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Abstract

We give a recursion-theoretic characterization of the
complexity classes NCk for k ≥ 1. In the spirit of implicit
computational complexity, it uses no explicit bounds in the
recursion and also no separation of variables is needed. It
is based on three recursion schemes, one corresponds to
time (time iteration), one to space allocation (explicit struc-
tural recursion) and one to internal computations (mutual
in place recursion).

1 Introduction

Since the seminal works of Simmons [22], of
Leivant [14, 15], of Bellantoni and Cook [3], and of Gi-
rard [11], implicit computational complexity has provided
models over infinite domains of major complexity classes
which are independent from the notion of time or of space
related to machines. These studies have nowadays at least
two twin directions. The first direction concerns the char-
acterization of complexity classes by mean of logics or of
recursion schemas. A motivation is to have a mathematical
logic model of bounded resource computations. The sec-
ond direction is more practical and aims to analyze and cer-
tify resources, which are necessary for a program execution.
One of the major challenges here is to capture a broad class
of useful programs whose complexity is bounded. There are
several approaches [1, 13, 19, 7]. In fact, the first direction
can be seen as a guideline of the second approach.

This paper falls in the first direction. We give a
recursion-theoretic characterization of each class NCk by
mean of a function algebra INCk based on tree recursion.
We demonstrate that INCk = NCk for k ≥ 1.

Research supported by the project Teorias e linguagens de
programação para computações com recursos limitados within the Pro-
grama PESSOA 2005–2006 of GRICES - EGIDE and partly by CMAF via
the FCT project POCI/MAT/61720/2004 and by DM, FCT-UNL.

The classes NCk were firstly described based on cir-
cuits. NCk is the class of functions accepted by uniform
boolean circuit families of depth O(logk n) and polynomial
size with bounded fan-in gates, where n is the length of the
input—see, for instance, [2] or [12].

Note that to simulate functions which are in NCk, one
may consider the equivalent definition due to Ruzzo. In
[21], Ruzzo identifies NCk with the classes of languages
recognized by alternating Turing machines (in short ATMs)
in time O(logk n) and space O(log n). We write NCk =
ATM(O(logk n), O(log n)), for k ≥ 1.

Characterizations of the classes NCk in terms of function
algebra have been already proposed. Let us mention here
the work of Clote [9] based on two recurrence schemas.
However, one of them, weak bounded recursion on nota-
tion, asks for an a priori bound à la Cobham [10]. Based
on the idea of ramification, Bloch gives a characterization
of NC using a divide and conquer schema [5]. Our schema
have the divide and conquer shape, but they do not involve
a tiering discipline.

In fact, the main difficulty in this characterization of NCk

relies on the double constraint about time and space. Other
previous characterizations based on tree recursion fail to ex-
actly capture for this reason. In 1998, Leivant [16] char-
acterized NC using a hierarchy of classes RSR, such that
RSRk ⊆ NCk ⊆ RSRk+2 for k ≥ 2. In the sequence
of [4] and [20], this result was refined in [6] by defining
term systems T k such that T k ⊆ NCk ⊆ T k+1 for k ≥ 2.
Both approaches are defined in a sorted context, either with
safe/normal arguments or with tiered recursion.

We define INCk as classes of functions, over the tree al-
gebra T, closed under composition and three schemes over
T: time iteration, explicit structural recursion and mutual in
place recursion. No explicit bounds are used in the schemes
and also no separation of variables is needed. The mutual in
place recursion scheme, one main point of our contribution,
is related to previous work of Leivant and Marion, see [17].
The absence of tiering mechanism is related to [18].
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2. Preliminaries

Let W be the set of words over {0, 1}. We denote by ε the
empty word and by Wi the subset of W of words of length
exactly i. We consider the tree algebra T, generated by two
0-ary constructors 0,1 and a binary constructor ?. T can be
seen as the set of binary trees where leaves are labeled by
{0,1}. S(t) denotes the size of a tree, H(t) corresponds to
the usual notion of height. We say that a tree t is perfect
balanced (or shorter balanced) if it has 2H(t) leaves each
labeled zero or one.

To represent binary trees labeled by the constants
{0, 1,⊥}, we use the following encoding, where ⊥ is, in
fact, encoded by two different trees. Here, 0 serves as false,
1 as true and ⊥ as the undefined.

0 :
?

/ \
0 0

1 :
?

/ \
0 1

⊥ :
?

/ \
1 0

and
?

/ \
1 1

For convenience, in the following, we call these trees
value trees or, in short, values.

We use the ¯( · ) notation as a shorthand for finite se-
quences. These can be nested such as in σ̄(ū) which denotes
a sequence σ1(u1, . . . , uk1), . . . , σn(u1, . . . , ukn).

Definition 1. Let us consider the set of functions, called the
basic functions, B = {0,1, ?, (πj

i )i≤j , cond, d0, d1} where
0,1 and ? are the constructors of the algebra T, d0 and
d1 are the destructors of T, cond is a conditional and πj

i

are the usual projections. Destructors and conditional are
defined as follows:

d0(0) = d1(0) = 0

d0(1) = d1(1) = 1

d0(t0 ? t1) = t0

d1(t0 ? t1) = t1

cond(0, x0, x1, x?) = x0

cond(1, x0, x1, x?) = x1

cond(t0 ? t1, x0, x1, x?) = x?

