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Summary We study properties of the cost functional arising in free material
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1. Introduction

The goal of the present work is to study functionals of the form

B(4) = /Q H(A())dz (1)

where 2 is a bounded domain in R™ and A is a matrix whose components belong to L>(€2).
Our study is motivated by structural optimization problems, namely by the so-called “free
material design” (see Section 2 for details).

We study properties of the functional ® which arise naturally from mechanical
considerations, or ensure the well-posedeness of the optimization problem. Here is a
summary of these properties

— smoothness of ¢

— isotropy of ¢ (invariance to rotations)

— monotonicity of ¢ (and subsequently of @)

— lower semi-continuity of ® (related, but not equivalent, to the convexity of ¢)

— subadditivity of ¢ (and subsequently of ®)
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The most important and delicate point is the one concerning the semi-continuity of
®. We point out that lower semi-continuity of ® with respect to the weak-*x topology of
L is not the correct hypothesis from the mechanical viewpoint (although it ensures that
a solution exists for the optimization problem). We introduce a different property (lower
semi-continuity with respect to the H-topology) and discuss the relations between the two,
as well as the link with the convexity of ¢.

2. Setting of the problem

Let © be a bounded domain in R”. Let a and 8 be two real constants such that
0 < a < 3. Denote by M2 the set of symmetric n x n matrices A such that ol < A < 31
and let M2A(Q) be the set of matrix functions A : Q — M®P whose components are
measurable functions (and consequently belong to L (£2)).

Consider some objective functional 7 : M2 () — R, to be minimized under a
constraint on the cost functional ®:

min J(4) (2)
where, for a fixed, given c € R,
A={A¢e M?B(Q) :P(A) = ¢} (3)

Recall that ® is given by (1), where ¢ : M®# — R is some scalar function. One should
distinguish between the objective functional [J (the one to be minimized), which measures
the performance of the structure according to some criteria, and the cost functional ®
(giving the constraint) which measures the price of the structure (the fabrication cost).
Typically, J could be the compliance of the structure under some loads, but any other
objective functional could be considered (e.g. the distance to some target displacement).
In all cases, J depends on A through the solution u(A) of some elliptic problem in 2; A
represents the material coefficients for that elliptic problem. We choose not to state any
particular form of the elliptic problem because, although 7 itself should satisfy certain
properties in order for the optimization problem to be well-posed, our study is focused on
the properties of the cost functional P.

Note that, although we use terminology from the elasticity theory, the coefficient
matrix A € M%P(Q) model other physical phenomena (like heat conduction or
electrostatics). The reason is that the meaningful and interesting case for applications
is in the elasticity framework, but we prefer to study functions ¢ defined on the set of
n X n matrices (the elasticity tensor is a much more complicated object).

3. Basic properties

Along our study, we shall assume that the function ¢ is smooth enough. Continuity
is a natural requirement, but more smoothness will be assumed when necessary.

Note that, although the function ¢ should be defined on the set M%?, one may find
it easier to consider that ¢ is defined on the whole set M of symmetric positive definite
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matrices in order to obtain statements and properties independent of the parameters o
and (.

We shall also assume that the cost function is invariant to rotations. This condition
is difficult to characterize in the elasticity framework. But for the scalar problem that we
have chosen to study, it writes simply as

H(QTAQ) = ¢p(A), VA € M*P | ¥YQ orthogonal matrix

Equivalently, ¢ should depend only on the eigenvalues of the matrix A, taken in decreasing
order (see [1, sec. 2]).

Another natural hypothesis is that “stronger structures are more expensive than
weaker ones”, that is, if A, B € M%#(Q) are two coefficient matrices such that A(x) <
B(z), a.e. © € €, then A should be cheaper than B: ®(A) < ®&(B). This is equivalent to
the monotonicity of ¢:

VA, Be M, A<B = ¢(A) < ¢(B) (4)

Note that this assumption (¢ non-decreasing) is quite natural if one wants to obtain
strong structures (for instance, when minimizing the compliance). It is far less obvious
for cases like mechanism design. Being aware of that, we shall nevertheless impose this
property on ¢ in the sequel.

