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Abstract. We show that, using our more or less established framework
of inductive definition of real-valued functions (work started by Cristo-
pher Moore in [9]) together with ideas and concepts of standard com-
putability we can prove theorems of Analysis. Then we will consider our
ideas as a bridging tool between the standard Theory of Computability
(and Complexity) on one side and Mathematical Analysis on the other,
making real recursive functions a possible branch of Descriptive Set The-
ory. What follows is an Extended Abstract directed to a large audience of
CiE 2007, Special Session on Logic and New Paradigms of Computabil-
ity. (Proofs of statements can be found in a detailed long paper at the
address http://fgc.math.ist.utl.pt/papers/hierarchy.pdf.)

1 Statement of the conjecture and its solution

Consider a class of real-valued functions closed under the operations of composi-
tion, of finding the solution to a first order differential equation and the taking of
an infinite limit. Thinking briefly about the last two operations, one may observe
that they seem to be related. For instance,

exp(x) = lim
y→∞

(1 +
x

y
)y,

and also
exp(0) = 1, ∂y exp(y) = exp(y).

The number π can be expressed by a differential equation that gives arctan,
since π = 4arctan(1), and we also know, e.g., that

π = lim
y→∞

24y+1y!4

(2y + 1)(2y)!2
.
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Many other examples may lead us to wonder if this property is universal, i.e.,
if we can replace the taking of an infinite limit of a function f by the solution of
a first order differential equation involving functions no more complex than f .
We may also wonder if there is a limit of definability in Analysis, e.g., to know
if via limits we can always define new functions or else if all functions can be
defined using an upper bound in the number of limit taking.

We will use the toolbox of computability theory to show that while we can
always express the solution of a first order differential equation through infinite
limits, we cannot always do the opposite.

2 The model of recursive real-valued functions

In a sequence of papers, starting with Cristopher Moore’s seminal paper [9],
we have established a robust framework to think about a theory of definability
of real-valued functions. This theory covers a large spectrum of functions from
classes of recursive functions extended to the real numbers to the characteristic
functions of predicates of the Analytic Hierarchy.

An in-depth overview of the achievements of this theory can be studied in our
reference papers [4, 11, 12, 14, 8, 15] together with a most recent one by Bruno
Loff (see [7]) submitted to this Conference, and [2, 3] for other, no less relevant
contributions (and the new trend represented by several recent papers by Olivier
Bournez, Manuel Campagnolo, Daniel Graça and Emmanuel Hainry).

In the original paper by Cristopher Moore, the key idea we acknowledge
nowadays (among all motivations that such a paper provided) is the replace-
ment of the standard recurrence scheme for recursive functions by the so-called
differential recursion scheme. In its simplest form (removing the vector formu-
lation) this scheme reads as follows: the (n+ 1)-ary function h is defined from a
n-ary function f and a (n+ 2)-ary function g

h(x1, . . . , xn, 0) = f(x1, . . . , xn),

∂yh(x1, . . . , xn, y) = g(x1, . . . , xn, y, h(x1, . . . , xn, y)),

as the solution of this first-order differential equation, if some conditions hold,
where x1, ..., xn are the parameters, y is the recurrence variable, and the last
variable of g stands for the transport variable.

In 2004, we introduced in [12] the limit scheme as a replacement for classical
minimalization: the n-ary function h is defined from a (n+1)-ary function f via
infinite limit taking

h(x1, . . . , xn) = lim
y→∞

f(x1, . . . , xn, y).

The definition of Real Recursive Functions runs now semi-formally as follows:

Definition 2.1. The class of Real Recursive Functions, REC(R) for short, is
the smallest class of real-valued functions which contains some constants (−1, 0
and 1 suffice) and the standard projections and which is closed under composi-
tion, differential recursion and the taking of infinite limits.



By now, many readers know the nice starting examples which enchant our
eyes due to their simplicity, such as

h(x, 0) = x, ∂yh(x, y) = 1,

having the function of addition λxy. x+ y as solution, or

h(x, 0) = 0, ∂yh(x, y) = x,

which gives λxy. x× y, and

h(0) = 1, ∂yh(y) = h(y),

resulting in the exponential.
Another class of interesting examples uses infinite limits:

δ(x) = lim
y→∞

(
1

x2 + 1
)y

which is Kronecker’s δ function over the reals, or

sgn(x) = lim
y→∞

arctan(xy)
π
2

which is the signal function, or

Θ(x) =
δ(x) + sgn(x) + 1

2
,

the Heaviside function defined by composition.
A real recursive number in our framework is the value of real recursive func-

tion on a basic constant like 0. Notice that the class of real recursive functions
is countable infinite, thus the set of real recursive numbers is also countable. It
turns out that a number y = h(x), where x is a previously defined real recursive
number and h some real recursive function, is also real recursive. E.g., Neper’s
e is given by exp(1) and π is given by 4 arctan(1). Numbers can be thought of
as entire computable structures, indivisible entities [9], or computable by digits
(as in the classical way), using continued fractions.

Let us add at this point that theory of real recursive functions is intended
to be more analytic in its form than the well-known approach of computable
analysis. However, on some levels these theories coincide (see [1]).

We tried to show that our framework is versatile: from a careful and not so
complex definition of the (countable) set of recursive functions over the reals we
show by means of the toolbox of Analysis that: (a) Laplace transform can be
used to quickly obtain useful real recursive functions and to measure their rate
of growth, (b) the embedding of Turing machines into continuous time recursive
functions is trivial (take a look at the newest definition in [15]), (c) a (limit)
hierarchy of real recursive functions exist to classify hardness of functions.

