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1 Instituto Superior Técnico, Dept. of Mathematics, Technical University of Lisbon
2 CMAF, Complexo Interdisciplinar, Universidade de Lisboa

Lisboa, Portugal

We overview different approaches to the study of hypercompu-
tation and other investigations on the plausibility of the physical
Church–Turing thesis. Weproposefive thesis to classify investi-
gation in this area.
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Sly does it. Tiptoe catspaws. Slide and creep.
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it all begin?
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the Halloween Tree. “You don’t REALLY know!”

— Ray Bradbury, The Halloween Tree

⋆ email:bruno.loff@gmail.com
† email:fgc@math.ist.utl.pt

1



1 INTRODUCTION

In (5; 6) Martin Davis criticises the relevance of so-calledhypercomputation.
Is hypercomputation a new theory to understand the mathematics of hyper-
degrees? Is it a theory about concrete computation in the physical world?
We review the hypercomputation concept to realise that five main views, or
trends, can be found in the literature.

People outside the field mainly think that hypercomputationis related to
the real numbers, and that models are endowed with hypercomputation by
the fact that they incorporate real parameters, using the infinite amount of
information contained in some incompressible real number.

This view is wrong! The hypercomputational contents of somecompu-
tational models have nothing to do with the infinite amount ofinformation
processed by an algebra of real numbers. Martin Davis’ paper(5) hasbeen
abusedby others, both in oral presentation and paper citation. Therelevance
of real numbers is low, and the hypercomputational contentsof these models
arise from treating the reals as an oracle, or advice:it is only possible to use
a finite part of the oracle (or real number) during a finite computation.

In these pages we overview some models of hypercomputation in order to
remove misunderstandings in research. We will organise ourdiscussion into
five sections, each of which describes one main trend in the field.

2 HYPERCOMPUTATION AS UNSIMULABLE PHENOMENA

Our first view of hypercomputation emerges from the detailedstudy of physi-
cal theories with the aim of finding whether computers can or cannot simulate
what these theories intend to model. It is based on the following:

Thesis S (for ‘simulation’). There are non-simulable phenomena in
physical theories. Thus (maybe) physical reality has hypercomputa-
tional content.

The work we will review is grounded on Turing’s definition of computable
real numbers and Lacombe–Grzegorczyk’s characterisationof computable
real functions, and it is worthwhile to recall the followingdefinitions:

Definition 1 (I) A sequence of rational numbers,(qn)n∈N, is calledcom-
putable if for some1-ary total recursive functionsa, b, c:

qn = (−1)a(n) b(n)

c(n)
.
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(II) r ∈ R is a computable real number if some computable sequence of
rational numbers,(qn)n∈N, is such that, for alln ∈ N, |qn − r| 6

2−n.

(III) X ∈ Rk is a computable tuple of real numbersif every element in
the tuple is a computable real number.

(IV) f : Rk → R is a computable function if there are three recursive
functionalsA, B, C : Rk ×N→ N such that, for every tuple~x ∈ Rk,

∣

∣

∣

∣

(−1)A(~x;n) B(~x; n)

C(~x; n)
− f(~x)

∣

∣

∣

∣

6 2−n, for everyn ∈ N.

Having established this notion of computable real functionwe can inves-
tigate whether the evolution of a system specified with computable input and
obeying certain physical laws may be uncomputable. In (23) Marian Pour-el
and Ian Richards describe a2-ary computable real functiong such that none
of the (non-unique) solutions of the differential equation

h(x) = 0 ∂xh(x) = g(x, h(x))

is computable. This result is not tied to any physical theory. In a latter article
(24) the same authors describe a certain3-ary computable functionf such
that the three-dimensional wave equation

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
−

∂2u

∂t2
= 0

with the initial conditions

u(x, y, z, 0) = f(x, y, z)
∂u

∂t
(x, y, z, 0) = 0

gives a unique solution which is not computable. In fact,u(0, 0, 0, 1) is a
non-computable real number. This result is extended in (25)to show that
given a compact setD, f can be constructed sou is not computable in any
neighbourhood of any point inD. The uncomputability of the solutions of
the wave equation has been thoroughly investigated by Weihrauch and Zhong
in (31). They study computability of functions in differenttopological spaces
to conclude that iff ∈ Ck(R3)⋆ is computable and all itskth order partial
derivatives are also computable, then the solution of the wave equation above
must be of classCk−1(R4) and all its partial derivatives of order up tok − 1