The set of basic functions closed by composition is called
the set of explicitly defined functions. If the output of a
function is 0 or 1, then we say that the function is boolean.
If the definition of a function does not use ?, the function is
said to be ?-free.

As a shorthand notation, we use db1···bk
for the function

dbk
◦ · · · ◦ db1 .

Given a non-empty (enumerable) set of variables X , we
denote by T (?,X ) the term-algebra of binary trees whose
leaves are labeled by variables from X . If t, u denote some
terms and x is a variable, the term t[x ← u] denotes the

substitution of x by u in t. Then, t[x ← u, y ← v] =
t[x ← u][y ← v]. All along, we take care to avoid clashes
of variables. When we have a collection I of variable sub-
stitutions, we use the notation t[(xw ← uw)w∈I ]. Again,
we will avoid conflicts of variables.

We now define some convenient notations, used exten-
sively all along the paper. Given a set of variables X =
(xw)w∈W, we define a family of balanced trees (ti)i∈N in
T (?,X ) where each leaf is labeled by a distinct variable:

t0 = xε

ti+1 = ti[(xw ← x0w)w∈Wi
] ? ti[(xw ← x1w)w∈Wi

]

As we see, the index of the variables indicate the path from
the root to it. For example, t2 can be represented as follows:

?
GG

GG
ww

ww

?
444




?



 444

x00 x01 x10 x11

Then, given a family of functions (fw)w∈W2
, the term

t2[(xw ← fw(xw))w∈W2
] may be used as an abbreviation

for (f00(x00) ? f01(x01)) ? (f10(x10) ? f11(x11)).
This notation is particularly useful if, for example, one

wants to describe schemes such as:

f((x00 ? x01) ? (x10 ? x11)) =
(f(x00) ? f(x01)) ? (f(x10) ? f(x11))

which is rewritten to:

f(t2) = t2[(xw ← f(xw))w∈W2
]

3. The classes INCk

In this section, for each k ≥ 1, we describe a class of
function definitions, INCk, closed under composition and
three recursion schemes.

Definition 2. INCk is the closure of B =
{0,1, ?, (πj

i )i≤j , cond, d0, d1} under composition, mutual
in place recursion (MIP), explicit structural recursion, and
time iteration (TI) for k.

The mentioned schemes are described below.

3.1. Mutual in place recursion

The first recursion scheme, mutual in place recursion, is
the key element of our characterization. It will be used later
for the simulation of alternating Turing machines where val-
ued configuration trees are updated according to the com-
putation steps performed by an ATM. Mutual in place re-
cursion allows us to perform such updates at relatively low
computational cost (cf. Lemma 17).
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Definition 3. The functions (fi)i∈I (with the set I finite)
are defined by mutual in place recursion (MIP) if they are
defined by a set of equations, with i, j, l ∈ I and c ∈ {0,1},
of the form

fi(t0 ? t1, ū) =
fj(t0, σ̄i,0(t0 ? t1, ū)) ? fl(t1, σ̄i,1(t0 ? t1, ū)) (1)

fi(c, ū) = gi(c, ū) (2)

where σ̄i,0 and σ̄i,1 are sequences of ?-free explicitely de-
fined functions and the functions gi are explicitely defined
boolean functions.

(1) is called the i-recursion-equation, (2) the i-base-
equation. To avoid some non relevant semantics issues, we
suppose that for a given i, there is exactly one i-recursion-
equation and one i-base-equation.

Notice that the first argument is shared by the entire set
of mutually defined functions as recursion argument. While
for the others, copies, switch and visit can be performed
freely.

As a consequence, for any such function f , one may ob-
serve that f(t, x̄) is a tree with the exact shape of t but,
possibly, with different leaves.

Example 1. Given two perfectly balanced trees of common
height, using 0 as false and 1 as true, we can compute the
bit-or of their labels using MIP-recursion, as follows:

or(t0 ? t1, u) = or(t0, d0(u)) ? or(t1, d1(u))
or(c, u) = cond(u, c,1,1), c ∈ {0,1}

Taking the convention that b ∨ ⊥ = ⊥ ∨ b = b ∧ ⊥ =
⊥ ∧ b = ⊥, one may observe that the or function defined
above copes with the encoding of {0, 1,⊥}-trees. For the
conjunction, we also use MIP-recursion:

and(t0 ? t1, u) =
and0(t0 ? t1, u) =
and1(t0 ? t1, u) = and0(t0, d0(u)) ? and1(t1, d1(u))

and0(c, u) = cond(u, c,1,1), c ∈ {0,1}
and1(c, u) = cond(u,0, c,1), c ∈ {0,1}

We now give a lemma which allows us to define a family
of MIP-definable functions in terms of the shorthand nota-
tion defined above.

Lemma 4. We suppose given a (finite) family (ni)i∈I of
integers, and a family (fi)i∈I of functions satisfying equa-

tions of the form:

fi(tni , ū) =
tni [(xw ← fm(i,w)(xw, σ̄i,w(tni , ū)))w∈Wni

],

(3)

fi(tm[(xw ← cw)w∈Wm
], ū) =

tm[(xw ← gi,w(cw, ū))w∈Wm
], 0 ≤ m < ni,

(4)

where m is a finite mapping I ×Wn → I , cw ∈ {0,1},
σ̄i,w are vectors of ?-free explicitly defined functions, and
(gi,w)i∈I,w∈W are explicitely defined boolean functions.
Then, the functions (fi)i∈I are MIP-definable.

