector-valued functions M → TM = M × Rn in
the ubicuous notation Xx = (x, Xx). Of course, d is torsion free and flat.
Let Diff(Rn) denote the group of diffeomorphisms of Rn. Then it would
be interesting to know the orbit of d on the space of torsion free and flat
connections, under the action · of any given subgoup H ⊂ Diff(Rn).
Example 2. On homogeneous spaces M = G/H, one explores the use of G-
invariant connections, that is, connections invariant under all left translations
of M induced by elements of G. They are in 1-1 correspondence, when
H is closed, with direct sum decompositions of the Lie algebra Lie(G) =
Lie(H)⊕m such that ad (H)(m) = m, cf. [11].
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1.3 Connections in Rn

We shall now restrict our study to connections in Euclidean space. We change
notation a bit and assume F : Rn → Rn is a diffeomorphism. Also we let
(x1, . . . , xn) or (y1, . . . , yn) denote Euclidean coordinates and abreviate the
induced vector fields ∂

∂xi
to ∂i. This is just the vector ei of the canonical

basis. Writing F (x) = y then

F · ∂i y = dF (∂i x) =
n∑

j=1

∂Fj

∂xi

(x)∂i y.

From now on we assume Einstein’s summation convention.
Let ∇ be any connection. It is determined by the Christoffel symbols :

∇∂i
∂j = Γh

ij∂h.

Proposition 1.2. Let ∇̃ = F · ∇. Then the Christoffel symbols Γ̃h
ij of this

new connection satisfy the equation:

∂2Fk

∂xi∂xj

+
∂Fl

∂xi

∂Fm

∂xj

Γ̃k
lm ◦ F =

∂Fk

∂xh

Γh
ij. (1.2)

Proof. We have that

∇̃F ·∂i
F · ∂j y = F ·

(
∇i∂j

)
y =

∂Fk

∂xh

(x)Γh
ij(x)∂k y.

On the left hand side we have, letting G = F−1,

∇̃F ·∂i
F · ∂j y = ∇̃ ∂Fl

∂xi
(x)∂l

∂Fm

∂xj

∂m y =
∂Fl

∂xi

(x)∇̃l

(∂Fm

∂xj

∂m

)
y =

=
∂Fl

∂xi

(x)
∂2Fm

∂xq∂xj

(x)
∂Gq

∂yl

(y)∂m y +
∂Fl

∂xi

(x)
∂Fm

∂xj

(x)Γ̃k
lm(y)∂k y =

=
∂2Fm

∂xi∂xj

(x)∂m y +
∂Fl

∂xi

(x)
∂Fm

∂xj

(x)Γ̃k
lm(y)∂k y

since G(y) = x. Hence the formula (1.2). �

Of course, we may write an equation analogous to (1.2) in terms of G =
F−1, since G · ∇̃ = ∇. Moreover, a given connection on a manifold satisfies
such equation, with Γ̃ = Γ, under any coordinate change diffeomorphism.

Given any ∇̃ and ∇, when does there exist a diffeomorphism F which
makes the two connections the affine transformation of one another? This is
called the equivalence problem. In [11, chapter VI, theorem 7.4] it is proved
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that a solution to this problem exists locally if the connections have analytic
Christoffel symbols and if higher order derivatives of the torsion and the
curvature tensors satisfy

φ · (∇kT∇
x0) = ∇̃kT̃∇

y0 , φ · (∇kR∇
x0) = ∇̃kR̃∇

y0 ,

for all k = 0, 1, 2, ... and for a linear isomorphism φ : Tx0M → Ty0N . More-
over, the problem is solved globally in the restricted context of analytic man-
ifolds M, N . By a local solution it is meant a diffeomorphism F : U → V
from a neighborhood U of x0 onto a neighborhood V of y0 and such that
dFx0 = φ.

Remark: An interesting consequence of this result is the following. If M is
a C∞ manifold with a C∞ linear connection such that ∇T∇ = 0, ∇R∇ = 0,
then M is an analytic manifold and the connection is analytic [11, chapter
VI, theorem 7.7]. This shows that all symmetric spaces are analytic mani-
folds.