The fact that the set of real recursive functions is countable gives us a pos-
sibility to consider decidability questions for these functions. For example it has



been proved in [14] that for a real recursive function the problem of its do-
main is undecidable and the identity of two real recursive functions cannot be
determined by any real recursive function.

Let us stop here to study a bit further the mentioned hierarchy of real re-
cursive functions. If η(f) counts the smallest rank of the limit operator — the
number of nested limits — in every description of a function f , then we can
define the following hierarchy of sets:

Hi = {f : η(f) ≤ i}.

In [12] we established the results that follow.

Proposition 2.1. The functions +, ×, −, exp, sin, cos, log (inter alia) are in
H0, Kronecker’s δ function, the function sgn, and Heaviside’s θ function (inter
alia) are in H1. Euler’s Γ function and Riemann’s ζ function are in H1.

We can add separation results such as:

Proposition 2.2. H0 6= H1 (since Euler’s Γ function and Riemann’s ζ function
are in H1 and not in H0.

About this η-hierarchy (of limits), we may add further topics. We showed
in [12] that we can embed the entire arithmetical hierarchy within the limit
hierarchy up to some finite level (up to a finite number of limit operations),
where the analytic hierarchy starts. The use of limits gives rise to uncomputable
functions, e.g., at some level we get the halting problem solved.

This means, inter alia, that strong uncompressible numbers like Chaitin’s
halting probability are found in very precise levels of the limit hierarchy.

Proposition 2.3. The classical halting problem is decidable in some level (H3)
of the η-hierarchy. Chaitin’s Ω is a real recursive constant. The Arithmetical
Hierarchy is confined to a finite level of the η-hierarchy (H6, where the Analytical
Hierarchy starts).

We can prove that the (Hi)i∈N does not collapse (the full proof can be found
in the submitted paper [8]) and contains the whole Arithmetical Hierarchy and
the whole Analytical Hierarchy. In fact, Bruno Loff proved in [7] the following
most interesting characterization (interesting both for real recursive functions,
and for the analytical hierarchy — the later becoming defined without quantifiers
and in a single inductive step):

Proposition 2.4. Real recursive functions are those functions f such that the
predicate expression y = f(x) is in ∆1

ω.

To these previous aspects, we should add the impact of a further one: (d)
in the basis of the limit hierarchy we can still find a set of functions over the
real numbers indeed computable by physical means, theoretically by Claude
Shannon’s General Purpose Analog Computer and practically by the Differential



Analyzer of Vannevar Bush (see [5]). Hence, in H0 we have truly computable
functions in the physical sense (and also in the sense of computable analysis). Is
the GPAC the ultimate limit of analog computability? Nobody really knows, but
we can add that Rubel improved the GPAC in the 90’s building up the conceptual
Extended Analog Computer, in a such a way that some limits become physically
realizable.

3 Proof methods

In the full version of this paper we prove that if we have a first order differential
equation that gives us some function, we can always find an infinite limit that
describes the same function, using a numerical approximation which asymptot-
ically behaves in the intended manner. Nonetheless, given a function expressed
by an infinite limit, we cannot always find a first order differential equation that
results in the same function, because if we could, the η-hierarchy would collapse.

We finish our extended abstract by describing how such a statement can be
proved. First, we show that

Proposition 3.1. There is no universal real recursive function, i.e., there is
no real recursive binary scalar function Ψ such that, for all n ∈ N, x ∈ R,
Ψ(n, x) = φn(x), where φ0, φ1, φ2, ... denotes an enumeration of all real recur-
sive functions: φn is the function given by a description coded by n.

Furthermore, there is no universal real recursive function ψ which verifies
ψ(n, x) = φn(x) if n codes for a description with the smallest possible rank of
the limit operators for the described function.

Finally, we prove that

Proposition 3.2. There is a universal real recursive function for each level
of the η-hierarchy, i.e., for every level Hn of the η-hierarchy, there is a real
recursive binary function Ψn such that whenever the number of nested limits in
a description e is less than n, we have Ψn(e, x) = φe(x).

These statements taken together prove that the η-hierarchy does not collapse.
The function Ψn is most probably not in Hn, but it suffices to show that it exists
in a higher level of the η-hierarchy.

We conclude that there is no real recursive universal Ψ function, nor even a
restriction of Ψ to low-rank codes, but that there are real recursive universal Ψn

functions for every level of the η-hierarchy. This assures that while we cannot
have real recursive characteristics for the problems of domain and identity for
every function, we can still have them for every function up to any level of the
η-hierarchy. Based on these two statements we prove the main theorem:

Theorem 3.1. There is no limit to inductive definability of real-valued func-
tions by composition, solving first-order differential equations and infinite limit
taking.



This result makes us feel that our framework can be considered a branch
of Descriptive Set Theory. For the purpose we recall some words of Yiannis
N. Moschovakis (see [10]): Lebesgue defined the collection of analytically repre-
sentable functions as the smallest set which contains all constants and projections
and which is closed under sums, products and the taking of limits. [...] Today we
recognize Lebesgue [1905] [see [6]] as a classical work in the theory of definabil-
ity. It introduced and studied systematically several natural notions of definable
functions and sets and it established the first important hierarchy theorems and
structure results for collections of definable objects. So do we! How close is real
recursive function theory to Descriptive Set Theory? We do not know, and the
answer to this question is an open problem in our research program.

What about connections between Mathematical Analysis and Theory of Com-
putability (and Complexity)) in the other direction? We believe that our most
general framework, with infinite limits ([12, 15, 8]), has enough ingredients to
allow a good translation of classical computability and classical computational
complexity problems into Analysis. We do believe that such translations might
be a solution to open problems described in analytic terms: we are much involved
in the definition of analog classes P and NP , and to find one good analytic rep-
resentation of the P 6= NP conjecture (see [13]).
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