Proof. In an equation such as Equation (3), we call ni the
level of the definition of fi. The proof is by induction on
the maximal level of the functions N = maxi∈I ni.

If N = 1, then the equations correspond to usual MIP-
equations.

Suppose now N > 1. For all the indices i such that fi

has level N , we replace its definitional equations by:

fi(t0 ? t1, ū) = fi•0(t0, t0 ? t1, ū) ? fi•1(t1, t0 ? t1, ū)
fi•w(t0 ? t1, tε, ū) = fi•w0(t0, tε, ū) ? fi•w1(t1, tε, ū),

(1 < |w| < N − 1)
fi•w(t0 ? t1, tε, ū) =

fi,w0(t0, σ̄i,w0(tε, ū)) ? fi,w1(t1, σ̄i,w1(tε, ū)),
(|w| = N − 1)

fi•w(c, tε, ū) = gi,w(c, ū), (1 < |w| < N )
fi(c, ū) = gi,ε(c, ū)

where the indices i •w are fresh. One may observe that the
level of each of these functions is 1. So that we transformed
a system of equation of level N to a system of equation of
level strictly smaller than N . We end by induction.

The definition of and above can be rewritten—without
explicit use of auxiliary functions—according to Lemma 4
as follows:

and(t2, u) = t2[(xw ← and(xw, dw(u)))w∈W2
]

and(c0 ? c1, u) =
cond(d0(u), c0,1,1) ? cond(d1(u),0, c1,1)

We end by a Lemma and a Remark used in the proof
of Proposition 12. The Lemma says that MIP-recursion is
insensitive to copying, erasing and visit of non recursive
arguments.

Lemma 5. Suppose that f ∈ (fi)i∈I is defined by MIP-
recursion. Then, any function g(t, ū) = f(t, σ̄(t, ū)) where
the σ̄ are ?-free explicitly defined functions can be defined
by MIP-recursion.
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Remark 6. Suppose that the family (fi)i∈I is defined by
MIP-recursion. Suppose that f is defined by the two equa-
tions

f(t, ū) = fj(t0, σ̄0(t, ū)) ? fk(t1, σ̄1(t, ū))
f(c, ū) = g(c, ū)

where j, k ∈ I , the sequences σ0, σ1 are ?-free explicitly
defined functions and g is a boolean explicitly defined func-
tions. Then, f is defined by MIP-recursion.

The same conclusion applies with equations of the form:

f(tn, ū) =
tn[(xw ← fm(w)(xw, σ̄w(tn, ū)))w∈Wn

],

f(tm[(xw ← cw)w∈Wm
], ū) =

tm[(xw ← gi,w(cw, ū))w∈Wm
], 0 ≤ m < n,

where m is a finite mapping Wn → I , cw ∈ {0,1},
σ̄w are vectors of ?-free explicitly defined functions, and
(gw)i∈I,w∈W are explicitely defined boolean functions.

3.2. Explicit structural recursion

The recursion scheme defined here corresponds to the
space aspect of functions definable in NCk. It will be
used to construct trees of height O(log n), cf. the follow-
ing lemma.

Definition 7. Explicit structural recursion is the following
schema, with c ∈ {0,1}:

f(t0 ? t1, ū) = h(f(t0, ū), f(t1, ū))
f(c, ū) = g(c, ū)

where h and g are explicitely defined.

Lemma 8. Given constants α1 and α0, one may define in
INCk a function which maps any perfect balanced t tree to
a perfect balanced tree of height H(f(t)) = α1H(t) + α0.

Proof. The proof is immediate taking f defined by explicit
structural recursion with h = hα1 and g = hα0(1,1) where
h1(w0, w1) = w0 ? w1 and hi(w0, w1) = hi−1(w0, w1) ?
hi−1(w0, w1) for i > 1.

3.3. Time iteration

The following scheme allows us to iterate MIP-definable
functions. It serves to capture the time aspect of functions
definable in NCk and depends, obviously, on the parame-
ter k.

Definition 9. Given k ≥ 1, we define time iteration (TI), for
k, as follows, with c1, . . . , ck ∈ {0,1}:

f(t′1 ? t′′1 , t2, . . . , tk, s, ū) =
h(f(t′1, t2, . . . , tk, s, ū), ū)

f(c1, t
′
2 ? t′′2 , t3, . . . , tk, s, ū) =

f(s, t′2, t3 . . . , tk, s, ū)
...

f(c1, . . . , ci−1, t
′
i ? t′′i , ti+1, . . . , tk, s, ū) =

f(c1, . . . , ci−2, s, t
′
i, ti+1, . . . , tk, s, ū)

...

f(c1, . . . , ck, s, ū) = g(s, ū)

where the function h is MIP-definable (but no condition is
imposed on g).

Lemma 10. Given a MIP-definable function h, a function g
in INCk and constants β1 and β0, one may define in INCk,
by time iteration, a function f such that for all perfect bal-
anced tree t

f(t, ū) = h(. . . h︸ ︷︷ ︸
β1(H(t))k+β0 times

(g(t, ū), ū) . . . ).