⋆ Ck(R3) denotes the space of continuously differentiable functions overR3 of degreek.
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must also be computable. We can conclude — as Pour-el and Richards al-
ready had — that the partial derivatives off are not computable, and this is,
in fact, where the uncomputability ofu comes from. In regard to the physical
feasibility of awave computer, Weihrauch and Zhong write:

In summary, even under very idealising assumptions about mea-
surements and wave propagation in reality, it seems to be very
unlikely that the Pour-el and Richards counterexample can be used
to build a physical machine with a ‘wave subroutine’ computing a
function which is not Turing computable. We may still believe that
the[physical]Church–Turing Thesis holds.

However, Pour-el and Richard’s constructions show that it is not difficult
to incorporate non-computable phenomena in physical theory. Penrose (21)
also comments Pour-el and Richards’ results:

[...] their ‘peculiar’ kind of initial data is not ‘smoothlyvarying’
(that is, not twice differentiable), in a way that one would normally
require for a physically sensible field.

Another investigator of Thesis S is Warren D. Smith. In his paper (28)
Smith describes a Newtonian system ofN point-masses in2-dimensional
Euclidean space which cannot be simulated by a Turing machine. We fix the
masses of the system to certain rational numbers, allowing such a system to be
specified by a tuple of4N real numbers — two real numbers for the position
vector and two for the velocity vector, timesN particles: we call such a tuple
a specification. The system follows the law of motion,

~̈xi = G
∑

j 6=i

mj

~xj − ~xi

‖~xj − ~xi‖3
.

Smith’s results tell us that there is no general algorithm which is, given a
computable specification, able to decide the question:Does any body in the
system intersect the unit ball in the first second of the system’s evolution?
† So being able to specify anN -body Newtonian system in2-dimensional
Euclidean space to an arbitrarily high precision is not enough to be able to
predict what the system’s behaviour will be. On (28), Smith writes:

† We can assume that if the body does intersect the unit ball in the system then it will also
intersectB(0, 1− ǫ) for some predetermined0 < ǫ < 1, i.e., Smith’s undecidability result does
not stem from the fact that the body may intersect the unit ball arbitrarily near the perimeter.
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The present paper demonstrates (I claim) that unsimulable physical
systems exist in Newton’s laws of gravity and motion for point
masses. However, it does not appear to demonstrate, that, ifwe
lived in a universe governed by those laws, we could actuallybuild a
device with super-Turing computational power.

In the next section we will study what such devices may look like. Fol-
lowing his exploration of the uncomputability of Newtoniansystems, Smith
reformulates the laws of movement to include relativistic phenomena, show-
ing that under these laws computable input will result in computable output.
In section 6 we will give a brief account on the idea that non-computability
should be an essential part of any ‘ultimate’ physical theory.

3 HYPERCOMPUTATION AS COMPUTATION WITHOUT A PRO-
GRAM

The second view we present pertains to the idea that hypercomputation can
be performed by abstract physical devices, i.e., by machines with a behaviour
obeying certain laws of physics. It is nevertheless impossible to program
these machines, as their specification cannot be described finitely:

Thesis N (for ‘not programmable’). Hypercomputation is about
computations which can not be folded into a program, but can be
performed by anABSTRACT physical machine.

The theory of analogue recurrent neural networks (ARNNs) was devel-
oped by Hava Siegelmann and Eduardo Sontag (see (27)). Each ARNN con-
sists of a finite number ofinputsandunitswhich evolve in discrete time steps.
In a network withN units andM inputs thestateof each unit is updated at
every step, following the rule

xi(0) = 0 xi(t + 1) = σ





N
∑

j=1

aijxj(t) +
M
∑

k=1

bikuk(t) + ci



 ,

wherexi(t) is the state of theith unit at timet, uk(t) is the value of thekth
binary input at timet andaij , bik, ci are real constants calledweights. Above,
σ is theactivation function, given by

σ(x) =















0 if x 6 0,

x if 0 < x < 1,

1 if x > 1.
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ARNNs provide a uniform model for expressing varied computational
power. The following table shows the set of languages decidable by an ARNN
under different restrictions. It is possible to restrict the set of weights —
imposing, for instance, thataij , bik, ci ∈ N — or the number of steps the
network is allowed to take. Bellow,t will be a time constructible function.

