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Abstract. We consider a system of the form −ε2∆u+ V (x)u = g(v), −ε2∆v + V (x)v =

f(u) in an open domain Ω of RN , with Dirichlet conditions at the boundary (if any). We

suppose that f and g are power-type nonlinearities, having superlinear and subcritical

growth at infinity. We prove the existence of positive solutions uε and vε which concen-

trate, as ε → 0, at a prescribed finite number of local minimum points of V (x), possibly

degenerate.

1 Introduction

Let Ω be a domain of RN , N > 3, not necessarily bounded, with smooth or empty

boundary. We consider an elliptic system of the form

−ε2∆u+ V (x)u = g(v), −ε2∆v + V (x)v = f(u) in Ω, u = v = 0 on ∂Ω, (1.1)

where u, v > 0 in Ω and ε > 0 is a small parameter. Here V (x) is locally Hölder continuous

and infΩ V > 0, while f, g ∈ C1(R) fall into the typical class of superlinear and subcritical

functions, namely we will assume that the following holds:

(fg1) f(0) = g(0) = f ′(0) = g′(0) = 0;

(fg2) lim
s→+∞

f(s)
sp−1

= lim
s→+∞

g(s)
sq−1

= 0, for some p, q > 2 with
1
p

+
1
q
>
N − 2
N

;

(fg3) 0 < (1 + δ′)f(s)s 6 f ′(s)s2 and 0 < (1 + δ′)g(s)s 6 g′(s)s2, for some δ′ > 0.
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We look for positive solutions of (1.1) and therefore we let f(s) = g(s) = 0 for s 6 0.

Our motivation for the study of such a problem goes back to the work of Rabinowitz

[23] and Wang [28] concerning the single equation

−ε2∆u+ V (x)u = f(u) in RN . (1.2)

In [23] a mountain-pass type argument is used in order to find a ground state solution for

ε > 0 sufficiently small, when V is such that lim inf |x|→∞ V (x) > infRN V (x) > 0. In [28]

it is proved that this mountain-pass solutions concentrate around a global minimum point

of V as ε tends to 0.

It should be stressed that in these papers no nondegeneracy assumptions were made

upon the minimum points of V ; this is in contrast with previous works (see e.g. [2, 15, 20])

where solutions with a spike shape which concentrate around nondegenerate critical points

of V were constructed. A related problem concerns the case where V (x) ≡ 1 in a bounded

domain Ω under Neumann or Dirichlet boundary conditions, the main issue being then the

location of the concentrating points of the least energy solutions, see e.g. [12, 17, 18, 19].

In [5] the function V is allowed to vanish at some points of RN . Problems with another

type of nonlinearities were considered by many authors, see e.g. [6, 8, 9, 10] and their

references.

A further step in the study of such problems was made by Del Pino and Felmer in [11],

where the degenerate case in (1.2) was considered in a local setting. Namely, by assuming

that infΛ V < inf∂Λ V with respect to a bounded open set Λ ⊂ Ω, a family uε exhibiting

a single spike in Λ, at a point xε such that V (xε) → infΛ V , is constructed. In [13] the

author’s approach was extended to the construction of a family of solutions with several

spikes located around any prescribed finite set of local minima of V .

There are at least three difficulties in extending the quoted results to the system (1.1).

Firstly, no uniqueness results seem to be known for the “limit problem” −∆u+ u = g(v),

−∆v+v = f(u) in RN and this is in some cases a crucial assumption in the single equation

case (compare e.g. with [10, Assumption (f5)], [6, p. 268], [13, Assumption (f4)], [17, p.

1448]).

On the other hand, let us introduce the associated energy functional Iε : H ×H → R,

Iε(u, v) :=
∫

Ω
{ε2〈∇u,∇v〉+ V (x)uv} −

∫
Ω
F (u)−

∫
Ω
G(v),
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where F (s) :=
∫ s
0 f(ξ) dξ, G(s) :=

∫ s
0 g(ξ) dξ, and H is the Hilbert space H := {u ∈

H1
0 (Ω) :

∫
Ω V (x)u2 < +∞}, with the inner product 〈u, v〉H :=

∫
Ω{〈∇u,∇v〉 + V (x)uv}

(at this point we assume that Iε is well defined, i.e. that the constants p and q in assumption

(fg2) are such that 2 < p, q < 2∗ := 2N/(N − 2); see below for a discussion on this). It

is known that positive solutions of (1.1) correspond to critical points of the functional Iε.

But we see that, with respect to the single equation case, the quadratic part of the energy

functional has no longer a positive sign. From a technical point of view, this causes some

difficulties; for example, it is not clear whether the penalization method as used in [13, p.

138] can be applied to our problem.

From a more conceptual point of view, in the case of a system we also have to face the

indefinite character of the energy functional, since ground-state critical points of Iε are no

longer expected to be generated from a direct (essentially) finite dimensional argument.