Proof. Let us assume k = 2 (the other cases are analogous).
In this case, the time iteration scheme has the shape

f(t′1 ? t′′1 , t2, s, ū) = h(f(t′1, t2, s, ū), ū)
f(c1, t

′
2 ? t′′2 , s, ū) = f(s, t′2, s, ū)

f(c1, c2, s, ū) = g(s, ū)

It is trivial to prove by induction on H(t) that

f(t, t, t, ū) = h(. . . h︸ ︷︷ ︸
(H(t))2 times

(g(t, ū), ū) . . . ),

where g can be any function previously defined in INCk.
By composition, f0(t, ū) = h(. . . h︸ ︷︷ ︸

β0 times

(g(t, ū), ū) . . . ) is in

INCk. Then, considering fi(t, t, t, ū) by (TI) based on h and
g = fi−1, it is clear that fβ1 is the desired function.

We state now our main theorem:

Theorem 11. For k ≥ 1, functions in INCk are exactly
functions computed by circuits in NCk.

The proof of the theorem is a direct consequence of
Proposition 12 and Proposition 13 coming in the two next
Sections.
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4. Simulation of alternating Turing machines

The concept of an alternating Turing Machine was intro-
duced by Chandra, Kozen and Stockmeyer as a generaliza-
tion of the non-deterministic Turing machine concept, see
[8].

Here we consider alternating random access Turing ma-
chines (ARMs) as described in [16], by Leivant. This
means that, here, the operational semantics of a ARM, M ,
is described as a two stage process: firstly, generating an
input-independent computation tree; secondly, evaluating
that computation tree for a given input.

A binary tree T of configurations is a computation tree
(of M ) if each non-leaf of T spawns its children configu-
rations. A computation tree of M is generated as follows:
when in a configuration with an action state, depending on
the state and on the bits at the top of the stacks, it spawns
a pair of successor configurations. We assume that the ma-
chine works with two stacks. Moreover, we assume that one
of the successor configurations, let us say the first one, lets
the stacks unchanged, and that the stacks of the second con-
figuration can only be changed by pushing or poping one
letter at the top of one stack, or/and changing the internal
state of the machine. We will be interested in computation
trees which have the initial configuration of M as a root.
Each computation tree, T , maps binary representation of
integers (inputs) to a value in {0, 1,⊥}, where bottom de-
notes “undefined”. This map is defined according to points
1 and 2, below.

1. If T is a single configuration with state q then:

(a) if q is an accepting [rejecting] state, the returned
value is 1 [respectively, 0];

(b) if q is an action state, the returned value is ⊥;

(c) if q is an reading state then the returned value is 1
or 0 depending on whether the information which
results from concatenating the stacks points (no-
tion to be made explicit later on), in the input, to
1 or not.

2. If T is not a single configuration, then the root con-
figuration has a conjunctive or a disjunctive state. We
define the value returned by T to be the conjunction,
respectively the disjunction, of the values returned by
the immediate subtrees.

Conjunctive and disjunctive states may diverge, indicated
by the “undetermined value”, ⊥.

The inputs of the machines are binary numbers, which
are inputed to terms as minimal-size perfectly balanced
trees, with leaves representing the binary number (with
high-order zeros used to pad the leftmost branches of the
tree). We say that a binary string points to the bit “i”, of

the input, if it determines a path, in the tree representing the
input, which leads to the bit “i”. An output consisting of
just a leaf 1 is interpreted as “true” or “accept”; any other
output tree is interpreted as “false” or “reject”. In this way,
each term recognizes/accepts a language.

Proposition 12. Given k ≥ 1 and constants α1, α0, β1, β0,
any ARM working in space α1 log(n) + α0 and time
β1 logk(n) + β0, where n is the length of the input, can
be simulated in INCk.

Proof (sketch). Let us consider such a machine. We can de-
scribe the transition function δ for action states as follows.
δ(q, a, b) = (q′, q′′, popi) with i ∈ {1, 2} means that being
in state q with top bits being a and b, the first successor con-
figuration lets the stacks unchanged and has state q′, and the
second successor has state q′′ and pops the stack i. When
we write δ(q, a, b) = (q′, q′′, pushi(c)), with i ∈ {1, 2} and
c ∈ W1, it is like above but we push the letter c on the top
of the stack i.

Take d = dlog(|Q|)e, where Q is the finite set of states,
then one may attribute to each state in Q a word w ∈ Wd.
We take the convention that the initial state q0 has encoding
0 · · · 0︸ ︷︷ ︸
d letters

. From now on, the distinction between the state and

its associated word is omitted.
Suppose we are given two stacks s1 = a1a2 · · · ai and

s2 = b1b2 · · · bj over {0, 1} of length less or equal than
α1·log(n)+α0. These stacks will be now encoded as a word
which will later form (a part of) a path in a configuration
tree. We use an extra character # to separate the content of
the two stacks and to pad all paths to a fixed length. Using
the encoding l with l(0) = 10, l(1) = 11 and l(#) = 00, we
encode the two stacks as above by a word

P(s1, s2) =
l(a1)l(b1)l(a2) · · · l(ai)l(#)l(b2) · · · l(bj)l(#)l(#) · · · l(#)

in such a way that this word has length exactly 2(α1 ·
log(n)+α0+1). The “+1” origins from the extra character
# which separates the two (tails of the) stacks.