Remark: There is another type of transformation of linear connections we
want to be aware (this applies generally to connections on vector bundles,
cf. [6]). The gauge transformations, which we recall in the case of U open in
Rn, are defined by a map u : U → GLn and act on connections ∇ = d + Γ
almost like an “infinitesimal affine transformation” covering the identity map
of the manifold. Namely, they are defined by

(u∇u−1)XY := u(∇X(u−1Y )) = ∇XY − (∇Xu)u−1Y

or, we may say, Γ transforms into Γ − (∇u)u−1 (note that the inverse is in
GLn).

Before we proceed, we recall here in local coordinates the formula for
R∇(∂i, ∂j)∂k = Rl

ijk∂l:

Rl
ijk = ∂iΓ

l
jk − ∂jΓ

l
ik + Γl

ipΓ
p
jk − Γl

jpΓ
p
ik. (1.3)

1.4 Flat connections

It is easy to see the gauge transformation induces a conjugation by u of the
curvature tensor, but the same is not true for the torsion.

Proposition 1.3. Any flat connection ∇ is locally equal to the gauge trans-
formation udu−1, for some map u. Such connection is torsion free if, and
only if,

n∑
l=1

∂uij

∂xl

ulk =
n∑

l=1

∂uik

∂xl

ulj, ∀i, j, k ∈ {1, . . . , n}. (1.4)
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Proof. Let s0 = (∂1, . . . , ∂n). We first show that there is a solution of∇s = 0,
for a smooth frame s : U → (Rn)n, on an open neighborhood U of each point.
Writing in matrix notation s = s0u and ∇s0 = s0Γ, we have

∇s = (∇s0)u + s0du = s0(Γu + du).

Now Γu + du = 0 is a first order linear differential equation, which has a
solution if, and only if, its exterior derivative is zero. Therefore we compute
dΓ u − Γ ∧ du + d2u = 0 or, equivalently, dΓ + Γ ∧ Γ = 0. But, the reader
may care to deduce this is the same as R∇ = 0.

The second part of the result is trivial to check. �

In the following, let DF = [∂Fi

∂xj
]. Here we state an approach to the

equivalence problem for the trivial connection.

Proposition 1.4. Let u : Rn → GLn be a C1 map. Suppose ∇ = udu−1 is
torsion free. Then ∇ = F · d for a diffeomorphism F if, and only if,

u ◦ F = DF k (1.5)

with k a constant invertible matrix.

Proof. The existence of F is assumed in both cases. By straightforward
computations we find F ·s0 = s0 DF|F−1 and (F ·d)X(F ·s0) = F ·(dF−1·Xs0) =
0, with s0 = (∂1, . . . , ∂n). Hence condition (1.5), say u = DF|F−1 k, implies
that s0uk−1 is parallel for F · d. As in the proof of Proposition 1.3, we know
that ∇(s0uk−1) = 0 implies F · d = uk−1d(uk−1)

−1
= udu−1.

Reciprocally, if F · d = udu−1 is satisfied, then s0u is parallel for F · d.
Hence s0u = (F ·s0)k, for some constant k, and consequently (1.5) holds. �

Notice that, once we find F , we may incorporate k in u.

2 Existence results for the equivalence problem

2.1 The dimension n = 1 case

In R suppose we are given a linear connection ∇ = d + Γ, with Γ a 1-form
with values in End R = R. Clearly, a 1-form on the real line corresponds
to a function Γ1

11 such that Γx(v) = Γ1
11(x)v, ∀v ∈ R, and clearly the tor-

sion and the curvature of ∇ both vanish. Nevertheless, we may still try to
solve the equivalence problem. According to Proposition 1.2 we look for a
diffeomorphism F such that (we let Γ = Γ1

11)

F ′′ + (F ′)2Γ ◦ F = 0. (2.1)
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Noteworthy, with the most simple non-trivial connection, that is, with Γ a
non-zero constant, we obtain the transformation

F (x) =
1

Γ
log |x + c1|+ c2,

where c1, c2 are constants, which requires further notice on restrictions of the
domain.

