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1. Introduction

The goal of the present work is to study functionals of the form

Φ(A) =
∫

Ω

φ(A(x))dx (1)

where Ω is a bounded domain in Rn and A is a matrix whose components belong to L∞(Ω).
Our study is motivated by structural optimization problems, namely by the so-called “free
material design” (see Section 2 for details).

We study properties of the functional Φ which arise naturally from mechanical
considerations, or ensure the well-posedeness of the optimization problem. Here is a
summary of these properties

− smoothness of φ
− isotropy of φ (invariance to rotations)
− monotonicity of φ (and subsequently of Φ)
− lower semi-continuity of Φ (related, but not equivalent, to the convexity of φ)
− subadditivity of φ (and subsequently of Φ)
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The most important and delicate point is the one concerning the semi-continuity of
Φ. We point out that lower semi-continuity of Φ with respect to the weak-∗ topology of
L∞ is not the correct hypothesis from the mechanical viewpoint (although it ensures that
a solution exists for the optimization problem). We introduce a different property (lower
semi-continuity with respect to the H-topology) and discuss the relations between the two,
as well as the link with the convexity of φ.

2. Setting of the problem

Let Ω be a bounded domain in Rn. Let α and β be two real constants such that
0 < α < β. Denote by Mα,β

s the set of symmetric n×n matrices A such that αI ≤ A ≤ βI
and let Mα,β

s (Ω) be the set of matrix functions A : Ω → Mα,β
s whose components are

measurable functions (and consequently belong to L∞(Ω)).
Consider some objective functional J : Mα,β

s (Ω) → R, to be minimized under a
constraint on the cost functional Φ:

min
A∈A

J (A) (2)

where, for a fixed, given c ∈ R,

A = {A ∈Mα,β
s (Ω) : Φ(A) = c} (3)

Recall that Φ is given by (1), where φ : Mα,β
s → R is some scalar function. One should

distinguish between the objective functional J (the one to be minimized), which measures
the performance of the structure according to some criteria, and the cost functional Φ
(giving the constraint) which measures the price of the structure (the fabrication cost).
Typically, J could be the compliance of the structure under some loads, but any other
objective functional could be considered (e.g. the distance to some target displacement).
In all cases, J depends on A through the solution u(A) of some elliptic problem in Ω; A
represents the material coefficients for that elliptic problem. We choose not to state any
particular form of the elliptic problem because, although J itself should satisfy certain
properties in order for the optimization problem to be well-posed, our study is focused on
the properties of the cost functional Φ.

Note that, although we use terminology from the elasticity theory, the coefficient
matrix A ∈ Mα,β

s (Ω) model other physical phenomena (like heat conduction or
electrostatics). The reason is that the meaningful and interesting case for applications
is in the elasticity framework, but we prefer to study functions φ defined on the set of
n× n matrices (the elasticity tensor is a much more complicated object).

3. Basic properties

Along our study, we shall assume that the function φ is smooth enough. Continuity
is a natural requirement, but more smoothness will be assumed when necessary.

Note that, although the function φ should be defined on the set Mα,β
s , one may find

it easier to consider that φ is defined on the whole set M+
s of symmetric positive definite
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matrices in order to obtain statements and properties independent of the parameters α
and β.

We shall also assume that the cost function is invariant to rotations. This condition
is difficult to characterize in the elasticity framework. But for the scalar problem that we
have chosen to study, it writes simply as

φ(QtAQ) = φ(A) , ∀A ∈ Mα,β
s , ∀Q orthogonal matrix

Equivalently, φ should depend only on the eigenvalues of the matrix A, taken in decreasing
order (see [1, sec. 2]).

