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We overview different approaches to the study of hypercompu
tation and other investigations on the plausibility of thggical
Church—Turing thesis. Weroposefive thesis to classify investi-
gation in this area.

Halloween.

Sly does it. Tiptoe catspaws. Slide and creep.

But why? What for? How? Who? When! Where did
it all begin?

“You don'’t know, do you?” asks Carapace Clavicle
Moundshroud climbing out of the pile of leaves under

the Halloween Tree. “You don't REALLY know!”

— Ray Bradbury, The Halloween Tree
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1 INTRODUCTION

In (5; 6) Martin Davis criticises the relevance of so-calfgghercomputation.
Is hypercomputation a new theory to understand the mathesrathyper-
degrees? Is it a theory about concrete computation in theigddyworld?
We review the hypercomputation concept to realise that fiagnaiews, or
trends, can be found in the literature.

People outside the field mainly think that hypercomputaisorelated to
the real numbers, and that models are endowed with hypendatign by
the fact that they incorporate real parameters, using tfieiten amount of
information contained in some incompressible real number.

This view is wrong! The hypercomputational contents of saompu-
tational models have nothing to do with the infinite amounindérmation
processed by an algebra of real numbers. Martin Davis’ pégerasbeen
abusedoy others, both in oral presentation and paper citation. rélevance
of real numbers is low, and the hypercomputational conteinisese models
arise from treating the reals as an oracle, or advids:only possible to use
a finite part of the oracle (or real number) during a finite coutgtion

In these pages we overview some models of hypercomputatiomer to
remove misunderstandings in research. We will organisel@gussion into
five sections, each of which describes one main trend in th fie

2 HYPERCOMPUTATION AS UNSIMULABLE PHENOMENA

Our first view of hypercomputation emerges from the detastedy of physi-
cal theories with the aim of finding whether computers caraonot simulate
what these theories intend to model. It is based on the fatigw

Thesis S (for ‘simulation’). There are non-simulable phenomena in
physical theories. Thus (maybe) physical reality has hygaputa-
tional content.

The work we will review is grounded on Turing’s definition afraputable
real numbers and Lacombe—Grzegorczyk’s characterisatiamomputable
real functions, and it is worthwhile to recall the followidgfinitions:

Definiton1  (I) A sequence of rational numbe(s,, ),cn, is calledcom-
putable if for somel-ary total recursive functions, b, c:



(I r € R is acomputable real numberif some computable sequence of
rational numbers|¢, )nen, is such that, for alln € N, |¢, — 7| <
27,

() X € R*is acomputable tuple of real numbersif every element in
the tuple is a computable real number.

(IV) f : R* — R is acomputable function if there are three recursive
functionalsA, B, C' : R¥ x N — N such that, for every tuplé € R,

B(Z;n)

_1\A(&n)
D @)

— f(@)| < 27", foreveryn € N.

Having established this notion of computable real functi@can inves-
tigate whether the evolution of a system specified with caiaiple input and
obeying certain physical laws may be uncomputable. In (28)idh Pour-el
and lan Richards describe2aary computable real functiogsuch that none
of the (non-unique) solutions of the differential equation

is computable. This result is not tied to any physical thebra latter article
(24) the same authors describe a certagry computable functiorf such
that the three-dimensional wave equation
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with the initial conditions
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gives a unique solution which is not computable. In fagt),0,0,1) is a
non-computable real number. This result is extended in {@$how that
given a compact seb, f can be constructed sois not computable in any
neighbourhood of any point iv. The uncomputability of the solutions of
the wave equation has been thoroughly investigated by \Aledtrand Zhong
in (31). They study computability of functions in differeopological spaces
to conclude that iff € C*(IR3)* is computable and all itsth order partial
derivatives are also computable, then the solution of theeveguation above
must be of clas€’*~!(R*) and all its partial derivatives of order up ko— 1

* O'*(R3) denotes the space of continuously differentiable funetioverR? of degreek:.



must also be computable. We can conclude — as Pour-el anéidilal-
ready had — that the partial derivatives oire not computable, and this is,
in fact, where the uncomputability afcomes from. In regard to the physical
feasibility of awave computeMeihrauch and Zhong write:

In summary, even under very idealising assumptions aboat- me
surements and wave propagation in reality, it seems to bg ver
unlikely that the Pour-el and Richards counterexample carused

to build a physical machine with a ‘wave subroutine’ compgta
function which is not Turing computable. We may still bedi¢vat
the[physical]Church—Turing Thesis holds.