For the differential equation (2.1) with generic Γ, we may introduce the
following weak variational problem.

Definition: We say that F , defined on an interval ]a, b[ (−∞ < a < b <
+∞), is a generalized solution to (2.1) if F belongs to the Sobolev space
H1(a, b) and satisfies

F ′(a)G(a)+

∫ b

a

F ′G′ = F ′(b)G(b)+

∫ b

a

|F ′|2Γ(F )G, ∀G ∈ H1(a, b). (2.2)

Remark: The weak formulation (2.2) is obtained by the following compu-
tation:∫ b

a

F ′′G + |F ′|2Γ(F )G = 0 ⇔ [F ′G]ba −
∫ b

a

F ′G′ +

∫ b

a

|F ′|2Γ(F )G = 0.

When boundary conditions are taken into account, (2.1) becomes a boun-
dary value problem.

Proposition 2.1. Assume that Γ is a continuous real function such that

Γ(t)t ≤ α < 1 or Γ(t)t ≥ β > 1, ∀t ∈ R. (2.3)

Then the boundary value problem to (2.1) under

1. the homogeneous Dirichlet conditions has the unique generalized solu-
tion F ≡ 0;

2. the homogeneous Neumann conditions has the generalized solutions F ∈
R;

3. the mixed conditions, F (a) = 0 and F ′(b) = Fb ∈ R \ {0}, has a unique
generalized solution F in the following sense∫ b

a

F ′G′ = FbG(b) +

∫ b

a

|F ′|2Γ(F )G, ∀G ∈ V, (2.4)

where V is the set of functions G ∈ H1(a, b) such that G(a) = 0.
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Proof. Assume that Γ(t)t ≤ α, for all t ∈ R. Otherwise the proof is analo-
gous. Let us concentrate on the existence proof to the mixed boundary value
problem (case 3) under the Galerkin method. The cases 1 and 2 are similar
and simpler. Let A be the induced operator of the weak variational equality
(2.4), i.e., A : V → V ′ defined by

〈AF, G〉 =

∫ b

a

F ′G′ −
∫ b

a

|F ′|2Γ(F )G.

Applying the Poincaré inequality, we recall that V is a separable Hilbert

space endowed with the norm
(∫ b

a
|G′(x)|2dx

)1/2

. Letting {Hk} be a basis
of V , we set the finite dimensional space as VN = 〈H1, · · · , HN〉 for N ∈ N.
Using (2.3) it follows that A is coercive:

〈AF, F 〉 =

∫ b

a

|F ′|2(1− Γ(F )F ) ≥ (1− α)

∫ b

a

|F ′|2, with 1− α > 0.

Then there exists a Galerkin solution FN ∈ VN such that∫ b

a

F ′
NG′ = FbG(b) +

∫ b

a

|F ′
N |2Γ(FN)G, (2.5)

for all G ∈ VN and, by density, for all G ∈ V . Taking G = FN in (2.5) we
obtain

‖FN‖2
V =

∫ b

a

|F ′
N |2 = F 2

b +

∫ b

a

|F ′
N |2Γ(FN)FN ≤ F 2

b +

∫ b

a

|F ′
N |2α.

Thus the Galerkin solution satisfies the estimate

‖FN‖V ≤
Fb√
1− α

.

Thus we can extract a subsequence of FN , still denoted by FN , such that

FN ⇀ F in V,

FN → F in C([a, b]),

with F ∈ H1(a, b) ↪→ C([a, b]). In order to prove that F is a solution to (2.4)
we will pass to the limit in (2.5) for all G ∈ V as N tends to infinity. To
pass to the limit the term on the left hand side in (2.5), it is sufficient the
weak convergence of F ′

N to F ′ in L2(a, b). Notice that this does not allow to
pass to the limit the last term on the right hand side in (2.5). So to prove
the strong convergence it remains to show that