For convenience we use typewriter font for the encoding
given by l: taking a1, . . . , b1, . . . as above, the encoding is
then written as:

P(s1, s2) = a1 b1 a2 a3 · · · ai # b2 b3 · · · bj ## · · ·#.

A configuration tree is a perfectly balanced tree of height
d + 2(α1 · log(n) + α0 + 1). It is the “container” for
all configurations. A full path in a configuration tree can
be decomposed as a word qw with q ∈ Wd and w ∈
W2(α1·log(n)+α0+1). A configuration path is one for which
q is an encoding of a state and w is an encoding of the
stacks. Note that not all paths of a configuration tree are
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configuration path; but all possible configurations are rep-
resented by a configuration path in the configuration tree.
A valued configuration tree is a configuration tree in which
leaves are values 0, 1,⊥. With respect to our encoding of
values, it is a tree of height d+2(α1 · log(n)+α0 +1)+1.
Notice that given a valued configuration tree t, the value
corresponding to the configuration (q, s1, s2) is obtained,
in t, by dqP(s1,s2)(t).

We describe now the process of the computation. The
initial valued configuration tree has all leaves labeled by ⊥,
i.e., 1 ? 1 (this tree can be defined by explicit structural re-
cursion, cf. Lemma 8). The strategy will be to update the
leaves of the initial valued configuration tree, according to
the procedure described in items 1 and 2 above, as many
times as the running time of the machine. For the update one
must use a MIP-function which is then, by Lemma 10, iter-
ated using time iteration. After this process, the output can
be obtained following the path for the initial configuration
(q0, ε, ε).This finishes the proof. Now, we just have a closer
look how the update is implemented by a MIP-function.

The update function next takes as input the currently
computed valued configuration tree and the input tree. It
returns the next configuration tree. Actually, the function
can be considered as a sort of case distinction function just
calling auxiliary functions. That is:

next(td+4, y) =
td+4[(xqab←nextq,a,b(xqab, td+4, y))q∈Wd,a∈W2,b∈W2

]

where nextq,a,b are the auxiliary functions. By Remark 6,
it is sufficient to prove that these auxiliary function can be
defined by MIP-recursion1. The role of these functions is
to update the part of the configuration tree they correspond
to. We have to distinguish the following cases. 1) q is an
accepting state; 2) q is a rejecting state; 3) q is a reading
state; 4) q is a ∨ (disjunctive) state; 5) q is a ∧ (conjunctive)
state. Case 4) and 5) both split in four sub-cases, depending
on the action corresponding to q.

The update of the part of a valued configuration tree t is
comparatively easy for the cases of accepting and rejecting
states. For them we define auxiliary functions accept (resp.
reject) taking as input a tree t whose leaves are labeled by
values in {0, 1,⊥} which returns t with leaves relabeled by

1Actually, wrt the simulation, Equations for m < d + 4 play no role,
so that we do not write them explicitly.

1 (resp. 0).

accept(t2) = t2[(xw ← accept(xw))w∈W2
]

accept(c0 ? c1) = 0 ? 1

accept(c) = c

reject(t2) = t2[(xw ← reject(xw))w∈W2
]

reject(c0 ? c1) = 0 ? 0

reject(c) = c

Formally, we define nextq,a,b(x, t, y) = accept(x) if q is
an accepting state and nextq,a,b(x, t, y) = reject(x) if q is
a rejecting state. We use Lemma 5 to show that nextq,a,b is
defined by MIP-recursion.

For the reading cases, the situation is a little bit more
complicated, since we have to take into account the coding
of the first bit b1 of the second stack between the bits of the
first stack. The auxiliary function read uses as input dq(t)
and y, the minimal size perfectly balanced tree coding the
input of the machine (with high-order zeros used to pad the
leftmost branches of the tree). It returns 0?1 (i.e. the valued
tree corresponding to 1) if the string a1 · · · aib1 · · · bj points
to the bit 1 in y, and 0 ? 0 otherwise.

The formal definition of the read function is a technical
exercise which is left out here. It uses MIP-recursion in an
essential way. This includes the use of auxiliary functions
σ̄ which are ?-free explicitely defined.

The hard cases are the disjunctive and conjunctive states.
In these cases, to compute the value of a configuration,
we need the value of its two successor configurations.
The key point is that the transformation of a configura-
tion (q, a1 · · · ai, b1 · · · bj) to its successors is entirely deter-
mined by the state q and the two top bits a1 and b1 so that
nextq,a1,b1 ”knows” exactly which transformation it must
implement. Here, our encoding of the stacks come into play.

We have to distinguish the four cases where we push or
pop an element on one of the two stacks:

1. δ(q, a1,b1) = (q′, q′′, push1(a0));

2. δ(q, a1,b1) = (q′, q′′, pop1);

3. δ(q, a1,b1) = (q′, q′′, push2(b0));

4. δ(q, a1,b1) = (q′, q′′, pop2).