This difficulty was bypassed in [1, 3] by means of a dual variational formulation of the

problem while in [21, 22, 24, 25] a direct approach was proposed, based on a new variational

characterization of the ground-state critical levels associated to (1.1). In these papers

either the case V (x) ≡ 1 or the “coercive” case lim inf |x|→∞ V (x) > infRN V (x) > 0 are

considered.

Our goal here is to establish for the system (1.1) the analog of the main result in [13]

concerning a single equation. Namely, we assume that V is locally Hölder continuous and

(V 1) V (x) > α > 0, for all x ∈ Ω;

(V 2) there exist bounded domains Λi, mutually disjoint, compactly contained in Ω, i =

1, . . . , k, such that

inf
Λi

V < inf
∂Λi

V

(i.e. V admits at least k local strict minimum points, possibly degenerate).

We prove the following.

Theorem 1.1. Under assumptions (V 1), (V 2), (fg1) − (fg3), there exists ε0 > 0 such

that, for any 0 < ε < ε0, problem (1.1) admits classical positive solutions uε, vε ∈ C2(Ω)∩

C1(Ω) ∩H1
0 (Ω), and:

(i) there exist xi,ε ∈ Λi, i = 1, . . . , k, local maximum points of both uε and vε;
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(ii) uε(xi,ε), vε(xi,ε) > b > 0, and V (xi,ε) → infΛi V as ε→ 0;

(iii) uε(x), vε(x) 6 γe−
β
ε
|x−xi,ε|, ∀x ∈ Ω\ ∪j 6=i Λj ;

for some positive constants b, γ, β. Moreover, the uniqueness of the local maxima holds in

the following sense:

(iv) if either uε or vε have a local maximum point at some point zε ∈ Ω, zε 6= xi,ε, ∀i =

1, . . . , k, then it holds: limε→0 u(zε) = 0 and limε→0 v(zε) = 0.

As we mentioned before, as a byproduct of our approach, in the case where f = g

(single equation case) we improve [13, Th. 0.1] in the sense that no assumption is imposed

on the limit problem associated to the equation in (1.2). As for (1.1), our main result also

improves [24, Th. 1.1], which deals with global minimum points of V only. On the other

hand, the uniqueness of the local maxima is established only for these points xε such that

either u(xε) or v(xε) remain bounded away from zero; in the single equation case, local

maxima values are always bounded away from zero, as follows from an inspection of the

equation in (1.2) evaluated at a local maximum point xε, but this does not seem to hold

true in our situation, due to the possible interaction of the solutions of the two equations.

The rest of the paper is devoted to the proof of Theorem 1.1. In Section 2 we set

a general framework suitable for our proposals, mainly Proposition 2.4. The underlying

ideas are already present in [25] but we provide here a more concise approach which in

particular avoids an extra technical assumption that was needed in [25] and subsequently in

[21, 22, 24] (namely, f2(s) 6 2f ′(s)F (s) and similarly for g(s)). Section 3 contains the core

of our argument. Indeed, contrarily to the method used in [7, 13], we do not seek for k-spike

solutions by minmaximizing the energy functional over a k -dimensional compact surface,

but we minimize instead Iε over the product of k suitable Nehari manifolds. Roughly

speaking, each of these manifolds localizes Iε near H1
0 (Λi)×H1

0 (Λi) (i = 1, . . . , k), thanks

to a technical condition in its definition which ensures that the manifold is weakly closed.

As it will be clear later on, the main estimate in the proof of Theorem 1.1 is contained in

Eq. (4.7) and it turns out that our setting is rather effective in providing it.

Once these preliminary settings are established, the proof of Theorem 1.1 follows by

simple arguments, as shown in Section 4. The final Section 5 concerns the following

question. Under assumption (fg2), the functional Iε may not be well defined in the space
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H × H, because it can happen that, say, p < 2∗ = 2N
N−2 < q. However, as explained in

Section 5, we only have to prove Theorem 1.1 in the case where 2 < p = q < 2∗. In fact,

given n ∈ N we can define the truncated functions

fn(s) =
{
f(s) for s 6 n
Ans

p−1 +Bn for s > n
gn(s) =

{
g(s) for s 6 n

Ãns
p−1 + B̃n for s > n

(1.3)

with An = f ′(n)/((p− 1)np−2), Bn = f(n)− (f ′(n)n)/(p− 1), Ãn = g′(n)/((p− 1)np−2),

B̃n = g(n) − (g′(n)n)/(p − 1); we show in Section 5 that the solutions (uεn , vεn) of the

corresponding system obtained by means of Theorem 1.1 applied to the truncated problem

are such that ||uεn ||∞, ||vεn ||∞ 6 C for some C > 0 independent of n, and therefore they

solve the original problem (1.1) if n is taken sufficiently large. Thanks to this remark, in

Sections 2, 3 and 4 we assume that 2 < p = q < 2∗. In particular, we may assume that

the following holds:

(fg4) |f ′(s)|+ |g′(s)| 6 C(1 + |s|p−2) with 2 < p < 2N/(N − 2).

(fg5) For every µ > 0 there exists Cµ > 0 such that

|f(s)t|+ |g(t)s| 6 µ(s2 + t2) + Cµ(f(s)s+ g(t)t), s, t ∈ R.