Another natural hypothesis is that “stronger structures are more expensive than
weaker ones”, that is, if A,B ∈ Mα,β

s (Ω) are two coefficient matrices such that A(x) ≤
B(x), a.e. x ∈ Ω, then A should be cheaper than B: Φ(A) ≤ Φ(B). This is equivalent to
the monotonicity of φ:

∀A,B ∈ Mα,β
s , A ≤ B =⇒ φ(A) ≤ φ(B) (4)

Note that this assumption (φ non-decreasing) is quite natural if one wants to obtain
strong structures (for instance, when minimizing the compliance). It is far less obvious
for cases like mechanism design. Being aware of that, we shall nevertheless impose this
property on φ in the sequel.

By subadditivity of φ we mean

φ(A + B) ≤ φ(A) + φ(B) , ∀A,B ∈ M+
s

There are reasons (of mechanical nature) for taking this property into consideration.
However, its mathematical implications are not yet clear; this is why we do not focus
on subadditivity in this paper.

4. Semi-continuity of Φ

It is well-known that, for an optimization problem to be well-posed, one usually
requires the lower semi-continuity of both the objective functional and the cost functional.
One can see this by reformulating the constrained minimization problem (2-3) as an
unconstrained minimization problem

min
A∈Mα,β

s (Ω)
{J (A) + ΛΦ(A)} (5)

with the aid of the Lagrange multiplier Λ ∈ R. Assuming that Λ > 0, we see that lower
semi-continuity of both J and Φ ensures the well-posedeness of the optimization problem.

The question of the topology arises: one should check the lower semi-continuity of Φ
with respect to some topology onMα,β

s (Ω) such thatMα,β
s (Ω) be compact. An apparantly

natural choice is the weak-∗ topology of Mα,β
s (Ω), as a subset of L∞(Ω;Rn×n). This is

also convenient because it is easy to characterize integrands φ which turn the functional
Φ lower semi-continuous:
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Theorem 1 [2, pp. 142–143] The functional Φ defined by (1) is lower-semicontinuous
with respect to the weak-∗ topology of Mα,β

s (Ω) if and only if the integrand φ is a convex
function (defined on the set Mα,β

s of n× n matrices).

However, a closer look at the mechanical problem reveals that the weak-∗ topology of
Mα,β

s (Ω) is not an appropriate model: when the material coefficients oscillate (the case
of microstructures), the limit behaviour of the material is correctly described not by the
weak-∗ limit of the coefficient matrices, but by the H-limit of the same matrices. See the
last section of the present paper for details on H-convergence. Recall that Mα,β

s (Ω) is a
compact set when endowed with the H-topology.

Unfortunately, there is no simple characterization of the lower semi-continuity with
respect to the H-topology. Under the monotonicity assumption, one can prove easily one
implication:

Theorem 2 Suppose φ is a continuous non-decreasing function, in the sense of (4), on
Mα,β

s . If the functional Φ defined by (1) is lower-semicontinuous with respect to the weak-∗
topology of Mα,β

s (Ω), then Φ is also lower-semicontinuous with respect to the H-topology
of Mα,β

s (Ω).

Proof: Consider a sequence Aε of matrices in Mα,β
s (Ω), H-converging to some

A ∈ Mα,β
s (Ω). Taking into account that Mα,β

s (Ω) is compact with respect to the weak-
∗ topology, consider a subsequence ε′ of ε such that Aε′ converges weakly-∗ to some
A+ ∈ Mα,β

s (Ω) fulfilling also the condition lim inf φ(Aε) = limφ(Aε′). It is known that
A ≤ A+ (see Theorem 7), so φ(A) ≤ φ(A+) ≤ lim inf φ(Aε′) and the assertion follows.

Theorems 1 and 2 imply the following

Corollary 3 If φ is a continuous convex function on Mα,β
s , non-decreasing in the sense

of (4), then the functional Φ defined by (1) is lower-semicontinuous with respect to the
H-topology of Mα,β

s (Ω).

