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Abstract. We study an inductive class of vector functions over the reals,
defined from a set of basic functions by composition, solving of first
order differential equations and the taking of infinite limits. We show
that we obtain exactly the class of vector functions for which z̄ = f(x̄)
is a predicate in the analytical hierarchy. We then prove an analogue of
Post’s theorem for the analytical hierarchy.

1 Introduction

In 1996 Cris Moore published a seminal paper, Recursive theory on the reals
and continuous-time computation [Moore, 1996], where he defines an inductive
class of vector valued functions over R, aiming to provide a framework to study
continuous-time phenomena from a computational perspective. This class was
defined as the closure of some basic functions for the operators of composition,
solving of first-order differential equations and minimalisation.

We draw deeply on previous results in the field of real recursive functions:
foundational results can be found in [Mycka and Costa, 2004], where minimali-
sation was replaced by infinite limits in order to solve technical problems. Loff
et al. [2007] show a crucial theorem for this paper: that differential recursion can
be replaced by iteration, under the presence of infinite limits.

The analytical hierarchy is a hierarchy of predicates of second-order arith-
metic, and is studied in a variety of contexts. It was originally devised by Lusin
(1925) for the then-incipient field of descriptive set theory and discovered in-
dependently by Kleene (1955) in the study of recursion on higher types. The
name ‘analytical’ is used because second-order arithmetic allows for the formali-
sation of elementary analysis, by coding of real numbers as functions of integers
[Odifreddi, 1989, p. 376].

While seeming to come from separate directions, we show that the correspon-
dence between real recursive functions and the analytical hierarchy is absolute.



This result, although important for real recursive function theory, is not unex-
pected. The class of real recursive functions is suspiciously similar to the ana-
lytically representable functions of Lebesgue (1905), and real recursive function
theory is mostly a theory of definability. Also, work done by Moschovakis [1969]
on abstract search computability shows that we can find analogues of Post’s the-
orem, and infinite limits can be seen as operators of search computability over
R. In any case, we provide a simpler, quantifier-free, functional characterisa-
tion of the analytical hierarchy, which may uncover new approaches to classical
problems.

We begin by reviewing the inductive definitions of recursive functionals and
real recursive functions. In Section 3 we define a syntactical rank to stratify
real recursive functions into a hierarchy and review previous results. We then
establish a correspondence between this hierarchy and the analytical hierarchy
in Section 4, and in the final section we use real recursive functions to show an
analogue of Post’s theorem for the analytical hierarchy.

2 Recursive classes

We aim to find a correspondence between a class of predicates of second-order
arithmetic and a certain class of functions over real numbers. We encode real
numbers using total functions of natural numbers with any standard continuous
surjection from Baire space to R (This surjection exists, since R is a Polish space
[cf. Moschovakis, 1980]. We refer to Ko [1991] for a discussion of such mappings).
We denote variables ranging over R and variables ranging over total functions
of natural numbers in the same way, with the letters w, x, y, z, and treat them
indifferently throughout the paper. Variables ranging over N will be denoted
with a, b, c.

We begin by defining two inductive classes of functions, using the succinct
function algebra notation found in [Clote, 1999]: A function algebra

F = [f1, f2, . . . ;O1,O2, . . .]

is the smallest class of functions containing f1, f2, . . . and closed for the operators
O1,O2, etc.

In order to define the classical recursive functionals we will use the following
basic functionals:

1. The zero functional Z, such that Z(; a) = 0;
2. The successor functional, S, given by S(; a) = a + 1;
3. The projection functionals, where each Um,n

i obeys

Um,n
i (x1, . . . , xm; a1, . . . , an) = ai;

4. The oracle functionals, Om,n
k , such that

Om,n
k (x1, . . . , xm; a1, . . . , an, b) = xk(b).



We write C, R and µ to stand for the composition, recursion and minimali-
sation operators. V is the aggregation operator: If F1, . . . , Fk are k functionals,
then

V[F1, . . . , Fk](x̄; ā) = (F1(x̄; ā), . . . , Fk(x̄; ā))

Definition 1. The class of restricted partial recursive functionals, REC(N), is
a class of vector functions whose variables range over total functions of natural
numbers and over natural numbers, given by the function algebra

REC(N) = [Z,S,Um,n
i ,Om,n

k ; C,R, µ,V].