By subadditivity of ¢ we mean

$(A+B) < ¢p(A)+¢(B), VA, Be M

There are reasons (of mechanical nature) for taking this property into consideration.
However, its mathematical implications are not yet clear; this is why we do not focus
on subadditivity in this paper.

4. Semi-continuity of ¢

It is well-known that, for an optimization problem to be well-posed, one usually
requires the lower semi-continuity of both the objective functional and the cost functional.
One can see this by reformulating the constrained minimization problem (2-3) as an
unconstrained minimization problem

min  {J(4) + A®(A)} (5)
AeMIT(Q)

with the aid of the Lagrange multiplier A € R. Assuming that A > 0, we see that lower
semi-continuity of both J and ® ensures the well-posedeness of the optimization problem.

The question of the topology arises: one should check the lower semi-continuity of ®
with respect to some topology on M%#(Q) such that M2#(Q) be compact. An apparantly
natural choice is the weak-* topology of M%?(Q), as a subset of L°(£2;R"*"). This is
also convenient because it is easy to characterize integrands ¢ which turn the functional
® lower semi-continuous:



Theorem 1 [2, pp. 142-143] The functional ® defined by (1) is lower-semicontinuous
with respect to the weak-* topology of M%?(Q) if and only if the integrand ¢ is a convex
function (defined on the set M®# of n x n matrices).

However, a closer look at the mechanical problem reveals that the weak-* topology of
MB(Q) is not an appropriate model: when the material coefficients oscillate (the case
of microstructures), the limit behaviour of the material is correctly described not by the
weak-* limit of the coefficient matrices, but by the H-limit of the same matrices. See the
last section of the present paper for details on H-convergence. Recall that M®?(Q) is a
compact set when endowed with the H-topology.

Unfortunately, there is no simple characterization of the lower semi-continuity with
respect to the H-topology. Under the monotonicity assumption, one can prove easily one
implication:

Theorem 2 Suppose ¢ is a continuous non-decreasing function, in the sense of (4), on
MP. 1f the functional ® defined by (1) is lower-semicontinuous with respect to the weak-*
topology of M#(Q), then @ is also lower-semicontinuous with respect to the H-topology
of M2F(Q).

Proof: Consider a sequence A. of matrices in M%P(Q2), H-converging to some
A € M2P(Q). Taking into account that MP(€2) is compact with respect to the weak-
* topology, consider a subsequence & of ¢ such that A. converges weakly-* to some
AL € M2P(Q) fulfilling also the condition liminf ¢(A.) = lim ¢(A./). It is known that
A < A, (see Theorem 7), so ¢(A) < ¢(A+) < liminf ¢p(A./) and the assertion follows. O

Theorems 1 and 2 imply the following

Corollary 3 If ¢ is a continuous convex function on M2?, non-decreasing in the sense
of (4), then the functional ® defined by (1) is lower-semicontinuous with respect to the
H-topology of M%#(Q).

In general, there is no simple characterization of the lower semi-continuity of ® with
respect to the H-topology of M%8(Q). However, in the particular case when ¢ depends
only on the trace of the coefficient matrix,

$(A) = p(tr(A4)), VA e M7 (6)

and assuming also the monotonicity property, one can prove that lower semi-continuity of
® with respect to the H-topology of M®?() is equivalent to the convexity of ¢.

Theorem 4 Let ¢ : [na, n] — R be a continuous non-decreasing function. Define
¢: M3 =R, ¢(A) = p(tr(A))

and

d: MP(Q) =R, BA) = /QQS(A(:L'))d:E = /Q o(tr(A(x)))dx.

Then, ® is lower semi-continuous with respect to the H-topology of M%#(Q) if and only
if ( is convex.



Proof for n = 2 (n > 2 is similar):

The sufficiency follows immediately from Corollary 3, since A +— tr(A) is (linear and)
non-decreasing in the sense of (4).

The necessity is proven by building a specific sequence of laminates. Consider ~, x
and y arbitrary numbers in [« 5]. Define

r=x|y Y +a-xald o]

where x. =0 in L°(2) (0 being a constant value in [0,1]). According to Theorem 9, this
sequence of laminates H-converges to

ol 0
0 fx+(1-0)y|’
and the lower semi-continuity condition reads

oy + 0z + (1 —0)y) <0p(y+z)+ (1 —0)p(y+y).