Set of weights Time restriction Computational powerN none Regular languagesQ none Recursive languagesQ t DTIME(t) (A)R polynomial P/poly (B)R none All languages (C)

FIGURE 1
Computational power of ARNNs under various restrictions.

Up to this point there is no claim for hypercomputation. The original work
of Siegelmann and Sontag is, first and foremost, a study in structural com-
plexity, with relevant results for non-uniform complexityclasses: there is,
we insist, no mention of hypercomputation. Nevertheless, the model has en-
dured severe criticism (5), mostly targeting Hava Siegelmann’s 1995 article
entitledComputation beyond the Turing limit(26). In this article, and in the
expanded version found in (27), Siegelmann shows that ARNNsare compu-
tationally equivalent toanalogue shift maps, a model of computation which
extends Cris Moore’sgeneralised shift maps(20). Both of these systems can
be implemented by an abstract optical device based on parabolic mirrors: the
device is set up according to the weights of the network. We discuss the fol-
lowing

Common misconception. The device cannot be built because it is
impossible to adjust the mirrors to the required infinite precision (e.g.
8, p. 100).

To understand why this is not the true reason we must explain (roughly)
a few details of how we can prove (B). Although not simple to prove, it is
straightforward to show schematically that ARNNs with realweights can de-
cideP/poly in polynomial time. From (A) above we can see that there must
be a neural net which can decide the circuit value problem in polynomial time,
call it NCVP. We also know thatP/poly is the class of languages decidable
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by polynomial size circuits. The following proposition, which we can derive
from the work by Siegelmann and Sontag, provides the final ingredient:

Theorem 2 (1) There is a bijective encoding from the set of families of cir-
cuits to the9-Cantor subset of[0, 1];

(2) if α encodes a family(Ak)k∈N of polynomial size circuits, then the code
of the nth circuit can be found among the firstp(n) algarisms of the
decimal expansion ofα, wherep is a polynomial depending on(Ak)k∈N,
and furthermore

(3) we can construct an ARNN — call itNα — with weights inQ ∪ {α} to
extract, given inputn, the code ofAn in a number of steps bounded by
p(n).

FIGURE 2
P/poly with an ARNN.

So given a set inA ∈ P/poly, we find the real numberα that codes for the
family of polynomial size circuits which decideA, build the netNα and the
netNCVP. Then we build an ARNN which, given inputx, feeds|x| into
Nα, and whenNα has extractedA|x|, feeds〈A|x|, x〉 into NCVP, from
where it obtains the output. This is schematised in Fig. 2.‡

The common misconception mentioned above can be dispelled by the fol-
lowing theorem, which tells us that linear precision is sufficient to simulate
an ARNN.

Theorem 3 The output of an ARNN aftert steps is only influenced by the first
O(t) algarisms in the decimal expansions of the weights.

This means that, given inputx, we can simulate a polynomial number
p(|x|) of steps of an ARNN in polynomial time, given as adviceO(p(|x|)) bits

‡ While the figure is not completely faithful to Siegelmann andSontag’s work — there is no
delay unitin the ARNN they present — we decided to favour clarity over accuracy.
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specifying the weights of the network: we can simulate ARNNsin P/poly.
☞ So in order to make the optical device work correctly on inputs of sizen it
would only be necessary to adjust the mirrors of the device upto a polynomial
precision inn.

☞ While this may still be to much precision to allow for implementation,
the true reason this device cannot be built in order to do hypercomputation is
more fundamental: the algarisms of the weights themselves cannot be known
in advance. Before even considering the technical problem of buildingthe
machine with the mirrors precisely adjusted, we stumble upon the evident
difficulty of finding out the angle of adjustment itself.