As a concluding remark we mention that the extension of our results to the case where

the concentration of solutions occur at critical points of V other than the local minima

(in the line of the work in [14]) remains an open problem.

2 A variational framework for superlinear systems

In this section we establish some preliminary results which are needed for the proof of

Theorem 1.1. Given f, g ∈ C1(R,R) and V as in the previous section (we recall that

without loss of generality we also assume that (fg4) and (fg5) hold), we consider the

system

−∆u+ V (x)u = g(v), −∆v + V (x)v = f(u), u, v ∈ H1
0 (Ω) (2.1)

and the associated energy functional I : H ×H → R,

I(u, v) :=
∫

Ω
{〈∇u,∇v〉+ V (x)uv} −

∫
Ω
F (u)−

∫
Ω
G(v).
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In the sequel, all integrations are taken over the open set Ω. For any u, v ∈ H, let Ψu,v ∈ H

be such that

I ′((u, v) + (Ψu,v,−Ψu,v))(φ,−φ) = 0, ∀φ ∈ H. (2.2)

Proposition 2.1. The map Θ : H ×H → H, (u, v) 7→ Θ(u, v) = Ψu,v is C1.

Proof. The function Ψu,v is the minimum point of the strictly coercive functional

φ 7→ −I((u, v) + (φ,−φ)) = ||φ||2 + 〈u− v, φ〉 − 〈u, v〉+
∫
F (u+ φ) +

∫
G(v − φ),

and thus Θ is well-defined. As for its smoothness, we apply the implicit function theorem

to the map Θ : (H ×H)×H− → H−,Θ((u, v), (Ψ,−Ψ)) := PI ′((u, v) + (Ψ,−Ψ)), where

P is the orthogonal projection of H ×H onto H− := {(φ,−φ), φ ∈ H}. Indeed, for any

fixed pair (µ, ν) = (u+ Ψ, v−Ψ), the derivative of Θ with respect to (φ,−φ) evaluated at

(µ, ν) is given by the linear map

(φ,−φ) 7→ T (φ,−φ) = PI ′′(µ, ν)(φ,−φ),

that is

T (φ,−φ)(ϕ,−ϕ) = −2〈φ, ϕ〉 −
∫
f ′(µ)φϕ−

∫
g′(ν)φϕ, ∀φ, ϕ.

Since f ′(0) = 0 and |f ′(s)| 6 C|s|2∗ for |s| > 1 (and similarly for g), we have that Id− T

is a compact operator and therefore we are left to prove that T is one-to-one. Now, if

T (φ,−φ) = 0 we have in particular that

−2||φ||2 =
∫
f ′(µ)φ2 +

∫
g′(ν)φ2,

and so φ = 0.

Lemma 2.2. If (u, v) 6= (0, 0) is such that I ′(u, v)(u, v) = 0 and I ′(u, v)(φ,−φ) = 0 for

every φ, then

sup
φ∈H

I ′′(u, v)(u+ φ, v − φ)(u+ φ, v − φ) < 0.

Proof. This was already observed in [25, Eq. (3.2)] and follows from a straightforward

computation. Indeed, our assumptions on (u, v) imply that minus the second derivative

above equals

2||φ||2 +
∫

(
f(u)
u

+
g(v)
v

)φ2

+
∫

(f ′(u)− f(u)
u

)(u+ φ)2 +
∫

(g′(v)− g(v)
v

)(v − φ)2
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and this, as a function of φ, is associated to a strictly convex, positive and coercive

functional (cf. (fg3)), so that its infimum is attained and is positive.

From now on, given u, v ∈ H and t > 0, we denote Ψt := Ψtu,tv according to the

definition in (2.2), i.e.

I ′(t(u, v) + (Ψt,−Ψt))(φ,−φ) = 0, ∀φ ∈ H. (2.3)

Lemma 2.3. Given u, v ∈ H such that u 6= −v, the map

α(t) := I(t(u, v) + (Ψt,−Ψt))

is C2 and, for any t ∈ R and t 6= 0,

α′(t) = 0 ⇒ α′′(t) < 0.

Moreover, α′(0) = 0 and α′′(0) > 0.

Proof. For any t ∈ R we denote by Ψ′
t ∈ H the derivative of the map t 7→ Ψt evaluated

at the point t. From (2.3) we see that

α′(t) = I ′(t(u, v) + (Ψt,−Ψt))(u+ Ψ′
t, v −Ψ′

t)

= I ′(t(u, v) + (Ψt,−Ψt))(u, v),

and so

α′′(t) = I ′′(t(u, v) + (Ψt,−Ψt))(u+ Ψ′
t, v −Ψ′

t)(u, v).