We then say that a predicate P (x̄, ā) over functions and natural numbers is
recursive if there is a function χP ∈ REC(N) such that χP (x̄; ā) = 1 if P (x̄, ā)
holds and χP (x̄; ā) = 0 otherwise.

Now we move on to an inductive class of partial vector functions over real
variables which was originally presented in [Moore, 1996] and reformulated by
Mycka and Costa [2004]. In this class of partial vector functions recursion is
replaced by differential recursion and minimalisation is replaced by infinite lim-
its. The basic functions will be 1̄n, 1n and 0n, such that 1̄n(x1, . . . , xn) = −1,
1n(x1, . . . , xn) = 1 and 0n(x1, . . . , xn) = 0, and the projections Un

i . Given an
n-ary function f and an (n+1+k)-ary function g, both with k components, the
function obtained by differential recursion, R[f, g], is the (n + 1)-ary solution
with k components of the initial value problem

R[f, g](x̄, 0) = f(x̄),
∂yR[f, g](x̄, y) = g(x̄, y,R[f, g](x̄, y)).

The application of R is restricted to the case when for every x̄ one has that
R[f, g](x̄, · ) is unique, continuous and defined on the largest open interval con-
taining 0 in which such a unique continuous solution exists almost everywhere.
We also demand that g(x̄, y,R[f, g](x̄, y)) is defined for every y in this interval.1

Given an (n + 1)-ary function f with k components, the function obtained by
an infinite limit, l[f ], is the n-ary function given by

l[f ](x̄) = lim
y→∞

f(x̄, y).

Identically we define the operators of infinite supremum limit and infinite in-
fimum limit: ls[f ](x̄) = lim supy→∞ f(x̄, y), li[f ](x̄) = lim infy→∞ f(x̄, y).2 Fi-
nally, v is an aggregation operator similar to V but defined for vector functions
over the reals.

1 See Pouso [2001], Hassan and Rzymowski [1997] regarding existence and uniqueness
of almost-everywhere solutions to these differential equations. The restrictions we
impose imply that the operator R is a partial operator.

2 Should the function f be partial and undefined for arbitrarily large values of y, then
the infinite limits are also undefined.



Definition 2. The class of real recursive vector functions, REC(R), is given by
the function algebra

REC(R) = [1n, 1̄n, 0n,Un
i ;C,R, l, ls, li,v].

An operator similar to classical recursion is the iteration operator I, such
that for an n-ary function f with n components3

I[f ](x̄, y) ≡ f [y](x̄) =

b|y|c times︷ ︸︸ ︷
f ◦ f ◦ . . . ◦ f(x̄).

It was shown by Loff et al. [2007, Proposition 4.3] that taking the binary sum,
product and division as basic functions one can replace differential recursion with
iteration:

Proposition 1. REC(R) is also given by the function algebra

REC(R) = [1n, 1̄n, 0n,Un
i ,+,×, /;C, I, l, ls, li,v].

3 The η-hierarchy

We call description to the syntactical expression testifying that a certain function
f is in a function algebra. Consider, for instance, the exponential. This function
can be given by a simple differential recursion scheme:

exp(0) = 1 ∂y exp(y) = exp(y)

A description for the exponential function is, then, 〈R[10,U2
2]〉. We enclose de-

scriptions between angles to stress the difference between the function denoted
by R[10,U2

2] and its expression.
It is then possible to establish syntactical measures of complexity of func-

tions by considering their descriptions. In classical recursion theory we can, for
instance, count nested primitive recursions and show that the resulting hierarchy
does not collapse.

Here we establish a hierarchy of real recursive functions based on the number
of nested limits needed to describe a function. In the first level we have functions
which do not need limits to be defined and then at each level we allow for an
additional infinite limit to be applied to functions in the previous level.

Definition 3. The η-hierarchy is an N-indexed family of real recursive vector
functions, and the nth level of the η-hierarchy, Hn, is given by

H0 = [0n, 1̄n, 1n,Un
i ;C,R,v]

Hn+1 = [{f, l[f ], ls[f ], li[f ] | f ∈ Hn};C,R,v]4

3 Notice that the function f is iterated only a non-negative integer number of times.
By convention, f [0](x̄) = x̄.

4 To build the (n + 1)th level, we take the functions in the previous level and their
limits, and close the resulting set under the remaining operators. The hierarchy thus
becomes organized by the rank of the infinite limit operators.



Proposition 2. (I) [Mycka and Costa, 2004, Loff et al., 2007] The functions
λx. 1

x , log and exp of arity 1 and the functions +, ×, / and λxy.xy of arity
2 are in H0.