However, Pour-el and Richard’s constructions show that itat difficult
to incorporate non-computable phenomena in physical yhd@enrose (21)
also comments Pour-el and Richards’ results:

[...] their ‘peculiar’ kind of initial data is not ‘smoothlyarying’
(that is, not twice differentiable), in a way that one woularmally
require for a physically sensible field.

Another investigator of Thesis S is Warren D. Smith. In hipgra(28)
Smith describes a Newtonian system /8f point-masses ir2-dimensional
Euclidean space which cannot be simulated by a Turing machife fix the
masses of the system to certain rational numbers, allowiclg a system to be
specified by a tuple of N real numbers — two real numbers for the position
vector and two for the velocity vector, timéé particles: we call such a tuple
aspecification The system follows the law of motion,

—
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Smith’s results tell us that there is no general algorithnicilhis, given a
computable specification, able to decide the questimres any body in the
system intersect the unit ball in the first second of the systevolution?
t So being able to specify aN-body Newtonian system ia-dimensional
Euclidean space to an arbitrarily high precision is not gfoto be able to
predict what the system’s behaviour will be. On (28), Smitites:

T We can assume that if the body does intersect the unit ballérsystem then it will also
intersectB(0, 1 — €) for some predetermingll < e < 1, i.e., Smith’s undecidability result does
not stem from the fact that the body may intersect the unitashltrarily near the perimeter.



The present paper demonstrates (I claim) that unsimulabiesioal
systems exist in Newton’s laws of gravity and motion for fpoin
masses. However, it does not appear to demonstrate, thate if
lived in a universe governed by those laws, we could actialild a
device with super-Turing computational power.

In the next section we will study what such devices may lok&.liFol-
lowing his exploration of the uncomputability of Newtoniggstems, Smith
reformulates the laws of movement to include relativistiepomena, show-
ing that under these laws computable input will result in patable output.
In section 6 we will give a brief account on the idea that nomputability
should be an essential part of any ‘ultimate’ physical tieor

3 HYPERCOMPUTATION AS COMPUTATION WITHOUT A PRO-
GRAM

The second view we present pertains to the idea that hypenaiation can
be performed by abstract physical devices, i.e., by mashiith a behaviour
obeying certain laws of physics. It is nevertheless imgmesio program
these machines, as their specification cannot be describtfi

Thesis N (for ‘not programmable’). Hypercomputation is about
computations which can not be folded into a program, but can b
performed by amBSTRACT physical machine.

The theory of analogue recurrent neural networks (ARNNS) devel-
oped by Hava Siegelmann and Eduardo Sontag (see (27)). BRNINAON-
sists of a finite number afiputsandunitswhich evolve in discrete time steps.
In a network withN units andM inputs thestateof each unit is updated at
every step, following the rule

N M
7;(0)=0 x(t+1)=0 Zaijxj(t) + Z birur(t) +ci |,
k=1

=1

wherexz;(t) is the state of théth unit at timet, u(¢) is the value of theith
binary input at time anda;;, b;x, c; are real constants callegeights Above,
o is theactivation functiongiven by

0 ifx<O,
olz)=<cx ifo<z<l,
1 ifxz>1.



ARNNSs provide a uniform model for expressing varied compatel
power. The following table shows the set of languages déteday an ARNN
under different restrictions. It is possible to restrice thet of weights —
imposing, for instance, that;;, bix,c; € N — or the number of steps the
network is allowed to take. Bellow,will be a time constructible function.