On the other hand, it follows also from (2.3) that

I ′′(t(u, v) + (Ψt,−Ψt))(u+ Ψ′
t, v −Ψ′

t)(φ,−φ) = 0 ∀t ∀φ (2.4)

and so (by letting φ = t2Ψ′
t in (2.4))

t2α′′(t) = I ′′(t(u, v) + (Ψt,−Ψt))(tu+ tΨ′
t, tv − tΨ′

t)(tu+ tΨ′
t, tv − tΨ′

t) ∀t. (2.5)

Now, suppose α′(t1) = 0 for some t1 6= 0. By denoting u1 := t1u+Ψt1 and v1 := t1v−Ψt1 ,

we have that (u1, v1) 6= (0, 0) (since u 6= −v),

I ′(u1, v1)(u1, v1) = 0 and I ′(u1, v1)(φ,−φ) = 0 ∀φ.
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It follows then from Lemma 2.2 that

I ′′(u1, v1)(u1 + φ, v1 − φ)(u1 + φ, v1 − φ) < 0 ∀φ.

By letting φ = t1Ψ′
t1 −Ψt1 we conclude from (2.5) that α′′(t1) < 0, as claimed.

As for the case t1 = 0, since I ′(0, 0) = 0 we have by definition that Ψ0 = 0 and so

α′(0) = 0. From (2.4) it can be checked directly that Ψ′
0 = (v − u)/2, so that 2α′′(0) =

‖u+ v‖2 > 0, since u 6= −v.

Proposition 2.4. Let u, v ∈ H be such that u 6= −v, I ′(u, v)(u, v) = 0 and I ′(u, v)(φ,−φ) =

0 for every φ, and denote

θ(t) := I ′(t(u, v) + (Ψt,−Ψt))(u, v).

Then there exists δ = δ(u, v) > 0 such that

θ(t) = δ(1− t) + o(1− t) as t→ 1. (2.6)

Moreover,

I(u, v) = sup{I(t(u, v) + (φ,−φ)) : t > 0, φ ∈ H}. (2.7)

Proof. The conclusion in (2.6) follows from Lemma 2.3, by observing that, by assump-

tion, α′(1) = 0, so that θ′(1) = α′′(1) < 0.

As for (2.7), suppose that the supremum is attained at some t0 > 0, φ0 ∈ H. Then we

must have that φ0 = Ψt0 and α′(t0) = 0. By Lemma 2.3, the function α has at most one

positive critical point and t0 6= 0, and so we must have that t0 = 1 (and φ0 = Ψ1 = 0).

For later purposes, we state a variant of (2.7) which is essentially proved in [24, Lemma

2.1] under additional assumptions on f and g.

Proposition 2.5. Let (un, vn) be a Palais-Smale sequence for the functional I, namely

0 < lim inf I(un, vn) 6 lim sup I(un, vn) < +∞ and

µn := ||I ′(un, vn)||(H×H)′ = sup{|I ′(un, vn)(φ, ψ)|, φ, ψ ∈ H, ||φ||+ ||ψ|| 6 1} → 0.

Then

sup{I(t(un, vn) + (φ,−φ)) : t > 0, φ ∈ H} = I(un, vn) + O(µ2
n). (2.8)
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Proof. We prove a slightly more general result. Let

νn := |I ′(un, vn)(un, vn)|+ sup{|I ′(un, vn)(φ,−φ)|, φ ∈ H, ||φ|| 6 1} 6 2µn

and let us show that the quantity appearing in (2.8) is I(un, vn) + O(ν2
n). Some of this

follows as in [24, 25] and so we only stress the differences. We denote Ψn
t := Ψtun,tvn (cf.

(2.2)) while Ψ′n
t stands for the derivative of the map t 7→ Ψn

t evaluated at the point t.

Since I(un, vn) > 0 we must have that un 6= −vn. Moreover, since∫
(f(un)un + g(vn)vn) = 2〈un, vn〉 − I ′(un, vn)(un, vn)

> 2I(un, vn)− I ′(un, vn)(un, vn),

our assumptions imply that

lim inf
n→∞

∫
(f(un)un + g(vn)vn) > 0. (2.9)

Also, from

I ′(un + Ψn
1 , vn −Ψn

1 )(Ψn
1 ,−Ψn

1 )− I ′(un, vn)(Ψn
1 ,−Ψn

1 ) = −I ′(un, vn)(Ψn
1 ,−Ψn

1 ) = O(νn)

we readily see that

||Ψn
1 || = O(νn). (2.10)

Now, let

αn(t) := I(t(un, vn) + (Ψn
t ,−Ψn

t )).