(II) [Mycka and Costa, 2004, Loff et al., 2007] Kronecker’s δ and Heaviside’s
Θ, given by

δ(x) =

{
1 if x = 0
0 otherwise

and Θ(x) =

{
1 if x > 0
0 otherwise

are in H1.
(III) [Mycka and Costa, 2004, Loff et al., 2007] If a function f is in Hi, then

I[f ] is in Hmax(i,1).
(IV) [Mycka, 2003] There are real recursive tuple coding functions in H3, i.e.,

for every n and 1 6 i 6 n, we have γn, γn,i ∈ H3 and such that

γn(γn,1(x), . . . , γn,n(x)) = x, γn,i(γn(x1, . . . , xn)) = xi and γn,i(0) = 0.

One can conclude from (I,II) above that the functions given by

|x| = (2θ(x)− 1)x and lt(x, y) = θ(y − x)− δ(y − x) =

{
1 if x < y,

0 otherwise,

are also in H1 and from (IV) that γ−1
m (x) = (γm,1(x), . . . , γm,m(x)) is in H3.

Definition 4. The sup and inf operators are given by

sup[f ](x̄) = sup
y∈R

f(x̄, y) and inf [f ](x̄) = inf
y∈R

f(x̄, y).

More exactly, sup[f ](x̄) (or inf [f ](x̄)) is the value z such that for all y ∈ R
some w > 0 verifies z − w = f(x̄, y) (resp. z + w = f(x̄, y)). This means that
sup[f ](x̄) is undefined if f(x̄, y) is undefined for some y. In order to show that
REC(R) is closed for sup and inf , we use a function similar to the remainder
function for the natural numbers in order to create a periodic function, and take
the supremum or infimum limit of that function.

Definition 5. (y mod z) is the number in [0, |z|) — or (−|z|, 0] if y < 0 — such
that y = n|z|+ (y mod z) for some n ∈ Z.

Proposition 3. mod is in H1.

Proof. Set (y mod z) = U2
1(I[h](y, sg(y)|z|, y

z + 1)), where

h(y, z) =

{
(y, z) if |y| < |z|,
(y − z, z) otherwise,

= (y − z × (1− lt(|y|, |z|)), z),

and sg(y) = 2Θ(y)− 1− δ(y). ut



Proposition 4. If f ∈ Hn, then sup[f ], inf [f ] ∈ Hn+2.

Proof. Given an (n+1)-ary function f ∈ Hn we define the new periodic function
F ∈ Hmax(n,1), given by F (x̄, y, z) = f(x̄, (y mod z)), and then we set

fs
±(x̄) = lim

z→∞
lim sup

y→∞
F (x̄,±y, z).

Now we have sup[f ](x̄) = max(fs
+(x̄), fs

−(x̄)), where max(x, y) = lt(x, y) × y +
(1− lt(x, y))× x. We proceed in the same way for inf [f ]. ut

4 The analytical hierarchy

We present the analytical hierarchy of predicates, and relate it with the η-
hierarchy.

Definition 6. The analytical hierarchy of predicates consists of three N-indexed
families of predicates over natural numbers and functions of natural numbers:

1. Σ1
0 is the class of predicates that can be given using number quantifiers over

a recursive predicate, and Π1
0 = Σ1

0 .
2. Σ1

n+1 is the class of predicates given by ∃y φ(x̄, y, ā), with φ in Π1
n.

3. Π1
n+1 is the class of predicates given by ∀y φ(x̄, y, ā), with φ in Σ1

n.
4. ∆1

n = Σ1
n ∩Π1

n.

We write Σ1
ω to stand for ∪n∈NΣ1

n, and in the same way for Π1
ω and ∆1

ω. We
will use abundantly the following result.

Proposition 5. (a) Σ1
n+1 is closed for existential quantification over functions.

(b) Π1
n+1 is closed for universal quantification over functions.

(c) Π1
n+1 and Σ1

n+1 are closed for existential and universal quantification over
natural numbers.

(d) If P ∈ Σ1
n then some P ? also in Σ1

n is such that ∀a P ⇐⇒ ∀x P ?.
(e) If P ∈ Π1

n then some P ? also in Π1
n is such that ∃a P ⇐⇒ ∃x P ?.