In general, there is no simple characterization of the lower semi-continuity of Φ with
respect to the H-topology of Mα,β

s (Ω). However, in the particular case when φ depends
only on the trace of the coefficient matrix,

φ(A) = ϕ(tr(A)) , ∀ A ∈ Mα,β
s (6)

and assuming also the monotonicity property, one can prove that lower semi-continuity of
Φ with respect to the H-topology of Mα,β

s (Ω) is equivalent to the convexity of ϕ.

Theorem 4 Let ϕ : [nα, nβ] → R be a continuous non-decreasing function. Define

φ : Mα,β
s → R , φ(A) = ϕ(tr(A))

and
Φ : Mα,β

s (Ω) → R , Φ(A) =
∫

Ω

φ(A(x))dx =
∫

Ω

ϕ(tr(A(x)))dx.

Then, Φ is lower semi-continuous with respect to the H-topology of Mα,β
s (Ω) if and only

if ϕ is convex.
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Proof for n = 2 (n > 2 is similar):
The sufficiency follows immediately from Corollary 3, since A 7→ tr(A) is (linear and)

non-decreasing in the sense of (4).
The necessity is proven by building a specific sequence of laminates. Consider γ, x

and y arbitrary numbers in [α, β]. Define

Aε = χε

[
γ 0
0 x

]
+ (1− χε)

[
γ 0
0 y

]
,

where χε
?
⇀ θ in L∞(Ω) (θ being a constant value in [0, 1]). According to Theorem 9, this

sequence of laminates H-converges to
[

γ 0
0 θx + (1− θ)y

]
,

and the lower semi-continuity condition reads

ϕ(γ + θx + (1− θ)y) ≤ θϕ(γ + x) + (1− θ)ϕ(γ + y).

Thus, ϕ is convex in the interval [γ + α, γ + β]. Since γ is arbitrary in [α, β], we obtain
the desired convexity of ϕ in [2α, 2β].

Note that, if we drop the hypothesis (6), we have no simple characterization of the
lower semi-continuity of Φ with respect to the H-topology of Mα,β

s (Ω).
Convexity is also necessary for ϕ when φ depends solely on the determinant of the

coefficient matrix, φ(A) = ϕ(det(A)): one takes precisely the laminates above and a similar
reasoning leads now to the convexity of ϕ in the interval [α2, β2]. However, it is easy to
prove that functions depending only on the determinant of A are not admissible:

Theorem 5 Let ϕ : [αn, βn] → R be a differentiable convex function. Define

φ : Mα,β
s → R , φ(A) = ϕ(det(A))

and
Φ : Mα,β

s (Ω) → R , Φ(A) =
∫

Ω

φ(A(x))dx =
∫

Ω

ϕ(det(A(x)))dx.

If Φ is lower semi-continuous with respect to the H-topology of Mα,β
s (Ω), then ϕ is

constant.

Proof for n = 2 (n > 2 is similar):
Consider a, b, c, d ∈ [α, β] four arbitrary points. Building the laminates

Aε = χε

[
a 0
0 b

]
+ (1− χε)

[
c 0
0 d

]

and applying the lower semi-continuity hypothesis, we obtain the inequality

ϕ

(
θb + (1−θ)d

θ
a + 1−θ

c

)
≤ θ ϕ(ab) + (1−θ)ϕ(cd)
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with equality for θ = 0.
We differentiate the above inequality in θ = 0:

c2ϕ′(cd)
[
(b− d)

1
c
− d

(1
a
− 1

c

)]
≤ ϕ(ab)− ϕ(cd) ,

that is,
c

a
ϕ′(cd) (ab− cd) ≤ ϕ(ab)− ϕ(cd) .

Take λ ∈ ]α, β[. Choose c = d = λ, a ∈ [λ2

β , λ[ ∩ [α, β] and define bδ = λ2+δ
a , where

δ > 0 is a small parameter. One checks easily that, for sufficiently small δ, bδ ∈ [α, β].
Taking into account that abδ = λ2 + δ and cd = λ2, we rewrite the last inequality as

λ

a
ϕ′(λ2) ≤ ϕ(λ2 + δ)− ϕ(λ2)

δ
.