It can be shown that supt>0 αn(t) = αn(tn) for some tn > 0 and that the sequences ||un||,

||vn|| and |tn| are bounded (cf. [24, p. 160-162]; here we make use of property (fg5)). In

particular, by recalling the definition of Ψn
t we see that (Ψn

t )n is bounded as long as t

remains bounded. We claim that the same conclusion holds for (Ψ′n
t )n as well. Indeed, by

differentiating (2.3) and by letting φ = Ψ′n
t we see that

I ′′(t(un, vn) + (Ψn
t ,−Ψn

t ))(un + Ψ′n
t , vn −Ψ′n

t )(Ψ′n
t ,−Ψ′n

t ) = 0,

that is

2||Ψ′n
t ||2 = 〈Ψ′n

t , vn − un〉 −
∫
f ′(tun + Ψn

t )(un + Ψ′n
t )Ψ′n

t +
∫
g′(tvn −Ψn

t )(vn −Ψ′n
t )Ψ′n

t

6 〈Ψ′n
t , vn − un〉 −

∫
f ′(tun + Ψn

t )unΨ′n
t +

∫
g′(tvn −Ψn

t )vnΨ′n
t
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and the conclusion follows. This, combined with (2.10), shows that Ψn
t → 0 as t → 1,

uniformly in n. Then, as shown in [25, Eq. (3.10)], there exist some small δ, η > 0 such

that, for every large n,

sup
t∈[1−δ,1+δ]

α′′n(t) 6 −η
∫

(f(un)un + g(vn)vn) < 0, (2.11)

where we have used (2.9) in the last inequality.

Our conclusion follows easily from (2.11). Indeed, we see from (2.10) that

α′n(1) = I ′(un + Ψn
1 , vn −Ψn

1 )(un, vn) = I ′(un, vn)(un, vn) + O(νn) = O(νn) (2.12)

and so, thanks to (2.11), α′n(1− δ) > 0 > α′n(1 + δ) for large values of n. By Lemma 2.3

we must have then that tn ∈ [1− δ, 1 + δ]. Going back to (2.11)-(2.12) we deduce that

|tn − 1| = O(νn).

As a consequence,

αn(1) = αn(tn) + O((1− tn)2) = αn(tn) + O(ν2
n). (2.13)

On the other hand, by expanding the map t 7→ I(un + tΨn
1 , vn − tΨn

1 ) up to the order 2

and by using (2.10) we see that

αn(1) = I(un, vn) + O(ν2
n). (2.14)

It follows from (2.13)-(2.14) that αn(tn) = I(un, vn) + O(ν2
n) and this proves Proposition

2.5.

Remarks. 1) In the case Ω = RN , for a given λ > 0 let us denote by Iλ the energy

functional associated to the problem

−∆u+ λu = g(v), −∆v + λv = f(u), u, v ∈ H1(RN ),

and by c(λ) the corresponding ground-state critical level, that is c(λ) = inf{Iλ(u, v) :

(u, v) 6= (0, 0) and I ′λ(u, v) = 0}. Then, under the assumptions of Proposition 2.5, we also

have that

Iλ(un, vn) > c(λ) + o(1), as n→∞. (2.15)
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Indeed, let u, v ∈ H be such that, up to a subsequence, un ⇀ u and vn ⇀ v weakly in

H1(RN ). Clearly, I ′λ(u, v) = 0 and by using the invariance by translation of the problem

we may assume that (u, v) 6= (0, 0). By applying Fatou’s lemma we see that

2Iλ(u, v) =
∫

(f(u)u− 2F (u) + g(v)v − 2G(v)) 6 2 lim inf
n→∞

Iλ(un, vn)

and the conclusion follows.

2) Thanks to Proposition 2.5, we may apply the argument in [24, Lemma 3.1] to deduce

that the map R+ → R+, λ 7→ c(λ), is increasing. Also, as a simple consequence of (2.7),

the ground-state critical levels are monotonic with respect to the potentials F and G.

3 Nehari manifold

In the following, for each i = 1, . . . , k, we fix open sets such that Λi b Λ′i b Λ̃i b Ω and

cut-off functions φi such that φi = 1 in Λ′i and φi = 0 in RN \Λ̃i; we also denote Λ := ∪iΛi,

Λ̃ := ∪iΛ̃i.

Following an idea introduced in [11, 13], we fix small numbers a1, a2 > 0 in such a way

that 2f ′(a1) 6 α := infΩ V , f ′(s) > f ′(a1) ∀s > a1, 2g′(a2) 6 α, g′(s) > g′(a2) ∀s > a2,

and set f̃(s) := f(s) if s 6 a1, f̃(s) := f ′(a1)s+ (f(a1)− a1f
′(a1)) if s > a1 and similarly

for g̃(s). Then we introduce

f(x, s) := χΛ(x)f(s) + (1− χΛ(x))f̃(s)

and a similar function g(x, s), and the corresponding energy functional

Jε(u, v) :=
∫

Ω
{ε2〈∇u,∇v〉+ V (x)uv} −

∫
Ω
F (x, u)−

∫
Ω
G(x, v),

where F (x, s) :=
∫ s
0 f(x, ξ) dξ, G(x, s) :=

∫ s
0 g(x, ξ) dξ. Similarly to [11, 13], this trunca-

tion technique will be helpful in both bringing compactness to the problem and locating

the maximum points of our solutions. The relevant properties of f(x, s) and g(x, s) are

displayed in the next lemma, whose proof is elementary.