Definition 7. We say that a function f : Rm → R
n is in Σ1

k if the (n+m)-ary
predicate of expression z̄ = f(x̄) is in Σ1

k. Similarly for Π1
k and ∆1

k.

We assume below that the surjection from functions of natural numbers to
real numbers mentioned in page 2 allows us to obtain, for a given number n, the
first n digits of the coded real number.

Proposition 6. The functions 1n, 1̄n, 0n,Un
i ,+,×, / and floor, as well as the

predicates of equality and inequality over the reals, are in ∆1
0.

Proof. We’ll begin by showing that there is a recursive way to decide the predi-
cate over the reals given by the expression ‘x and y are not different up to the
nth digit’, which we write x =n y. An algorithm to decide this predicate needs to
solve the ambiguity of the representation of a real number by binary expansion,



and we can make it work the following way: given two real numbers x, y and a
natural number n, we obtain the first n digits of the two reals and verify if they
are the same. If they are, then we decide that x =n y. If the digits are not equal
we consider the first different digit — one is 0 and the other 1 — and check if
the digits after the 0 are all 1s and the digits after the 1 are all 0s.5 If so, then
we decide that x =n y, and we decide that x6=ny otherwise. The predicate of
real number equality is then given by: ∀n x =n y, which is in Π0

1 ⊂ ∆1
0. For

the function +, we define a predicate, of expression z =n x + y, that decides if
z = x + y for the first n digits of z, x and y. This function computes the sum
of the truncations of x and y to the nth fractionary digit and checks if resulting
rational number coincides with z to the nth digit using the method shown above.
If so, the function is valued 1, and 0 otherwise. Now we have that z = x + y if
and only if ∀n z =n x + y, which is ∆1

0. The proof is similar for the remaining
operations, except that the number of required significant digits varies. ut

A single real number can code any finite tuple of real numbers by alternating
the digits of the real numbers in the tuple (this is, incidently, how the γ functions
of Proposition 2 work). In this sense, we write yn,i to stand for the ith real
number in the n-ary tuple coded by y (again, yn,i = γn,i(y)). For an m-ary tuple
ȳ, we write ȳn,i to stand for the tuple ((y1)n,i, . . . , (ym)n,i). Then it is not hard
to see that if some n-ary predicate P is in ∆1

n,6 then the (n + 1)-ary predicate
P ? given by

P ?(ȳ, n) ⇐⇒ ∀i 6 nP (ȳn,i)

is also in ∆1
n.

Proposition 7. All real recursive functions belong to the analytical hierarchy,
in the sense of Definition 7.

Proof. The result is proved by induction on the structure of REC(R) presented in
Proposition 1. Proposition 6 gives us the result for the atomic functions. Propo-
sition 5 will suffice for the remaining operators. If the real recursive functions f
and g are in Σ1

n, then C[f, g] is in Σ1
n, since:

z̄ = C[f, g](x̄) ⇐⇒ ∃ȳ z̄ = f(ȳ) ∧ ȳ = g(x̄).

Let f be a real recursive n-ary function with n components in Σ1
n. Then I[f ] is

in Σ1
n, since z̄ = I[f ](x̄, y) if and only if

∃w̄∃n [n = byc ∧ w̄n,1 = f(x̄) ∧ (∀i 6 n)[w̄n,i+1 = f(w̄n,i)] ∧ z̄ = w̄n,n]

If f is a real recursive (n + 1)-ary function in Σ1
n, then ls[f ] ∈ Π1

n+5 ⊆ Σ1
n+6,

since z̄ = lim supy→∞ f(x̄, y) if and only if

∀δ > 0∃ε∀ε? > ε∃s > ε?∀s? > ε? [f(x̄, s) > f(x̄, s?) ∧ |z̄ − f(x̄, s)| < δ] .
5 e.g. x = 101.110000 and y = 101.101111, where the first different digit is underlined.
6 Remember that Σ1

n−1∪Π1
n−1 ⊂ ∆1

n, which can be proven by adding extra quantifiers
to predicates in Σ1

n−1 ∪Π1
n−1 [see Odifreddi, 1989, p. 381].



We can do identically for lim inf. We also have that

z̄ = lim
y→∞

f(x̄, y) ⇐⇒ ∀δ > 0∃ε∀ε? > ε [|z̄ − f(x̄, ε?)| < δ] ,

resulting in l[f ] ∈ Π1
n+3 ⊆ Σ1

n+4. If f1, . . . , fn are in Σ1
n then v[f1, . . . , fn] is

trivially also in Σ1
n. ut

It was proven by Loff et al. [2007, Proposition 4.9] that defining a function
f ∈ Hn with iteration instead of differential recursion requires n+7 nested limits.