Let δ ↘ 0 and recall that a < λ in order to conclude ϕ′(λ2) ≤ 0.
Choose now a ∈ ]λ, λ2

α ] and the same c = d = λ, bδ = λ2+δ
a . The inequality above

implies ϕ′(λ2) ≥ 0.
We have proved that ϕ′(λ2) = 0 for all λ ∈ [α, β], hence ϕ is constant in [α2, β2].

Theorem 5 above also shows something else: reminding that φ(A) = det A is a
polyconvex function, and thus quasiconvex and rank one convex as well, all these types of
convexities are excluded as sufficient conditions. In order for Φ to be semi-continuous with
respect to the H-topology of Mα,β

s (Ω), φ has to be either convex or something strictly
between convex and polyconvex. It would be an interesting and non-trivial task to find an
example of a function φ for which the functional Φ is semi-continuous with respect to the
H-topology of Mα,β

s (Ω), but not with respect to the weak-∗ topology.
Note also that the proofs of Theorems 4 and 5 use sequences of laminates. This means

that the conditions described in these statements are necessary for lower semi-continuity
in a weaker convergence than the one of the H-topology. The conditions described in
Theorems 4 and 5 are necessary for the lower semi-continuity of Φ with respect to the
convergence of laminates; see [3].

5. Examples

In this section we show some lower semi-continuous cost functionals, with respect to
the H-topology. The third example is a highly popular choice in homogenization theory
(see [4]), of which the free material design setting can be considered a direct generalization.

1. φ(A) = tr(A). It is the most common choice in free material design and the lower
semi-continuity of the corresponding cost functional is a direct consequence of Theorem 4.

2. φ(A) = max‖ξ‖=1 Aξ · ξ. This is the spectral radius, since only positive definite
matrices are dealt with. Being the pointwise supremum of the family {φξ}‖ξ‖=1, φξ(A) =
Aξ · ξ, it is surely a convex function. The monotonicity, although not completely obvious,
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is a simple exercise. Lower semi-continuity of the cost functional is due to Corollary 3.
The isotropy is straightforward: as an ortogonal matrix Q yields an isometry, one has

φ(QtAQ) = max
‖ξ‖=1

(QtAQ)ξ · ξ = max
‖ξ‖=1

A(Qξ) · (Qξ) = max
‖η‖=1

Aη · η = φ(A).

3. We can perform optimization in the set of all possible mixtures beteween materials
αI and βI. More precisely, define the set G = ∪0≤θ≤1Gθ ⊂ Mα,β

s (see the next section
for the definition of Gθ). For each matrix A ∈ G, one can compute explicitely the lowest
value θ such that A ∈ Gθ. This represents the “cheapest” mixture between αI and βI
producing the given material tensor A. Consider then the cost function

φ(A) = inf{θ ∈ [0, 1] : A ∈ Gθ}

We obtain a cost functional Φ defined not on the entire Mα,β
s (Ω) but only on those

matrix functions taking values in G. It is a simple exercise to prove that the set of these
functions is compact for the H-topology.

The cost function φ is continuous on G, non-decreasing and isotropic (as it is defined
in terms of eigenvalues of the matrix).

We now prove its lower semi-continuity. Let Aε−H−⇀ A; the local costs θε(x) =
φ(Aε(x)) can be supposed to converge weakly-∗, say θε

?
⇀ θ̄, because L∞(Ω; [0, 1]) is weak-

∗ compact. From Theorem 8 it is known that each Aε is a H-limit of some sequence
χε

η(βI)+ (1−χε
η)(αI), with χε

η

?
⇀ θε. Since L∞(Ω; [0, 1])×Mα,β

s (Ω) is a metrizable space,
we can take a diagonal sequence (χε

ηε
) such that

χε
ηε

?
⇀ θ̄ and χε

ηε
(βI) + (1− χε

ηε
)(αI)−H−⇀ A;

again from Theorem 8, this means precisely that A(x) ∈ Gθ̄(x), a.e. x ∈ Ω. But by
definition of θ(x) = φ(A(x)) it is then obvious that

∫

Ω

θ(x)dx ≤
∫

Ω

θ̄(x)dx = lim inf
∫

Ω

θε(x)dx,

thus proving the assertion.