By assumption, the stacks of q′ are the same as for q, so
that its encoding is

q′ a1 b1 a2 a3 · · · ai # b2 b3 · · · bj ## · · · #

but for q′′ we get the four different configurations:

1. q′′ a0 b1 a1 a2 a3 · · · ai # b2 b3 · · · bj # · · · #
2. q′′ a2 b1 a3 · · · ai # b2 b3 · · · bj # # # · · · #
3. q′′ a1 b0 a2 a3 · · · ai # b1 b2 b3 · · · bj # · · · #
4. q′′ a1 b2 a2 a3 · · · ai # b3 · · · bj # # # · · · #
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For every ∨ and ∧ state q we have to define a function
nextq,a1,b1 . Given t the presently computed valued configu-
ration tree, nextq,a1,b1(dqa1b1(t), t, y) is intended to update
the values of the corresponding part of the configuration tree
t. As for accepting and rejecting states, we will use aux-
iliary functions next◦,1, next◦,2,b1 , next◦,3,b1 , and next◦,4,
which correspond to the four cases mentioned above (and
where ◦ is ∧ or ∨ according to the state coded by q). Then
we use Lemma 5 to keep the functions nextq,a1,b1 defined
by MIP-recursion.

We come back now to the definition of the four auxiliary
functions next◦,1, next◦,2,b1 , next◦,3,b1 , and next◦,4. In the
second and third case, we have to define two variants for the
two different possible values of b1 since the definition of the
function depends on it (for next◦,3,b1 this should be obvious
because we have to “copy” b1 to the tail of the second stack).

The principle of the definition of the auxiliary functions
is to follow in parallel the paths of the two successor con-
figurations. To do that, we essentially use substitution of
parameters, in the mutual in place recursion scheme. The
recurrence argument is there as a ”witness” of the currently
computed configuration tree.

For the first case, we define nextq,a1,b1(x, t, y) =
next◦,1(x, dq′a1b1(t), dq′′a0b1a1(t)) and use Lemma 5. With
respect to our encoding, in our simulation, observe that
next◦,1(x, u, v) is fed with dqa1b1(t), dq′a1b1(t), dqa0b1a1(t)
where t is the currently computed valued configuration tree.
So that the height of the last argument is one less than the
others. In this case, we can go in parallel, with the only
previso that the second stack is one letter shorter. Equations
below cope with that technical point — we play with the
fact that the height of x is 4(α1 · log(n) + α0 − 1) + 1.
Formally we define next◦,1 as:

next◦,1(t2, u, v) =
t2[(xw ← next◦,1′(xw, dw(u), dw(v)))w∈W2

]

next◦,1′(t4, u, v) =
t4[(xw ← next◦,1′(xw, dw(u), dw(v)))w∈W4

]

next◦,1′(t3[xw ← cw], u, v) =
t3[(xw0 ← cond(dw0(u), d0(v),0,0)w∈W2

]

[(xw1 ← dw1(u) ◦ d1(v))w∈W2
]

where the cw are to be taken in {0,1}. We do not men-
tion here the equations for trees smaller than 2 for next◦,1

and 3 for next◦,1′ since these are never used in the simula-
tion.

For the other case, for the path corresponding to q′ we
follow always a1 b1. For the path corresponding to q′′ we
have the following cases:

2. do not follow any bit;

3. we already follow a1 b0;

4. in this case we use four copies of the configuration tree
and follow in each of them a1 0 0, a1 0 1, a1 1 0, and
a1 1 1, respectively.

Thus, not knowing at this moment which path we have
to follow for b2, we just include all four possibilities,
i.e., 0 0, 0 1, 1 0, and 1 1.

As a consequence, we have to follow the following paths
for q′ and q′′ to get the leaves which should be combined
according to ◦:

2. a2 a3 · · · ai # b2 b3 · · · bj ## · · · # and
a2 b1 a3 · · · ai # b2 b3 · · · bj ### · · · #
In this case, we have to follow a2 in the q′ path and
a2 b1 in the q′′ path and the case can be reduced to
the first one. But to follow b1 it is needed to have the
function parameterized by this letter.

Thus, for next∧,2,b1 we have:

next∧,2,b1(t2, u, v) =
t2[(xa2 ← next∧,1(xa2 , da2(u), da2b1(v)))a2∈W2

]

3. a2 a3 · · · ai # b2 b3 · · · bj ## · · · # and
a2 a3 · · · ai # b1 b2 b3 · · · bj # · · · #
When we build the tree for this situation, we know that
at each level the “left-left branch”, i.e., the one which
follows 0 0, encodes at that level the separation char-
acter #. Thus, at this stage we have to “pop” the b1

from the second stack, and can continue afterwards as
in case 1.

The “left-right branch” is actually not used by our en-
codings (since there is no character encoded by 0 1);
thus we can do what we like, and we just follow the
treatment of the “left-left branch”. For the “right-left”
and “right-right” branches, which are encodings of an
ai, we just follow both trees in parallel.

So, next∧,3,b1 is defined as:

next∧,3,b1(t2, u, v) =
(next∧,1(x00, d00(u), d00b1(v)) ?

next∧,1(x01, d01(u), d01b1(v))) ?