Corollary 1. For every natural number n we have Hn ⊆Σ1
6n+43.

Definition 8. The characteristic of a predicate P over Nm × Rn is the total
function χP : Nm ×Rn → {0, 1} such that χP (ā, x̄) = 1 if and only if P (ā, x̄)
holds. We say that such a predicate P has a real recursive characteristic f if f is a
real recursive function such that, for every ā ∈ Nm, x̄ ∈ Rn, χP (ā, x̄) = f(ā, x̄).
We write P ∈ Hk if there is a real recursive characteristic of P in Hk.

Proposition 8. All predicates in the analytical hierarchy have real recursive
characteristics.

Proof. Mycka and Costa [2004, p. 855] show that all Π1
1 predicates have real

recursive characteristics in at most H6, and so all predicates in ∆1
0 ⊂ Π1

1 have real
recursive characteristics. We now show that if P is an (n+1)-ary predicate with
a real recursive characteristic χP , then there are real recursive characteristics of
the predicates given by ∀yP (x̄, y) and ∃yP (x̄, y). We have shown in Proposition
4 that if a function is real recursive, then so is its supremum and infimum over
the positive or negative infinite interval. So we have that ∀yP (x̄, y) if and only
if inf [χP ](x̄) = 1 and that ∃yP (x̄, y) if and only if sup[χP ](x̄) = 1. This way we
conclude that all analytical predicates have real recursive characteristics. ut

Proposition 9. If f is an n-ary vector function with m real components such
that Γf , given by

Γf (z̄, x̄) =

{
1 if z̄ = f(x̄) and
0 otherwise,

is in Hi, then f is in Hmax(i+2,3).

Proof. Remember the tuple coding functions from proposition 2. We get an
(n + 1)-ary function

Γ ?
f (x̄, z) = z × Γf (γ−1

m (z), x̄) =

{
z if z = γm(f(x̄)),
0 otherwise.

Consider
Γ ??

f (x̄) = sup
z∈R

Γ ?
f (x̄) + inf

z∈R
Γ ?

f (x̄);



should f(x̄) be defined, one has that Γ ??
f (x̄) = γm(f(x̄)), and if f(x̄) is undefined,

then we have Γf (γ−1
m (Γ ??

f (x̄)), x̄) = 0. So set

f(x̄) =
γ−1

m (Γ ??
f (x̄))

Γf (γ−1
m (Γ ??

f (x̄)), x̄)
.

ut

Corollary 2. For every natural n we have ∆1
n ⊆H2n+8.

Our first main result follows from Corollaries 1 and 2:

Theorem 1. REC(R) is the class of functions given by an analytical predicate,
i.e.,

REC(R) = {f | the predicate given by z̄ = f(x̄) is in ∆1
ω}.

Now we prove a well-known theorem. As is now expected, results about real
recursive functions imply their counterparts in the analytical hierarchy.

Proposition 10. The analytical hierarchy does not collapse, i.e., there is no
number n such that ∆1

ω ⊆ ∆1
n.

Proof. If the analytical hierarchy collapsed to the level ∆1
n for some n, then

one could find a universal analytical predicate, Ψ ∈ ∆1
n, with a real recursive

characteristic χΨ ∈ H2n+6. By Proposition 9 one concludes that the η-hierarchy
collapses to level H2n+8. It was shown in [Loff et al., 2007, Theorem 6.2] that the
η-hierarchy does not collapse, and so neither does the analytical hierarchy. ut

5 Analogue of Post’s theorem

While there is no Post theorem which relates the analytical hierarchy with nat-
ural recursive functions, we will show below an analogue of Post’s theorem that
relates the analytical hierarchy and real recursive functions.

We begin by defining relativised versions of REC(R) and of the η-hierarchy.
We will use infimums and supremums instead of infinite limits because they are
conceptually closer to quantification.

Definition 9. Let F be a set of vector functions over the real numbers. The
class of real recursive vector functions relativised to F , REC(R,F), is given by

REC(R,F) = [1n, 1̄n, 0n,Un
i ,+,×, /,F ;C, I, sup, inf ,v].

If P is a predicate over the reals, then class of real recursive vector functions
relativised to P is REC(R, {χP }).