Set of weights Time restriction Computational power

N none Regular languages

Q none Recursive languages

Q t DTIME(t) (A)

R polynomial P/poly (B)

R none All languages ©
FIGURE 1

Computational power of ARNNs under various restrictions.

Up to this point there is no claim for hypercomputation. Thigioal work
of Siegelmann and Sontag is, first and foremost, a study urctstral com-
plexity, with relevant results for non-uniform complexitjasses: there is,
we insist, no mention of hypercomputation. Nevertheldssnodel has en-
dured severe criticism (5), mostly targeting Hava Siegeimsa1995 article
entittedComputation beyond the Turing lin{6). In this article, and in the
expanded version found in (27), Siegelmann shows that ARNEEompu-
tationally equivalent t@nalogue shift maps model of computation which
extends Cris Moore’generalised shift mapg&0). Both of these systems can
be implemented by an abstract optical device based on paratiorors: the
device is set up according to the weights of the network. \Weudis the fol-
lowing

Common misconception. The device cannot be built because it is
impossible to adjust the mirrors to the required infinitecisi®n (e.g.
8, p. 100).

To understand why this is not the true reason we must explaugbly)
a few details of how we can prove (B). Although not simple tover, it is
straightforward to show schematically that ARNNs with neaights can de-
cideP/poly in polynomial time. From (A) above we can see that there must
be a neural net which can decide the circuit value probleroiyrmmial time,
callit NCVP. We also know thaP/poly is the class of languages decidable



by polynomial size circuits. The following proposition, ieh we can derive
from the work by Siegelmann and Sontag, provides the finakidignt:

Theorem 2 (1) There is a bijective encoding from the set of familiesiief ¢
cuits to the9-Cantor subset o, 1];

(2) if @ encodes a familyAy)ren of polynomial size circuits, then the code
of the nth circuit can be found among the firg{n) algarisms of the
decimal expansion af, wherep is a polynomial depending q; ) xen,
and furthermore

(3) we can construct an ARNN — call¥a — with weights inQ U {a} to
extract, given input:, the code of4,, in a number of steps bounded by

p(n).

. x| Na A‘XL
NCVP —output
x—>»| delay X,
FIGURE 2

P/poly with an ARNN.

So given a set il € P/poly, we find the real number that codes for the
family of polynomial size circuits which decidé, build the nefiN« and the
netNCVP. Then we build an ARNN which, given input, feeds|z| into
Na, and whenNa has extracted|,|, feeds(A|,|, z) into NCVP, from
where it obtains the output. This is schematised in Fig. 2.

The common misconception mentioned above can be dispsfldtefol-
lowing theorem, which tells us that linear precision is sidfnt to simulate
an ARNN.

Theorem 3 The output of an ARNN aftésteps is only influenced by the first
O(t) algarisms in the decimal expansions of the weights.

This means that, given input, we can simulate a polynomial number
p(]z|) of steps of an ARNN in polynomial time, given as advigé(|z|)) bits

¥ While the figure is not completely faithful to Siegelmann @whtag’s work — there is no
delay unitin the ARNN they present — we decided to favour clarity ovesuaacy.



specifying the weights of the network: we can simulate ARNIN®/poly.
00 So in order to make the optical device work correctly on ispftsizen it
would only be necessary to adjust the mirrors of the devide agpolynomial
precision inn.

O While this may still be to much precision to allow for implentation,
the true reason this device cannot be built in order to do Ingg@putation is
more fundamental: the algarisms of the weights themselmsat be known
in advance Before even considering the technical problem of buildimg
machine with the mirrors precisely adjusted, we stumblenughe evident
difficulty of finding out the angle of adjustment itself.

This clears the possibility of building such a machine foy aseful pur-
pose. Nevertheless we can do the following philosophicaligint experi-
ment: imagining that such a machine is build, with the msrpositioned
more-or-less randomly, is it performing hypercomputatiosome sense?

light detector

light detector

FIGURE 3
A schematic drawing of the scatter machine.