(next∧,3,b1(x10, d10(u), d10(v)) ?

next∧,3,b1(x11, d11(u), d11(v)))

4. a2 a3 · · · ai # b2 b3 · · · bj ## · · · # and
—for four copies of—
a2 a3 · · · ai # b3 · · · bj ### · · · #
In this case, next∧,4 needs to use four auxiliary func-
tions, next∧,4,00, next∧,4,01, next∧,4,10, and next∧,4,11

which treat the four leaves of a tree t2 according to the
branches.
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The definitions are a little bit more involved as in the
previous cases, but they still follow the same idea, and
therefore, they are omitted here.

5. Compilation of recursive definitions to cir-
cuit

This section is devoted to the proof of the Proposition:

Proposition 13. For k ≥ 1, any function in INCk is com-
putable in NCk.

We begin with some observations. All along, n denotes
the size of the input. First, to simulate theoretic functions in
INCk, we will forget the tree structure and make the compu-
tations on the words made by the leaves. Actually, since the
trees are always full balanced binary trees, we could restrict
our attention to input of size 2k for some k.

Second, functions defined by explicit structural recursion
can be computed by NC1 circuits. This is a direct conse-
quence of the fact that explicit structural recursion is a par-
ticular case of LRRS-recursion as defined in Leivant and
Marion [17]

Third, by induction on the definition of functions, one
proves the key Lemma:

Lemma 14. Given a function f ∈ INCk, there are
(finitely many) MIP-functions h1, . . . , hm and polynomials
P1, . . . , Pm of degree smaller than k such that f(t̄, ū) =
h

P1(log(n))
1 (· · ·hPm(log(n))

m (g(ū)) . . .) where g is defined by
structural recursion.

Now, the compilation of functions to circuits relies on
three main ingredients. First point, we show that each func-
tion hi as above can be computed by a circuit:

1. of fixed height with respect to the input (the height de-
pends only on the definition of the functions),

2. with a linear number of gates with respect to the size
of the first input of the circuit (corresponding to the
recurrence argument),

3. with the number of output bits equal to the number of
input bits of its first argument.

According to 1), we note H the maximal height of the cir-
cuits corresponding to the hi’s.

Second point, since there are
∑

i=1..m Pi(log(n)) appli-
cations of such hi, we get a circuit of height bounded by
H ×

∑
i=1..m Pi(log(n)) = O(logk(n)). That is a circuit

of height compatible with NCk. Observe that we have to
add as a first layer a circuit that computes g. According
to our second remark, this circuit has a height bounded by

O(log(n)), so that the height of the whole circuit is of the
order O(logk(n)).

Third point, the circuits corresponding to g, being in
NC1, have a polynomial number of gates with respect to
n and a polynomial number of output bits with respect to n.
Observe that the output of g is exactly the recurrence argu-
ment of some hi whose output is itself the first argument of
the next hi, and so on. So that according to item 3) of the
first point, the size of the input argument of each of the hi is
exactly the size of the output of g. Consequently, according
to item 2) above, the number of circuit gates is polynomial.

Since all constructions are uniform, we get the expected
result.

5.1. NC0 circuits for mutual recursion

In this section, we prove that functions defined by mutual
in place recursion can be computed by NC0 circuits with a
linear number of gates wrt the size of the first argument.
Since MIP-functions keep the shape of their first argument,
we essentially have to build a circuit for each bit of this
argument.

Lemma 15. Any explicitely defined boolean function can
be defined without use of ?.

Lemma 16. Explicitly defined boolean functions are in
NC0.

Proof. Consider the following circuits. To stress the fact
that circuits are uniform, we put the size of the arguments
into the brackets. n correspond to the size of x, n0 to the
size of x0 and so on. x(k) for k ∈ N corresponds to the
k-th bit of the input x. The ”long” wires correspond to the
outputs. Shorter ones are simply forgotten.

· · ·x
0

C0[n] :

· · ·x
1

C1[n] :

x
Cd0

[1] = Cd1
[1] =

x(0) · · · x(n/2) x(n/2 + 1) · · · x(n)

Cd0
[2 + n] =

x(0) · · · x(n/2) x(n/2 + 1) · · · x(n)
Cd1

[2 + n] =

C
πj

i
[n1, · · · , nj ] : · · ·x1

· · ·xi−1
· · · · · ·xi

· · ·xi+1
· · ·xj

· · ·
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· · ·x0
· · ·x1

· · ·x?

∧ ∧

∨

∧ ∧

∨

b

· · ·Ccond[1, n0, n0, n?] =

Ccond[2 + nb, n0, n1, n?] = · · ·xb
· · ·x0

· · ·x1
· · ·x?

We see that composing the previous cells, with help of
Lemma 15, we can build a circuit of fixed height (wrt to the
size of input) for any explicitly defined boolean function.
Observe that the constructions are clearly uniform.

Lemma 17. Any MIP-function can be computed by a circuit
of fixed height wrt the size of the input.

Proof. Let us consider a set (fi)i∈I of MIP-functions. That
is, we have a set of equations of the form:

fi(t0 ? t1, ū) = fp(i,0)(t0, σ̄i,0(ū)) ? fp(i,1)(t1, σ̄i,1(ū))
fi(c, ū) = gi(c, ū)

where p(i, b) ∈ I is an explicit (finite) mapping of the in-
dices, σ̄i,0 and σ̄i,1 are vectors of ?-free explicitely defined
functions and the functions gi,c (and consequently the gi)
are explicitly defined boolean functions.