‖F ′
N‖L2 → ‖F ′‖L2 as N → +∞. (2.6)
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First let us identify |F ′
N |2 as an element of the dual space of C([a, b]). Hence

we can extract a subsequence of |F ′
N |2, still denoted by |F ′

N |2, weak-* con-
vergent to χ in L1(a, b). Next passing to the limit (2.5) it results∫ b

a

F ′G′ = FbG(b) +

∫ b

a

χΓ(F )G

for all G ∈ V . In particular taking G = F we obtain∫ b

a

|F ′|2 = F 2
b +

∫ b

a

χΓ(F )F. (2.7)

Now passing to the limit in (2.5) when G = FN is chosen, we get

lim

∫ b

a

|F ′
N |2 = F 2

b +

∫ b

a

χΓ(F )F. (2.8)

Finally gathering (2.7) and (2.8) we conclude (2.6). �

2.2 The dimension n = 2 case

In dimension 2 we will find the integrability condition (1.4), for F belonging
to C2. As a first case to study, we present the following example.

Example 1. We consider the symmetric and flat connection ∇ = d + Γ
given by Γ1

11(x, y) = f(x), Γ2
22(x, y) = g(y), where f, g are Cα, and any other

Γk
ij = 0. Then ∇ is flat by trivial reasons. Solving ∇ = F · d with F ∈ Cα+2,

implies solving for F1 the system
∂2

xxF1 + (∂xF1)
2f(F1) = 0

∂2
xyF1 + (∂xF1)(∂yF1)f(F1) = 0

∂2
yyF1 + (∂yF1)

2f(F1) = 0
.

An analogous system must be satisfied by F2. Imposing further ∂yF1 =
∂xF2 = 0 we see that the problem is equivalent to solving the dimension 1
case. Next we present a non-constant example.

Example 2. Consider the open set R+ × R and a connection given by
∇x∂x = − 1

2x
∂x, ∇x∂y = 1

2x
∂y = ∇y∂x, ∇y∂y = x∂x, in real coordinate

functions. An easy computation shows that ∇ is flat: R∇(∂x, ∂y)∂x =

∇x∇y∂x −∇y∇x∂x = ∇x
1

2x
∂y −∇y

(
− 1

2x
∂x

)
=
(
− 1

2x2
+

1

4x2
+

1

4x2

)
∂y = 0
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and R∇(∂x, ∂y)∂y =

= ∇x∇y∂y −∇y∇x∂y = ∇xx∂x −∇y

( 1

2x
∂y

)
= ∂x −

x

2x
∂x −

x

2x
∂x = 0.

Now the group-valued map u may be deduced from Γ = udu−1 = −(du)u−1,
i.e. the equations

Γ1u = −∂u

∂x
, Γ2u = −∂u

∂y
.

Henceforth we find that the equation in F = (F1, F2)[ √
2F1

2
e
− F2√

2 −
√

F1e
F2√

2

1
2
√

F1
e
− F2√

2

√
2

2
√

F1
e

F2√
2

]
=

[
∂F1

∂x
∂F1

∂y
∂F2

∂x
∂F2

∂y

]

is the one to be solved, applying Proposition 1.4. Notice
{
F1, F2

}
= Jac F =

1. This is the case where the map u takes values in SL(2, R).
Find F1 and F2 in the forms F1(x, y) = e2(f(x)−g(y)), F2(x, y) =

√
2(f(x)+

g(y)); then we obtain the following equations

2
√

2f ′(x)e2f(x)−2g(y) = e−2g(y)

−2g′(y)e2f(x)−2g(y) = −e2f(x)

2
√

2f ′(x) = e−2f(x)

2g′(y) = e2g(y)

or equivalently

d

dx
e2f =

1√
2
,

d

dy
e−2g = −1.

Then we obtain

f(x) =
1

2
log

(∣∣∣∣ x√
2

+ c1

∣∣∣∣) , g(y) = −1

2
log(| − y + c2|)

where c1 and c2 are determined according to the domain.
Considering c1 = c2 = 0, we obtain the function

(F1, F2) =

(
− xy√

2
,

√
2

2
log(

x√
2(−y)

)

)
, x > 0, y < 0,

solving our particular and ilustrative problem.