Another model which follows Thesis N is the scatter machimeegently
introduced by Edwin Beggs and John Tucker (1). The scattehima con-



sists of two straight mirrors forming a wedge, a laser andltgitt detectors
laid out as in Fig. 31 The laser can be placed (for instance) in any position
along the line having a power @fas denominator. In this case it is possible
to obtain the value ofv (in the figure) with an exponentially small error in
polynomial time: we begin with an intervéd, b] = [0, 1], fire the laser to
a,b and“T“’ and decide in the following step to change one @i b to “T“’
based on which detectors reported a hit in each of the thiegdir Should
we couple this mechanical device to a Turing machine ableaeerthe laser

in this way and read from the detectors, we can in polynonmia tdecide
exactlyP/poly.

4 HYPERCOMPUTERS

The most controversial view of hypercomputation pertainthe following:

Thesis P (for ‘programmable’). Hypercomputations can be
specified for an apparatus which is not physically unpldasib

There are two main paths leading to this thesis: Tien Kiediglzatic
quantum computer (16; 17) and Turing machines in curvedespiate (13;
7; 32). Several objections have been put forward to Kieuggagch (30; 12;
29; 9), some have been answered (15; 19; 18), and the disaussstill ac-
tive. Problems of a physical nature — related to blue shift avehbeen put
forward against the use of curved space-time, which theocasithelieve to
have solved.

5 HYPERCOMPUTATION AS AN ORACLE OR ADVICE

The following thesis is also extremely debatable.

Thesis O (for ‘oracle’). The Universe has non-computable
information content (which may be used as an oracle to build a
hypercomputer).

Cooper and Odifreddi (3), for instance, have suggestedaitiges be-
tween the structure of the Universe and the structure of thin@ universe.

9In (1) the scatter machine is described as a Newtonian sygtemt particles replace the
laser light and perfectly elastic barriers replace the ongrr For this discussion the slight differ-
ences are irrelevant: we nevertheless mention that somesisghich arise by the possibility of
the point mass hitting the vertex of the barrier are solveddigg mirrors and lasers.



Calude (2) investigates to what extent quantum randommedseconsidered
algorithmically random. The search for a physical oracle weoposed by
Jack Copeland and Dianne Proudfoot (4). Their article abdeguent work
have been severely criticised (5; 11) for historical anthtézal errors. There
is, however, an appealing aesthetical side to what CopedaddProudfoot
proposed. The oracles of Turing machines are often seenaaigtittas ab-
stract theoretical entities, merely technical devices.nékertheless feel that
it may be an interesting and beautiful endeavour to regades as a natural
phenomena and study the oracles that arise in nature. Wgivelthe exam-
ple of Stonehenge. The archaeological monument ‘Stonetidogated near
Amesbury in the English county of Wiltshire, was built in¢lermain phases
from 3000BC to 1500BC. In the first main stage, called ‘Stamgje I’, the
monument was composed of around eighty standing stoneg skifof these
stones where laid out in a circle around the centre of Stamghé (see Fig.
5), and are called Aubrey holes. We can number the Aubre\stasid make
use of three tokens, placing each token in one of the holdgbkeifth token
is in thenth Aubrey hole, we say thahe ith register holds the number.
In this peculiar way, Stonehenge | can be seen as a resouncel&d imple-
mentation of a (Turing-universalrcounter machine. It is known, after the
work of Gerald Hawkins, Fred Hoyle and others (10; 14), thstpossible to
use Stonehenge as a predictor of lunar and solar eclipses the point of
view of the Earth both the Moon and the Sun follow approxiryagdiptical
orbits, as shown in Fig. 4, which cross at the nodes N and N3pSse the
moon is passing through N. Then a solar eclipse will occunéf $un is no
further than 180f N, and a lunar eclipse happens if the sun is withiAdfO
N’. If the moon is passing through N’ the situation is reveks@®ne can then
walit for a solar eclipse, set the three tokens in the appatgAubrey hole,
and use the following:

Hoyle’s algorithm

1. Thefirst token, a little stone for instance, is moved altregAubrey holes
to keep track of the8 day lunar cycle. We move the first token two places
every day, sincé6/2 = 28.