Thus, ¢ is convex in the interval [y + «,y 4 (]. Since ~ is arbitrary in [«, 8], we obtain
the desired convexity of ¢ in [2«, 20]. O

Note that, if we drop the hypothesis (6), we have no simple characterization of the
lower semi-continuity of ® with respect to the H-topology of M%#().

Convexity is also necessary for ¢ when ¢ depends solely on the determinant of the
coefficient matrix, ¢(A) = ¢(det(A)): one takes precisely the laminates above and a similar
reasoning leads now to the convexity of ¢ in the interval [a?, 3%]. However, it is easy to
prove that functions depending only on the determinant of A are not admissible:

Theorem 5 Let ¢ : [@", 3] — R be a differentiable convex function. Define
¢: M =R, ¢(A) = p(det(4))

and
d: M) =R, (A= / o(A(x))dr = / o(det(A(z)))dx.
Q Q
If ® is lower semi-continuous with respect to the H-topology of M%#(Q), then ¢ is
constant.

Proof for n =2 (n > 2 is similar):
Consider a, b, c,d € [, 8] four arbitrary points. Building the laminates

e I Rl

and applying the lower semi-continuity hypothesis, we obtain the inequality

0b+ (1-60)d
9 4 1-0

a C

) < 0p(ab) + (1-8) p(cd)
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with equality for 8 = 0.
We differentiate the above inequality in 6 = 0:

1 1

2 (ed) (b~ d) T —d (= )] < plab) — pled),

that is,
c

" ¢ (ed) (ab — cd) < p(ab) — p(cd) .

Take A\ € |, B[. Choose c =d = A, a € [%,)\[ N [a, ] and define by = >‘2;'5, where
d > 0 is a small parameter. One checks easily that, for sufficiently small 0, bs € [, (].
Taking into account that abs = A% + & and cd = A2, we rewrite the last inequality as

A2 +6) — p(\?)
5 )

Choose now a € |\, %2] and the same ¢ = d = A, bs = 22

implies ¢’(\?) > 0.
We have proved that ¢'(A?) = 0 for all A € [«, (], hence ¢ is constant in [a?,3%]. O

Let § \, 0 and recall that a < X in order to conclude ¢'(A?) < 0.
2

. The inequality above

Theorem 5 above also shows something else: reminding that ¢(A) = det A is a
polyconvex function, and thus quasiconvex and rank one convex as well, all these types of
convexities are excluded as sufficient conditions. In order for ® to be semi-continuous with
respect to the H-topology of M%#(Q), ¢ has to be either convex or something strictly
between convex and polyconvex. It would be an interesting and non-trivial task to find an
example of a function ¢ for which the functional ® is semi-continuous with respect to the
H-topology of M®#(€)), but not with respect to the weak-* topology.

Note also that the proofs of Theorems 4 and 5 use sequences of laminates. This means
that the conditions described in these statements are necessary for lower semi-continuity
in a weaker convergence than the one of the H-topology. The conditions described in
Theorems 4 and 5 are necessary for the lower semi-continuity of ® with respect to the
convergence of laminates; see [3].

5. Examples

In this section we show some lower semi-continuous cost functionals, with respect to
the H-topology. The third example is a highly popular choice in homogenization theory
(see [4]), of which the free material design setting can be considered a direct generalization.

1. ¢(A) = tr(A). It is the most common choice in free material design and the lower
semi-continuity of the corresponding cost functional is a direct consequence of Theorem 4.