Remark: In Proposition 3.3, if u is such that{
∂yF1(x, y) = 0
∂xF2(x, y) = 0

⇒
{

F1 = F1(x)
F2 = F2(y)
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and u11 and u22 are functions in F2 and F1, it results

F ′
1(x) = u11(x, y) F ′

2(y) = u22(x, y).

This is impossible. Then we conclude that the existence of a solution depends
on u.

In conclusion, if we find (F1, F2) of class C2 we have the following restric-
tions on u:

∂

∂x
[u12(F1, F2)] =

∂

∂y
[u11(F1, F2)] ,

∂

∂x
[u22(F1, F2)] =

∂

∂y
[u21(F1, F2)]

or, equivalently,

∂u12

∂ξ1

u11 +
∂u12

∂ξ2

u21 =
∂u11

∂ξ1

u12 +
∂u11

∂ξ2

u22,

∂u22

∂ξ1

u11 +
∂u22

∂ξ2

u21 =
∂u21

∂ξ1

u12 +
∂u21

∂ξ2

u22.

2.3 In dimension n

Here we state the existence result to Proposition 1.4. In order to adapt the
proof of the generalized Frobenius Theorem [15, pp. 167], we rewrite (1.5)
as

uij = ∂lFiklj ⇔ ∂jFi = uilwlj,

with w denoting the inverse matrix of k. Let us begin by stating the following
existence result.

Proposition 2.2. Let u be a GLn(R)-valued function in C1 such that

sup
ξ∈Rn

‖uil(ξ)wlj‖ ≤ Kij (2.9)

sup
ξ∈Rn

∥∥∥∥∂uil

∂ξp

(ξ)wlj

∥∥∥∥ ≤ Kpij (2.10)

and for any δ < 1/ max{Kpij} set Q̄ = [−1, 1] × B̄δ(0) ⊂ Rn+1. Then there
exists z ∈ C1(Q̄) such that

∂tzi(t, x) = uil(z(t, x))wlqxq. (2.11)

Moreover, the solution z verifies

∂jzi(t, x) =

∫ t

0

(∂uil

∂zp

(z(τ, x))∂jzp(τ, x)wlqxq + uil(z(τ, x))wlj

)
dτ. (2.12)
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Proof. In order to apply the Schauder fixed point theorem [15, pp. 56], let
us consider the ball, with radious R > 0,

BR := {ξ ∈ C1(Q̄) : ‖ξ‖C1 ≤ R}.

Let us construct the mapping L : ξ 7→ z as follows

zi(t, x) =

∫ t

0

uil(ξ(τ, x))wlqxqdτ.

From (2.9), it follows

max
Q̄
‖z‖ ≤ max{Kij}δ, max

Q̄
‖∂tz‖ ≤ max{Kij}δ.

From (2.10), the derivative of zi with respect to xj verifies

‖∂jzi‖ =

∥∥∥∥∫ t

0

(∂uil

∂ξp

(ξ)∂jξpwlqxq + uil(ξ)wlj

)
dτ

∥∥∥∥ ≤
≤ max{Kpij}δR + max{Kij}, ∀i, j ∈ {1, · · · , n}.

Thus, choosing

R =
(2δ + 1) max{Kij}
1−max{Kpij}δ

,

L maps the ball BR into itself. Since L is a continuous mapping, in order
to conclude that L is compact it remains to show that L maps bounded sets
into relatively compact sets. Indeed, for any M ⊂ C1(Q̄) bounded set and
observing that C1 is compactly imbedded in C, every sequence {zm} ⊂ L(M)
contains a convergent subsequence. Thus the Schauder fixed point theorem
guarantees the existence of z ∈ C1(Q̄) such that Lz = z.

The derivative (2.12) is a consequence of Lz = z. �

Now we are able to adapt the proof of the generalized Frobenius Theo-
rem [15, pp. 167]. Note that the generalized Frobenius Theorem gives two
equivalent statements requiring the existence of z ∈ C2.