First, observe that any of these explicitly defined func-
tions gi can be computed by some circuit Bi of fixed height
as seen in Lemma 16. Since I is finite, we call M the max-
imal height of these circuits (Bi)i∈I .

Suppose we want to compute fi(t, x̄) for some t and x̄
which have both size smaller than n. Remember that the
shape of the output is exactly the shape of the recurrence
argument t. So, to any k-th bit of the recurrence argument
t, we will associate a circuit computing the corresponding
output bit, call this circuit Ck. Actually, we will take for
each k, Ck ∈ {Bi : i ∈ I}. Putting all the circuits (Ck)k in
parallel, we get a circuit that computes all the output bits of
fi, and moreover, this circuit has a height bounded by M .
So, the last point is to show that for each k, we may compute
uniformly the index i of the circuit Bi corresponding to Ck

and the inputs of the circuit Ck.
To denote the k-th bit of the input, consider its binary

encoding where we take the path in the full binary tree t
ending at this k-th bit. Call this path w. Notice first that
w itself has logarithmic size wrt n, the size of t. Next, ob-
serve that any sub-tree of the inputs can be represented in
logarithmic size by means of its path. Since all along the
computations, the arguments ū are sub-trees of the input,
we can accordingly represent them within the space bound.

To represent the value of a subterm of some input, we
use the following data structure. Consider the record type
st = {r; w; h}. The field r says to which input the value

corresponds to. r = 0 corresponds to t, r = 1 corre-
spond to x1 and so on. w gives the path to the value (in
that input). For convenience, we keep its height h. In
summary {r=i;w=w’;h=m} corresponds to the subtree
dw′(ui) (where we take the convention that t = u0). We
use the ’.’ notation to refer to a field of a record. We con-
sider then the data structure val = st + {0, 1}. Variables
u, v coming next will be of that ”type”.

To compute the function (σi,b)i∈I,b∈{0,1} appearing in
the definition of the (fi)i∈I , we compose the programs:

zero(u){
return 0;

}

one(u){
return 1;

}

pi_i_j(u_1,...u_j){
return u_i;

}

d0(u){
if(u == 0 || u == 1 || u.h = 0) return u;
else return [r=u.r;w=u.w 0;h= u.h-1];

}

d1(u){
if(u == 0 || u == 1 || u.h == 0) return u;
else return [r=u.r;w=u.w 1;h= u.h-1];

}

cond(u_b,u_0,u_1,u_s){
if (u_b == 0 ||

(u_b.h == 0 && last-bit(u_b.w) == 0))
return u_0;

elseif (u_b == 1||
(u_b.h == 0 && last-bit(u_b.w) == 1))

return u_1;
else return u_s;

}

Then we compute the values of i and the ū in gi(c, ū)
corresponding to the computation of the k-th bits of the out-
put. Take d + 1 the maximal arity of functions in (fi)i∈I .
To simplify the writing, we take it (wlog) as a common arity
for all functions.

G(i,w,u_0,...,u_d){
//u_0 corresponds to t,
if(w == epsilon) {
return(i,u_0,...,u_d);
}
else{
a := pop(w); //get the first letter of w
w := tail(w); //remove the first letter to w
switch(i,a){//i in I, a in {0,1}
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case (i1,0):
v_0 = d_0(u_0);
foreach 1 <= k <= d:

v_k = sigma_i1_0_k(u_0,...,u_d);
//use the sigma defined above
next_i = p_i1_0;
//the map p is hard-encoded

break;
.
.
.
case (im,1):
v_0 = d_1(u_0);
foreach 1 <= k <= d:

v_k = sigma_im_1_k(u_0,...,u_d);
next_i = p_im_1;

break;
}
return G(next_i,w,d_a(u_0),v_1,...,v_d);

}
}

Observe that this program is a tail recursive program. As
a consequence, to compute it, one needs only to store the
recurrence arguments, that is a finite number of variables.
Since the value of these latter variables can be stored in
logarithmic space, the computation itself can be performed
within the bound. Finally, the program returns the name i
of the circuit that must be build, a pointer on each of the
inputs of the circuit with their size. It is then routine to
build the corresponding circuit at the corresponding posi-
tion w.

6 Conclusion

We established an implicit characterization of the paral-
lel classes of complexity NCk, for k ≥ 1, which does not
require any sorted framework. This result was achieved in-
troducing a restricted form of simultaneous recursion with
substitution (MIP) which does not obey to any kind of ex-
plicit bounds.

The potential of MIP to perform parallel operations with
low complexity cost (see Lemma 17) makes this scheme not
only the key idea of the given characterization of NCk, but
also a promising tool for further application. In particular,
one may expect to reach ACk using a MIP like schema. This
is work in progress.
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[10] A. Cobham. The intrinsic computational difficulty of func-
tions. In Y. Bar-Hillel, editor, Proceedings of the Interna-
tional Conference on Logic, Methodology, and Philosophy
of Science, pages 24–30. North-Holland, Amsterdam, 1962.

[11] J.-Y. Girard. Light linear logic. Information and Computa-
tion, 143(2):175–204, 1998.

[12] N. Immerman. Descriptive Complexity. Springer, 1998.
[13] L. Kristiansen and N. D. Jones. The flow of data and the

complexity of algorithms. In S. B. Cooper, B. Löwe, and
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