This clears the possibility of building such a machine for any useful pur-
pose. Nevertheless we can do the following philosophical thought experi-
ment: imagining that such a machine is build, with the mirrors positioned
more-or-less randomly, is it performing hypercomputationin some sense?

FIGURE 3
A schematic drawing of the scatter machine.

Another model which follows Thesis N is the scatter machine,recently
introduced by Edwin Beggs and John Tucker (1). The scatter machine con-
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sists of two straight mirrors forming a wedge, a laser and twolight detectors
laid out as in Fig. 3.¶ The laser can be placed (for instance) in any position
along the line having a power of2 as denominator. In this case it is possible
to obtain the value ofα (in the figure) with an exponentially small error in
polynomial time: we begin with an interval[a, b] = [0, 1], fire the laser to
a, b and a+b

2 and decide in the following step to change one ofa or b to a+b
2 ,

based on which detectors reported a hit in each of the three firings. Should
we couple this mechanical device to a Turing machine able to move the laser
in this way and read from the detectors, we can in polynomial time decide
exactlyP/poly.

4 HYPERCOMPUTERS

The most controversial view of hypercomputation pertains to the following:

Thesis P (for ‘programmable’). Hypercomputations can be
specified for an apparatus which is not physically unplausible.

There are two main paths leading to this thesis: Tien Kieu’s adiabatic
quantum computer (16; 17) and Turing machines in curved space-time (13;
7; 32). Several objections have been put forward to Kieu’s approach (30; 12;
29; 9), some have been answered (15; 19; 18), and the discussion is still ac-
tive. Problems of a physical nature — related to blue shift — have been put
forward against the use of curved space-time, which the authors believe to
have solved.

5 HYPERCOMPUTATION AS AN ORACLE OR ADVICE

The following thesis is also extremely debatable.

Thesis O (for ‘oracle’). The Universe has non-computable
information content (which may be used as an oracle to build a
hypercomputer).

Cooper and Odifreddi (3), for instance, have suggested similarities be-
tween the structure of the Universe and the structure of the Turing universe.

¶ In (1) the scatter machine is described as a Newtonian system: point particles replace the
laser light and perfectly elastic barriers replace the mirrors. For this discussion the slight differ-
ences are irrelevant: we nevertheless mention that some issues which arise by the possibility of
the point mass hitting the vertex of the barrier are solved byusing mirrors and lasers.
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Calude (2) investigates to what extent quantum randomness can be considered
algorithmically random. The search for a physical oracle was proposed by
Jack Copeland and Dianne Proudfoot (4). Their article and subsequent work
have been severely criticised (5; 11) for historical and technical errors. There
is, however, an appealing aesthetical side to what Copelandand Proudfoot
proposed. The oracles of Turing machines are often seen and taught as ab-
stract theoretical entities, merely technical devices. Wenevertheless feel that
it may be an interesting and beautiful endeavour to regard oracles as a natural
phenomena and study the oracles that arise in nature. We willgive the exam-
ple of Stonehenge. The archaeological monument ‘Stonehenge’, located near
Amesbury in the English county of Wiltshire, was built in three main phases
from 3000BC to 1500BC. In the first main stage, called ‘Stonehenge I’, the
monument was composed of around eighty standing stones. Fifty six of these
stones where laid out in a circle around the centre of Stonehenge I (see Fig.
5), and are called Aubrey holes. We can number the Aubrey holes and make
use of three tokens, placing each token in one of the holes: ifthe ith token
is in thenth Aubrey hole, we say thatthe ith register holds the numbern.
In this peculiar way, Stonehenge I can be seen as a resource bounded imple-
mentation of a (Turing-universal)3-counter machine. It is known, after the
work of Gerald Hawkins, Fred Hoyle and others (10; 14), that it is possible to
use Stonehenge as a predictor of lunar and solar eclipses. From the point of
view of the Earth both the Moon and the Sun follow approximately elliptical
orbits, as shown in Fig. 4, which cross at the nodes N and N’. Suppose the
moon is passing through N. Then a solar eclipse will occur if the sun is no
further than 15◦of N, and a lunar eclipse happens if the sun is within 10◦of
N’. If the moon is passing through N’ the situation is reversed. One can then
wait for a solar eclipse, set the three tokens in the appropriate Aubrey hole,
and use the following:

Hoyle’s algorithm

1. The first token, a little stone for instance, is moved alongthe Aubrey holes
to keep track of the28 day lunar cycle. We move the first token two places
every day, since56/2 = 28.