Lemma 3.1. The function f(x, s) (and also g(x, s)) satisfies:

(i) f(x, s) = o(s) as s→ 0, uniformly in x ∈ Ω;

(ii) |∂f
∂s

(x, s)| 6 C(1 + |s|p−2) with 2 < p < 2N/(N − 2), ∀x ∈ Ω, s ∈ R;
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(iii) (1 + δ′)f(x, s)s 6 s2
∂f

∂s
(x, s), with δ′ > 0, ∀x ∈ Λ, s ∈ R;

(iv) 0 < 2F (x, s) 6 f(x, s)s, ∀x ∈ Ω \ Λ, s ∈ R, s 6= 0;

(v) f(x, s) 6 f(s), ∀x ∈ Ω, s ∈ R;

(vi) for some (arbitrarily small) δ = δ(a1, a2) > 0,

|f(x, s)|+ |g(x, s)| 6 δ|s|, ∀x ∈ Ω \ Λ, s ∈ R; (3.1)

(vii) for every µ > 0 there exists Cµ > 0 such that

|f(x, s)t|+ |g(x, t)s| 6 µ (s2 + t2) + Cµ (f(x, s)s+ g(x, t)t), ∀x ∈ Ω, s, t ∈ R. (3.2)

We denote by Nε the set of functions (u, v) ∈ H ×H satisfying

J ′ε(u, v)(φ,−φ) = 0 ∀φ ∈ H, J ′ε(u, v)(uφi, vφi) = 0,
∫

Λi

(u2 + v2) > εN+1, ∀i = 1, ..., k

and ||(u, v)||2ε = ||u||2ε+||v||2ε := (ε2
∫
Ω |∇u|

2+
∫
Ω V (x)u2)+(ε2

∫
Ω |∇v|

2+
∫
Ω V (x)v2). It can

be shown that Nε is nonempty. Indeed, let us fix points xi ∈ Λi such that V (xi) = infΛi V

and let us consider a fixed pair of solutions ui, vi ∈ H1(RN ) of the system

−∆ui + V (xi)ui = g(vi), −∆vi + V (xi)vi = f(ui),

corresponding to the ground-state critical level (cf. the Remark following Proposition 2.5)

ci = IV (xi)(ui, vi).

We let

ui,ε(x) := φi(x)ui((x− xi)/ε), vi,ε(x) := φi(x)vi((x− xi)/ε).

Our next proposition shows that Nε is nonempty if ε is sufficiently small. Its proof is

postponed to the end of the present section.

Proposition 3.2. There exists ε0 > 0 such that for every 0 < ε 6 ε0 and every i = 1, . . . , k

there is Ψε ∈ H1
0 (Ω) and points t1,ε, . . . , tk,ε ∈ [0, 1] such that the functions

uε :=
k∑

i=1

ti,εui,ε + Ψε and vε :=
k∑

i=1

ti,εvi,ε −Ψε
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satisfy

J ′ε(uε, vε)(φiuε, φivε) = 0, ∀i = 1, . . . , k, (3.3)

J ′ε(uε, vε)(φ,−φ) = 0, ∀i = 1, . . . , k ∀φ ∈ H1
0 (Ω), (3.4)

and

Jε(uε, vε) = εN (
k∑

i=1

ci + o(1)) as ε→ 0. (3.5)

Moreover, ∫
Λi

(u2
ε + v2

ε) > ηεN , (3.6)

for some η > 0.

We will denote by cε the infimum

cε := inf
Nε

Jε .

We know from Proposition 3.2 that

cε 6 εN

(
k∑

i=1

ci + o(1)

)
as ε→ 0. (3.7)

It will follow from Proposition 3.3 below that cε > 0 and that any sublevel set Nε∩{(u, v) :

Jε(u, v) 6 C} with C > 0 is weakly closed (for our purposes, thanks to (3.7), we may

take, say, C = 2εN
∑

i ci).

We will show in Section 4 that cε is indeed a critical point of Jε over the space H ×H.

Here we make some preliminary considerations and prove two auxiliary results that will

be needed in Section 4, namely Propositions 3.3 and 3.7.

Functions in Nε are zero points of the functional Kε : H ×H → Rk ⊕H−,

Kε(u, v) := (J ′ε(u, v)(φ1u, φ1v), . . . , J ′ε(u, v)(φku, φkv), PJ ′ε(u, v)),

where P : H × H → H− := {(φ,−φ), φ ∈ H} is the orthogonal projection. We can

identify Rk with the subspace span{(uφi, vφi), i = 1, ..., k}. For any (u, v) ∈ Nε, its

derivative K ′
ε(u, v) is given by

K ′
ε(u, v)(ζ, ξ) = (µ1(ζ, ξ), . . . , µk(ζ, ξ), PJ ′′ε (u, v)(ζ, ξ)) ∈ Rk ⊕H−,

where PJ ′′ε (u, v)(ζ, ξ) has a meaning according to Riesz’s theorem and

µi(ζ, ξ) := J ′ε(u, v)(φiζ, φiξ) + J ′′ε (u, v)(φiu, φiv)(ζ, ξ), i = 1, . . . , k.