Theorem 2.1. Suppose that the assumptions of Proposition 2.2 are fulfilled.
If additionally the integrability condition holds

∂uij

∂ξp

upqwqmwjl =
∂uij

∂ξp

upqwqlwjm (2.13)

then there exists F ∈ C1 satisfying (1.5). Moreover, if F ∈ C2 then u verifies
(2.13).
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Proof. Defining
vij(t) = ∂jzi(t, x)− tuil(z(t, x))wlj (2.14)

it satisfies the ordinary differential equation

v′ij(t) = ∂t∂jzi(t, x)− uil(z(t, x))wlj − t
∂uil

∂zp

∂tzpwlj. (2.15)

From (2.12) we have

∂t∂jzi =
∂uil

∂zp

∂jzpwlqxq + uilwlj.

Introducing this relation and successively (2.11) of Proposition 2.2 in (2.15)
we obtain

v′ij(t) =
∂uil

∂zp

∂jzpwlqxq − t
∂uil

∂zp

∂tzpwlj

=
∂uil

∂zp

∂jzpwlqxq − t
∂uil

∂zp

upmwmqxqwlj.

Applying the assumption (2.13) it results the linear ODE

v′ij(t) =
∂uil

∂zp

wlqxqvpj. (2.16)

Thus the initial condition vij(0) = ∂jzi(0, x) = 0 implies that the ODE (2.16)
has the unique solution v ≡ 0. Setting F (x) = z(1, x) and using (2.14) we
get

∂jFi = uilwlj,

which concludes the proof of Theorem 2.1.
Finally, for F ∈ C2, the condition (2.13) is due to the Schwartz property

of functions of class C2. �

If we change u to the matrix valued map u k, then we realize the integra-
bility condition (2.13) is in fact the one on the torsion stated in (1.4).

3 Invariant linear connections
Given a linear connection ∇ on a manifold M , one may define the subgroup
Diff(M,∇) of affine transformations of ∇. It is still a problem to find its
dimension, as well as that of the orbit of ∇ under Diff(M) in the space of
linear connections.
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One may also try to determine the linear connections on a manifold M
which are invariant under a given set of diffeomorphisms. If we have a Lie
group G, then it is easy to produce G-left invariant connections as bilinear
maps g× g → g, where g is the Lie algebra of left invariant vector fields (cf.
example 2, section 1.2).

Translation invariant connections in Rn are those for which Γk
ij are all

constants. This is trivial to deduce from (1.2) applied to any map F (x) =
x + v, with v ∈ Rn.

A homothety invariant connection is one for which

λΓk
ij(λx) = Γk

ij(x) (3.1)

as we may see taking F (x) = λx in the usual equation (1.5). If we want ∇
invariant for all λ, then ∇ is possibly very curved at the origin and certainly
flat at infinity.

3.1 Over-determined systems of translation invariant
connections in R2

Now we are going to find linear connections in R2 which are invariant for all
translations plus one more single isomorphism F (x1, x2) = (ax1 + bx2, cx1 +
dx2). In view of the case of orbifolds, we are going to assume det F = ±1
(we want the group generated by F to be finite).

The 8 equations from (1.2) are the following:

i, j, k
1, 1, 1 a2Γ1

11 + acΓ1
12 + acΓ1

21 + c2Γ1
22 = aΓ1

11 + bΓ2
11

1, 1, 2 a2Γ2
11 + acΓ2

12 + acΓ2
21 + c2Γ2

22 = cΓ1
11 + dΓ2

11

1, 2, 1 abΓ1
11 + adΓ1

12 + cbΓ1
21 + cdΓ1

22 = aΓ1
12 + bΓ2

12

1, 2, 2 abΓ2
11 + adΓ2

12 + cbΓ2
21 + cdΓ2

22 = cΓ1
12 + dΓ2

12

2, 1, 1 abΓ1
11 + bcΓ1

12 + adΓ1
21 + cdΓ1

22 = aΓ1
21 + bΓ2

21

2, 1, 2 abΓ2
11 + bcΓ2

12 + adΓ2
21 + cdΓ2

22 = cΓ1
21 + dΓ2

21

2, 2, 1 b2Γ1
11 + bdΓ1

12 + bdΓ1
21 + d2Γ1

22 = aΓ1
22 + bΓ2

22

2, 2, 2 b2Γ2
11 + bdΓ2

12 + bdΓ2
21 + d2Γ2

22 = cΓ1
22 + dΓ2

22

(3.2)

One can reduce the system restricting to some particular subspace of
linear connections. For instance, torsion free: then the system (3.2) reduces
to 6 equations in 6 variables, because Γk

12 = Γk
21, k = 1, 2. Indeed, (1.2) is

symmetric in i, j if ∇ = d + Γ is torsion free.