2. ¢(A) = max|¢|= A - {. This is the spectral radius, since only positive definite
matrices are dealt with. Being the pointwise supremum of the family {¢¢ }j¢=1, ¢¢(A) =
A& - & it is surely a convex function. The monotonicity, although not completely obvious,
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is a simple exercise. Lower semi-continuity of the cost functional is due to Corollary 3.
The isotropy is straightforward: as an ortogonal matrix () yields an isometry, one has

$(Q"AQ) = max (Q"AQ)¢ - & = max A(QE) - (Q€) = max An-n = ¢(A).
leli=1 leli=1 mll=1

3. We can perform optimization in the set of all possible mixtures beteween materials
al and BI. More precisely, define the set G = Up<yp<1Gy C MP (see the next section
for the definition of Gy). For each matrix A € GG, one can compute explicitely the lowest
value @ such that A € Gy. This represents the “cheapest” mixture between ol and (1
producing the given material tensor A. Consider then the cost function

¢(A) =inf{f € [0,1] : A € Gy}

We obtain a cost functional ® defined not on the entire M%#(Q) but only on those
matrix functions taking values in G. It is a simple exercise to prove that the set of these
functions is compact for the H-topology.

The cost function ¢ is continuous on G, non-decreasing and isotropic (as it is defined
in terms of eigenvalues of the matrix).

We now prove its lower semi-continuity. Let A.—H— A; the local costs f.(x) =

?(A:(z)) can be supposed to converge weakly-*, say 0. “s §, because L*>(€;1]0,1]) is weak-
x compact. From Theorem 8 it is known that each A. is a H-limit of some sequence

X5 (BI) + (1 —x5)(al), with x; 22 0... Since L>®(9;]0,1]) x M2A(Q) is a metrizable space,

we can take a diagonal sequence (x;_) such that

L*

Xp. =0 and x5 (BD) + (1 —x;, ) ()~ A

again from Theorem 8, this means precisely that A(r) € Gg(,), a.e. z € Q. But by
definition of #(z) = ¢(A(x)) it is then obvious that

/Qﬁ(x)dxg/Qé(x)dleiminf/ﬂes(:c)dx,

thus proving the assertion.

6. Recall on H-convergence and bounds

This section is devoted to a review of definitions and results about homogenization
theory. For details, see e.g. [5].

Definition 6 Consider a sequence of matrix functions A, € M®?(Q)). We say that A,
H-converges to some A € M®A(Q) if, for all f € H~'(Q) and for all u € H'/2(0Q), the
solution u. € H'(Q) (which exists and is unique) of the problem

{ —div(A:Vus) = f in Q

Ue = U on 0f?
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converges, weakly in H'(Q), to the solution ug € H'(Q) (which exists and is unique) of
the problem

—div(AVug) = f in
Uy = U on 0f

We denote the H-convergence by A.—~ A. Note that it derives from a metrizable
topology on M%4(Q). Tt is known that M®#(Q), when endowed with the H-topology, is
compact.

Theorem 7 Consider a sequence of matrix functions A. € M2P(Q) such that
A—Hs A A5 AL and A7 AT Then A_(2) < A(z) < Ay(x) ae. € Q.

For each 6 € [0, 1], define the numbers

and define the set Ky C R"™ by
( p—(0) Spi<pg(d),i=1,...,n,

3 PR SR
pi—a = p(0) —a  pe(0) —a

e Ky <—

=1
"1 1 n—1
< .
2w e o m®

Define also the set Gy C M%P by A € Gy if and only if the n-tuple of eigenvalues
(1, .-, pin) of A belongs to Ky.

Theorem 8 Assume that A.—~ A and that A.(z) = a.(x)I, where a. takes only
values o and 3. Assume also that, for some 6 € L*(Q;[0, 1]),

a: 208+ (1 —0)a  in L=(9). (7)

Then we have
A(z) € Gyrzy ae. xz €. (8)

Conversely, if A € M®P(Q) and § € L>(Q; [0, 1]) satisfy (8), there exists a sequence a.
of measurable functions taking only values o and 3, satisfying (7) and such that a.[—2~ A.

In general, there are no explicit formulae for the H-limit of a given sequence of tensors
A.. In the case of laminated materials, however, the H-limit can be computed explicitely:

Theorem 9 [6, p. 11] If the coefficients af; of a sequence of matrices A. € M$P(€)
are functions of the first coordinate z; only, then A.—Z~ A is equivalent to:

(a)
RN

b
aj; a1
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(b) For i # 1,

g
Qi1 * Gal
£ )
ayq a1
(c) Fori#1and j # 1,
g 3
1015 * ;1071
Qi — — =~ %ij = '
aiq a1
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