13



Let us concentrate on K ′
ε(u, v) restricted to the space Rk ⊕H−. Similarly to the proof of

Proposition 2.1, we can check that Id −K ′
ε(u, v) is compact. Now, for any given ψ ∈ H

and λ1, . . . , λk ∈ R, not all of them zero, by denoting Φ :=
∑

i λiφi, u := Φ+ψ, v := Φ−ψ,

we have that

〈K ′
ε(u, v)(u, v), (u, v)〉ε = J ′ε(u, v)(Φ

2u,Φ2v) + J ′′ε (u, v)(u, v)(u, v).

We shall prove below that this expression is negative (cf. Proposition 3.7), provided ε is

small enough. This shows in particular that K ′
ε(u, v) is one-to-one (and thus an isomor-

phism) in the space Rk ⊕H−. As a consequence, the tangent space of the manifold Nε at

the point (u, v) is given by KerK ′
ε(u, v). Then, according to the Lagrange multiplier rule,

Nε is a natural constraint for the functional Jε; namely, if the infimum cε is achieved at

(u, v) ∈ Nε then there exist λ1, . . . , λk ∈ R and ψ ∈ H such that

J ′ε(u, v)(ζ, ξ) = J ′ε(u, v)(Φζ,Φξ) + J ′′ε (u, v)(u, v)(ζ, ξ), ∀ζ, ξ ∈ H.

By letting (ζ, ξ) = (u, v), so that J ′ε(u, v)(u, v) = 0, we conclude from the previous ob-

servation that we must have ψ = 0 and λ1 = . . . = λk = 0, hence (u, v) is indeed

a critical point of Jε. (It can also be observed that, in fact, we can reduce ourselves

to a finite dimensional manifold by working instead with the functional J̃ε : H → R,

J̃ε(u) := Jε((u, u)+(Ψu,u,−Ψu,u)), cf. (2.2); we leave the details for the interested reader.)

We now make this ideas precise. Except when indicated otherwise, all integrals take

place over RN , by extending u and v by zero.

Proposition 3.3. For every C0 > 0 there exist ε0, D0, η0 > 0 such that, for every

0 < ε 6 ε0,

(u, v) ∈ Nε, Jε(u, v) 6 C0ε
N ⇒ ||(u, v)||2ε 6 D0ε

N and
∫

Λi

(u2 + v2) > η0ε
N ,

for every i = 1, ...k. Also, Jε(u, v) > η0ε
N (whence cε > η0ε

N ).

Proof. 1. Let Φ :=
∑

i φi and ξ := 1 − Φ, so that ξ > 0 in Ω and ξ = 0 in Λ. Since

J ′ε(u, v)(Φu,Φv) = 0, we have that∫
Λ
(f(x, u)u+ g(x, v)v) 6

∫
(f(x, u)u+ g(x, v)v) Φ

= 〈u,Φv〉ε + 〈v,Φu〉ε (3.8)

= 2〈u, v〉ε + 〈v − u, ξ(v − u)〉ε − 〈u, ξu〉ε − 〈v, ξv〉ε.
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Now, since ξ > 0,

〈u, ξu〉ε = ε2
∫
|∇u|2ξ +

∫
V (x)u2ξ + ε2

∫
u〈∇u,∇ξ〉 > oε(1)||u||2ε (3.9)

and similarly for 〈v, ξv〉ε, with oε(1) → 0 as ε→ 0. On the other hand, since −∆(v−u)+

V (x)(v − u) = f(x, u)− g(x, v) in Ω and again by ξ > 0, we have that

〈v − u, (v − u)ξ〉ε =
∫

(f(x, u)− g(x, v))(v − u)ξ 6 δ

∫
(u2 + v2) (3.10)

for a small δ > 0. Finally, since Jε(u, v) 6 C0ε
N ,

2〈u, v〉ε 6 2
∫

(F (x, u) +G(x, v)) + 2C0ε
N

6 2
∫

Λ
(F (u) +G(v)) + δ

∫
(u2 + v2) + 2C0ε

N . (3.11)

Since f(s)s > (2 + δ′)F (s) and similarly for g(s), for some δ′ > 0 (as follows from (iii) in

Lemma 3.1), we see from (3.8) – (3.11) that∫
Λ
(f(u)u+ g(v)v) 6 C(δ + oε(1)) ||(u, v)||2ε + C ′0ε

N , (3.12)

for some δ > 0 and some C,C ′0 > 0 (independent of δ and ε). Thus, going back to (3.11),

2〈u, v〉ε − 〈v,Φu〉ε − 〈u,Φv〉ε 6 2〈u, v〉ε 6 C(δ + oε(1)) ||(u, v)||2ε + C ′′0 ε
N . (3.13)

2. Next, it follows from our assumptions that J ′ε(u, v)(φiv, φiu) = 0 for every i = 1, . . . , k,

that is

〈u, φiu〉ε + 〈v, φiv〉ε =
∫

(f(x, u)v + g(x, v)u)φi. (3.14)

Then, thanks to (3.2) and (3.12),

〈u,Φu〉ε + 〈v,Φv〉ε 6 µ||(u, v)||2ε + Cµ(δ + oε(1))||(u, v)||2ε + C ′0ε
N . (3.15)