Metric connections. A second case is that of metric connections with
torsion (without torsion there is only the trivial, Levi-Civita connection):
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Γk
ij = −Γj

ik, i.e. Γi ∈ so. Thus there are only two unknowns and the system
(3.2) is given by [

Γ2
11 Γ2

21

]
S = 0

where

S =

[
b + ac a2 − d −ad + a ab + c bc ab −bd b2

c2 ac −cd cb cd + b ad− d a− d2 bd + c

]
.

In order to have rk S < 2 we must have, e.g.,
(b + ac)ac− (a2 − d)c2 = c(ab + cd) = 0
ad(d− 1)(a− 1)− abcd = ad(±1 + 1− a− d) = 0
b2(cd + b)− bc(bd + c) = b(b2 − c2) = 0
(a2 − d)cb− a2bc− ac2 = −c(bd + ac) = 0
−bd(bd + c)− b2(a− d2) = −b(cd + ab) = 0

Then we find non-trivial F given by

Fa,±(x, y) = ±(x,−y), or Fb,±(x, y) = ±(y, x).

Proposition 3.1. Fa,± and Fb,± are the only non-trivial isomorphisms F of
the plane for which there exist non-trivial metric, translation and F invariant
connections.

For Fa,+ the connections are given by Γk
ij = 0 for all i, j, k except Γ2

21 =
−Γ1

22.
For Fb,+ the connections are given by Γk

ij = 0, for all i, j, k except those
satisfying also the condition Γ2

11 = −Γ1
12 = −Γ2

21 = Γ1
22.

In both cases, ∇ = d + Γ is flat.

The proof follows from the system above and the curvature computations
are trivial. Notice we may state corresponding results for the minus cases.

Symplectic connections. Another interesting type of conections is that of
symplectic torsion free connections: Γk

ij is totally symmetric when contracted
with the 2-form ω = dx ∧ dy (see e.g. [2]), arising from the parallelism of ω,
∇ω = 0. This is the same as Γ1

i1 = −Γ2
i2 or, equivalently, Γi ∈ sl(2, R). In

sum,
Γ1

11 = −Γ2
12 = −Γ2

21, Γ1
21 = −Γ2

22 = Γ1
12. (3.3)
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Now system (3.2) resumes to

a2 − a 2ac c2 −b
−c− 2ac −c2 0 a2 − d
ab + b ad + bc− a cd 0

−ad− cb + d −cd− c 0 ab
ab + b bc + ad− a cd 0

−bc− ad + d −cd− c 0 ab
b2 2bd + b d2 − a 0

−2bd −d2 + d −c b2




Γ1

11

Γ1
12

Γ1
22

Γ2
11

 = 0.

The rank of the essentially 6x4 matrix is less than 4 in situations our ‘com-
puter’ does not obtain a pleasant result. But the case a = −d = 1, c = b = 0
is a solution. Then the connections are given by (3.3) and Γ1

12 = Γ2
11 = 0.

According to (1.3) we find

R2
121 = −Γ2

21Γ
1
11 = (Γ1

11)
2.

Complex connections. We also have the case of complex or gl(1, C)-
connections:

Γ1
11 = Γ2

12, Γ1
12 = −Γ2

11, Γ1
21 = Γ2

22, Γ1
22 = −Γ2

21 (3.4)

This gives an over-determined system as above, still unsolved according to
its rank. If we moreover demand Γ torsion free, then the system reduces to
2 unknowns: [

Γ1
11 Γ1

12

]
S = 0

where

S =

[
a2 − c2 − a 2ac− c ab− cd− b

2ac + b c2 − a2 + d ad + cb− a

ad + bc− d b2 − d2 + a 2bd + c
−ab + cd− c 2bd− b −b2 + d2 − d

]
The condition for rk < 2 remains to be deduced, but if we require F ∈
GL(1, C), that is F (x, y) = (ax + by,−bx + ay), then F = Id is the only
isomorphism which admits that kind of invariant connections.