2. The second token counts the days of the year. Si6icel3/2 = 364, we
move the second token two places every thirteen days.

3. The third token will represent one of the nodes, say N. N Mhthem-
selves rotate around the Earth, describing a full cyclddda Metonic
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cycle) every18.61 years. So we will move the third token three times
every year, becauss /3 = 18.67.

4. Eclipses occur when the three tokens become aligned aith ether up
to one Aubrey hole to the right or to the left.

Lunar orbit

Solar orbit

FIGURE 4
The approximate orbits of the Moon and the Sun around thénEart

Ignoring the error for now, we conclude that simple modifiarithmetic
is enough to predict every eclipse with one single necedsant the day
of a solar eclipse when one sets the tokens in the first Aubok; INow we
introduce theDracle to the Northeast of Stonehenge | there israeter tall
stone, called the ‘Heelstone’. In the morning of the Sumnoéstiee the sun
(our oracle) is born slightly to the north of the Heelstone.Khow the exact
day of the Summer solstice we wait for the day when the sus stind the
Heelstone. The sunrise should then proceed north for a few, @ed then
back south. We count the number of days between the firstssubghind
the Heelstone and the second. The day of the summer solstppehed in
the middle of these two events. With this information we can calibrate the
sun token to enough precision every year, so that StoneHeraye predict
eclipses indefinitely.

§ The image in the first page illustrates where the sun wouldéx, to the heelstone, in the
day of the summer solstice.

Il The calibration procedure explained in (14) is slightly mopmplicated and detailed: we
only illustrate it here. The remaining tokens can also biked using other oracles: the phases
of the moon give the adjustment the first token and the preigigen which a solar eclipse occurs
allows for calibration of the third token.
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FIGURE 5

A schematic drawing of Stonehenge I.

We have described an unusual form of computation, aided tgnam-
usual oracle. In our discussion we could have replaced Senge | with a
modern computer, and our oracle could be, for the sake of ampbe, a link
with a satellite telescope. While it seems natural to carside Sun as an
oracle in the Stonehenge | algorithm described abovenggliracle’ to this
satellite link can feel awkward — one may prefer to call ipput’. We defend
that apart from their symbolic value, these two sources fairmation have
the same nature. Itis custom to consider that input is fiait€,given prior to
the computation, but the sunrises or the satellite link givén principle —
an unbounded amount of data. They act as an oracle. Withes thracles
both Stonehenge | and our modern computer would eventuallpdapable
of predicting eclipses, although the modern computer crartthin providing
accurate predictions for hundreds of years.

Consider the physical Church—Turing type of thesis, ogpdsiThesis S:
the physical world is simulableThis thesis leads us to conclude that one
could, in principle, construct a Turing machine that couldcessfully pre-
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dict eclipses forever, without the use of any oratleBeing able to predict
eclipses indefinitely, however, would not imply that the picgl world is sim-
ulable, unless the prediction of planet alignments (catl@ajunction$is, in
some senseompletefor the simulation problem.

6 HYPERCOMPUTATION AS A THEORY OF EVERYTHING

Roger Penrose (21; 22) has put forward several argumenitssatfze idea of
a computable Universe. He distinguishes that uncompitiabiiould man-
ifest itself in essentialand non-essentialvays. Pour-el and Richard’s un-
computable solution of the wave equation is given as an elaaiphe later.
Deeply rooted in Penrose’s work is a belief that the esdamntizomputability
of the Universe will provide evidence for:

Thesis E (for ‘everything’). The final theory of physics is to be
found uncomputable.

The uncomputability described in this theory would preshiyaid in ex-
plaining the — seemingly non-algorithmical — phenomenortarfiscious
intelligence, which places Roger Penrose in the debatasigaie strong A.l.
thesis.
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