6. Recall on H-convergence and bounds

This section is devoted to a review of definitions and results about homogenization
theory. For details, see e.g. [5].

Definition 6 Consider a sequence of matrix functions Aε ∈Mα,β
s (Ω). We say that Aε

H-converges to some A ∈ Mα,β
s (Ω) if, for all f ∈ H−1(Ω) and for all ū ∈ H1/2(∂Ω), the

solution uε ∈ H1(Ω) (which exists and is unique) of the problem

{−div(Aε∇uε) = f in Ω
uε = ū on ∂Ω
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converges, weakly in H1(Ω), to the solution u0 ∈ H1(Ω) (which exists and is unique) of
the problem {−div(A∇u0) = f in Ω

u0 = ū on ∂Ω

We denote the H-convergence by Aε−H−⇀ A. Note that it derives from a metrizable
topology on Mα,β

s (Ω). It is known that Mα,β
s (Ω), when endowed with the H-topology, is

compact.

Theorem 7 Consider a sequence of matrix functions Aε ∈ Mα,β
s (Ω) such that

Aε−H−⇀ A, Aε
?
⇀ A+ and A−1

ε

?
⇀ A−1

− . Then A−(x) ≤ A(x) ≤ A+(x) a.e. x ∈ Ω.

For each θ ∈ [0, 1], define the numbers




µ+(θ) = θβ + (1− θ)α,
1

µ−(θ)
=

θ

β
+

1− θ

α
;

and define the set Kθ ⊂ Rn by

µ ∈ Kθ ⇐⇒





µ−(θ) ≤ µi ≤ µ+(θ), i = 1, . . . , n ,
n∑

i=1

1
µi − α

≤ 1
µ−(θ)− α

+
n− 1

µ+(θ)− α
,

n∑

i=1

1
β − µi

≤ 1
β − µ−(θ)

+
n− 1

β − µ+(θ)
.

Define also the set Gθ ⊂ Mα,β
s by A ∈ Gθ if and only if the n-tuple of eigenvalues

(µ1, . . . , µn) of A belongs to Kθ.

Theorem 8 Assume that Aε−H−⇀ A and that Aε(x) = aε(x)I, where aε takes only
values α and β. Assume also that, for some θ ∈ L∞(Ω; [0, 1]),

aε
?
⇀ θβ + (1− θ)α in L∞(Ω). (7)

Then we have
A(x) ∈ Gθ(x) a.e. x ∈ Ω. (8)

Conversely, if A ∈Mα,β
s (Ω) and θ ∈ L∞(Ω; [0, 1]) satisfy (8), there exists a sequence aε

of measurable functions taking only values α and β, satisfying (7) and such that aεI−H−⇀ A.

In general, there are no explicit formulae for the H-limit of a given sequence of tensors
Aε. In the case of laminated materials, however, the H-limit can be computed explicitely:

Theorem 9 [6, p. 11] If the coefficients aε
ij of a sequence of matrices Aε ∈ Mα,β

s (Ω)
are functions of the first coordinate x1 only, then Aε−H−⇀ A is equivalent to:

(a)
1

aε
11

?
⇀

1
a11

;
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(b) For i 6= 1,
aε

i1

aε
11

?
⇀

ai1

a11
;

(c) For i 6= 1 and j 6= 1,

aε
ij −

aε
i1a

ε
1j

aε
11

?
⇀ aij − ai1a1j

a11
·
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