If we look for F of the previous kind, that is F (x, y) = (ax + cy, cx− ay)
then the equations for rk < 2 resume to the vanishing of

(a2 − c2 − a)(c2 − a2 − a)− (2ac− c)(2ac + c) =

= −(a2 − c2)2 + a2 − 4a2c2 + c2

= (a2 + c2)(1− a2 − c2).
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Equivalently, a2 + c2 = 1. Since we were hoping for det F = ±1 the result is
automatic; thus we may write a = cos θ, c = sin θ, to find the condition

(cos 2θ − cos θ)Γ1
11 + (sin 2θ + sin θ)Γ1

12 = 0.

In sum we have proved the following.

Proposition 3.2. There exist complex, torsion free, translation and F in-
variant connections on C for each conjugate rotation F (z) = eiθz.

Such connections are given by any λ ∈ R and

Γ1
11 = Γ2

12 = −Γ1
22 = Γ2

21 = −λ(sin 2θ + sin θ),

Γ1
12 = −Γ2

11 = Γ1
21 = Γ2

22 = λ(cos 2θ − cos θ).

Moreover, these connections are flat.

The curvature is trivial since Γ is constant and a type (1, 0) form; since
there are no type (2, 0) forms on the complex line, R∇ = dΓ + Γ ∧ Γ = 0.

In truth, all translation invariant complex connections in C are flat, cf.
formulae (1.3,3.4).

3.2 Invariant connections on orbifolds cL(p, q)

Let ∇ be a holomorphic connection in Cn with coordinates (z1, . . . , zn), i.e.
its Christoffel symbols for ∇∂zi

∂zj
are holomorphic functions. Then the equa-

tions of an affine holomorphic transformation F are again determined by sys-
tem (1.2) but with the xj replaced by holomorphic coordinates zj = xj + iyj.
Indeed, since F · ∂zj

= 0, we must have

∇∂zj
∂zj

= ∇∂zi
∂zj

= 0

where as usual ∂zj
= 1

2
(∂xj

− i∂yj
), ∂zj

= ∂zj
.

We recall the lens space L(p, q) = S3/Zp, the orbit space for the action of
F (z1, z2) = (az1, dz2) on the 3-sphere, with a, d ∈ C such that ap = 1, d = aq.
In the study of the cone with a singularity

cL(p, q) = {λz : z ∈ L(p, q), λ ∈ R+} = C2/〈F 〉,

there are invariant connections with meromorphic coefficients, as we shall see
in the following example.

Example. cL(p, q) admits a meromorphic connection with Christoffel sym-
bols

Γ1
12 = Γ1

21 = Γ2
22 = 1

z2
Γ1

22 = z1

z2
2

Γ2
12 = Γ1

11 = Γ2
21 = 1

z1
Γ2

11 = z2

z2
1
.
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The holomorphic curvatures of ∇ = d + Γ are

R1
121 = R2

122 = 0, R1
122 =

2

z2
2

, R2
121 = − 2

z2
1

.

For the proof, notice that, although ∇ is not translation invariant, we may
still formally use system (3.2) viewing the Γ’s composed with F on the left
hand side. Then essentially two types of equation appear:

aΓ1
11 ◦ F = Γ1

11, a2Γ2
11 ◦ F = dΓ2

11,

and these equations have obvious solutions.

The search of meromorphic connections on orbifolds was studied in [12];
anyway our example seems to be original. The use of connections in this
context has appeared in [7, 8]

We remark that the classification of orbifold singularities with complex
structure is still an open problem and there are various approaches to it either
through the Riemannian or the complex perspective — cf. [1, 4, 5] and the
references therein to see the wealth of examples and geometries one might
continue searching for.

Acknowledgement. Partially supported by FEDER and FCT-Plurianual
2007.
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