This definition is justified by the following equivalence, which states that
supremums and infimums can be used to obtain infinite limits.



Proposition 11. REC(R,F) = [1n, 1̄n, 0n,Un
i ,+,×, /,F ;C, I, l, li, ls,v].

Proof. One trivially has that

REC(R,F) ⊆ [1n, 1̄n, 0n,Un
i ,+,×, /,F ;C, I, l, li, ls,v],

by Proposition 4. We must now show that REC(R,F) is closed for l, ls, li. If f
is an (n + 1)-ary function in REC(R,F), then the (n + 1)-ary function h, given
by

h(x̄, y) = sup
z>y

f(x̄, z) = sup
z∈R

f(x̄, y + z2),

is also in REC(R,F). This is enough to show the closure, since

lim sup
y→∞

f(x̄, y) = inf
y∈R

sup
z>y

f(x̄, z)

and one can obtain l and li from ls [see Mycka, 2003]. ut

Now we define a relativised η-hierarchy, by counting the number of supre-
mums and infimums needed to define a function in REC(R,F). We will dis-
tinguish between even and odd levels of the hierarchy. The even levels will be
obtained by allowing one application of sup or inf and the odd levels will be
the closure of the even levels for the remaining operators.

Definition 10. The nth level of the η-hierarchy relativised to a set of real func-
tions F , HFn , is inductively defined by

HF0 = {1n, 1̄n, 0n,Un
i ,+,×, /} ∪ F

HF2n+1 = [HF2n;C, I,v]

HF2n+2 = {f, sup[f ], inf [f ] | f ∈ HF2n+1}

Since y = χQ(x̄) ⇐⇒ (y = 1∧Q(x̄))∨(y = 0∧¬Q(x̄)), we get the following.

Proposition 12. Q ∈ ∆1
n if and only if χQ ∈ ∆1

n.

The new hierarchy gives the following analogue of Post’s (1948) theorem:

Theorem 2. For every n > 1

(1) If Q ∈ ∆1
n and χP ∈ HQ

2 then P ∈ ∆1
n+1.

(2) If P ∈ ∆1
n+1 then χP ∈ HQ

2 ∩HR
2 for some Q ∈ Π1

n and R ∈ Σ1
n.

Proof. To prove (1), we show that every function in HQ
2 is in ∆1

n+1. By Proposi-
tions 6 and 12 we conclude that HQ

0 ⊆ ∆1
n ⊂ Σ1

n. The proof shown for Proposition
7 is sufficient to show that functions obtained by composition, iteration or ag-
gregation — the functions in HQ

1 — are in Σ1
n. Now suppose a function is given

by inf [f ] for some function f ∈ Σ1
n. See that

z = inf
y∈R

f(x̄, y) ⇐⇒ ∀y[z 6 f(x̄, y)] ∧ ∀t > z∃u[t > f(x̄, u)] ⇐⇒



∀y∀t∃u∃v∃w[v > 0 ∧ w > 0 ∧ z + v = f(x̄, y) ∧ (t > z ⇒ t− w = f(x̄, u))]

gives a predicate in Π1
n+1, and we can do similarly for sup. So HQ

2 ⊆ Π1
n+1. But if

χP ∈ Π1
n+1 then both P and ¬P are in Π1

n+1 and so we get P ∈ ∆1
n+1. To prove

(2) take P in ∆1
n+1. This means that P (x̄) ⇐⇒ ∃yQ(x̄, y) ⇐⇒ ∀yR(x̄, y)

for some Q ∈ Π1
n, R ∈ Σ1

n. So immediately we get χP = sup[χQ] ∈ HQ
2 and

χP = inf [χR] ∈ HR
2 ut

6 Concluding remarks

We have seen that the inductive closure of some very basic functions for the
operations of solving differential equations and taking infinite limits gives us
exactly the same expressive power as the analytical hierarchy.

Effectively, this will trivialise the proof that some given function is real re-
cursive. For instance, χQ is real recursive simply because

z = χQ(x) ⇐⇒ (z = 1 ∧ ∃a∃b ax = b) ∨ (z = 0 ∧ ¬∃a∃b ax = b)

gives an analytical predicate.
Alas, the analogue of Post’s theorem that we obtained is not as good as one

would wish: an equivalence would be better. We cannot seem to be able to settle
the question if a predicate P is in ∆1

n+1 then can we find a predicate Q in ∆1
n

such that P ⇐⇒ ∀Q? This would provide the intended result.
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