2. The second token counts the days of the year. Since56× 13/2 = 364, we
move the second token two places every thirteen days.

3. The third token will represent one of the nodes, say N. N andN’ them-
selves rotate around the Earth, describing a full cycle (called a Metonic
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cycle) every18.61 years. So we will move the third token three times
every year, because56/3 = 18.67.

4. Eclipses occur when the three tokens become aligned with each other up
to one Aubrey hole to the right or to the left.

FIGURE 4
The approximate orbits of the Moon and the Sun around the Earth.

Ignoring the error for now, we conclude that simple modulo56 arithmetic
is enough to predict every eclipse with one single necessaryinput: the day
of a solar eclipse when one sets the tokens in the first Aubrey hole. Now we
introduce theOracle: to the Northeast of Stonehenge I there is a5 meter tall
stone, called the ‘Heelstone’. In the morning of the Summer solstice the sun
(our oracle) is born slightly to the north of the Heelstone. To know the exact
day of the Summer solstice we wait for the day when the sun rises behind the
Heelstone. The sunrise should then proceed north for a few days, and then
back south. We count the number of days between the first sunrise behind
the Heelstone and the second. The day of the summer solstice happened in
the middle of these two events.§ With this information we can calibrate the
sun token to enough precision every year, so that StonehengeI can predict
eclipses indefinitely.||

§ The image in the first page illustrates where the sun would be,next to the heelstone, in the
day of the summer solstice.

|| The calibration procedure explained in (14) is slightly more complicated and detailed: we
only illustrate it here. The remaining tokens can also be calibrated using other oracles: the phases
of the moon give the adjustment the first token and the preciseday in which a solar eclipse occurs
allows for calibration of the third token.
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FIGURE 5
A schematic drawing of Stonehenge I.

We have described an unusual form of computation, aided by anan un-
usual oracle. In our discussion we could have replaced Stonehenge I with a
modern computer, and our oracle could be, for the sake of an example, a link
with a satellite telescope. While it seems natural to consider the Sun as an
oracle in the Stonehenge I algorithm described above, calling ‘oracle’ to this
satellite link can feel awkward — one may prefer to call it ‘input’. We defend
that apart from their symbolic value, these two sources of information have
the same nature. It is custom to consider that input is finite,and given prior to
the computation, but the sunrises or the satellite link give— in principle —
an unbounded amount of data. They act as an oracle. Without these oracles
both Stonehenge I and our modern computer would eventually be incapable
of predicting eclipses, although the modern computer couldremain providing
accurate predictions for hundreds of years.

Consider the physical Church–Turing type of thesis, opposite to Thesis S:
the physical world is simulable.This thesis leads us to conclude that one
could, in principle, construct a Turing machine that could successfully pre-
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dict eclipses forever, without the use of any oracle.# Being able to predict
eclipses indefinitely, however, would not imply that the physical world is sim-
ulable, unless the prediction of planet alignments (calledconjunctions) is, in
some sense,completełfor the simulation problem.

6 HYPERCOMPUTATION AS A THEORY OF EVERYTHING

Roger Penrose (21; 22) has put forward several arguments against the idea of
a computable Universe. He distinguishes that uncomputability should man-
ifest itself in essentialand non-essentialways. Pour-el and Richard’s un-
computable solution of the wave equation is given as an example of the later.
Deeply rooted in Penrose’s work is a belief that the essential uncomputability
of the Universe will provide evidence for:

Thesis E (for ‘everything’). The final theory of physics is to be
found uncomputable.

The uncomputability described in this theory would presumably aid in ex-
plaining the — seemingly non-algorithmical — phenomenon ofconscious
intelligence, which places Roger Penrose in the debate against the strong A.I.
thesis.
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