3. We combine the estimates in (3.10), (3.13) and (3.15) to deduce that

||(u, v)||2ε = 〈u,Φu〉ε + 〈v,Φv〉ε + 〈v − u, ξ(v − u)〉ε + 2〈u, v〉ε − 〈v,Φu〉ε − 〈u,Φv〉ε

6 C(µ+ δ + oε(1))||(u, v)||2ε + Cµ(δ + oε(1))||(u, v)||2ε + (C ′0 + C ′′0 )εN .(3.16)

By choosing a small µ > 0 and, subsequentely, a small δ > 0 we conclude that

||(u, v)||2ε 6 D0ε
N (3.17)
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for every small ε. This proves the first part of Proposition 3.3.

4. Next, we go back to the equation in (3.14). By replacing if necessary φi by φ2
i in the

definition of the set Nε, we may assume that |∇φi|2 6 Cφi. Therefore,

〈u, φiu〉ε = ε2
∫
|∇u|2φi +

∫
V (x)u2φi + ε2

∫
u〈∇u,∇φi〉

>
1
2

(
ε2
∫
|∇u|2φi +

∫
V (x)u2φi

)
− C ′ε2

∫
u2, (3.18)

while (3.17) and the assumption that
∫
Λi

(u2 + v2) > εN+1 imply

C ′ε2
∫
u2 6 D′

0ε
N+2 6 δ

∫
V (x)(u2 + v2)φi, (3.19)

for a small δ > 0, provided ε > 0 is sufficiently small. By proceeding in a similar way with

the function v we conclude that

〈u, φiu〉ε + 〈v, φiv〉ε >
1
2

(
ε2
∫

(|∇u|2 + |∇v|2)φi +
∫
V (x)(u2 + v2)φi

)
. (3.20)

As for the right-hand member of (3.14), we recall that (3.1) holds and also that |f(s)| 6

δ|s|+ Cδ|s|2
∗−1 and so∫

|f(x, u)v|φi 6 δ

∫
(u2 + v2)φi + Cδ

∫
Λi

|u|2∗−1|v|, (3.21)

with ∫
Λi

|u|2∗−1|v| =
∫

Λi

|uφi|2
∗−1|vφi|

6 C

(∫
|uφi|2

∗
+
∫
|vφi|2

∗
)

6 C

(∫
(|∇u|2 + |∇v|2)φi

)2∗/2

+ C

(∫
(u2 + v2)φi

)2∗/2

thanks to Sobolev’s inequality. Thus, since 2∗/2 > 1,∫
Λi

|u|2∗−1|v| 6 C

(∫
(|∇u|2 + |∇v|2)φi

)2∗/2

+ δ

∫
V (x)(u2 + v2)φi. (3.22)

If we combine (3.14), (3.20), (3.21), (3.22) we see that, for some small δ > 0,

ε2
∫

(|∇u|2 + |∇v|2)φi +
∫
V (x)(u2 + v2)φi 6 C

(∫
(|∇u|2 + |∇v|2)φi

)2∗/2

+ δ

∫
V (x)(u2 + v2)φi (3.23)
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if ε is sufficiently small. Since (u2 + v2)φi 6= 0, this implies that

0 < ε2
∫

(|∇u|2 + |∇v|2)φi 6 C

(∫
(|∇u|2 + |∇v|2)φi

)2∗/2

,

and so, since 2∗/2 = N/(N − 2),

ε2
∫

(|∇u|2 + |∇v|2)φi > ηεN , (3.24)

for some η > 0. By combining (3.17), (3.23) and (3.24) we also deduce that∫
Λi

(u2 + v2) > η0ε
N

for some η0 > 0. At last, it may be observed that the coefficients of the εN -term in (3.16)

are bounded above by a (fixed) multiple of Jε(u, v), and this, together with (3.24), yields

that

Jε(u, v) > η1ε
N ,

for some η1 > 0, which completes the proof of Proposition 3.3.

For further reference, we mention that (3.2), (3.14), (3.20) and (3.24) show that∫
Λi

(f(u)u+ g(v)v) > η2ε
N , (3.25)

for some η2 > 0.

Lemma 3.4. Under the conditions of Proposition 3.3, let i ∈ {1, . . . , k} and ψ ∈ H. Then

αi,ε := 〈(v − u)φi, ψ〉ε − 〈v − u, φiψ〉ε = oε(1)εN/2||ψ||ε,

where oε(1) → 0 as ε→ 0, uniformly in u, v, ψ.

Proof. Clearly,

|αi,ε| =
∣∣∣∣ε2 ∫ (v − u)〈∇φi,∇ψ〉 − ε2

∫
ψ〈∇φi,∇(v − u)〉

∣∣∣∣
6 Cε2

(∫
|v − u| |∇ψ|+

∫
|ψ| |∇(v − u)|

)
6 oε(1)||(u, v)||ε||ψ||ε,

and the conclusion follows from Proposition 3.3.

Lemma 3.5. Under the conditions of Proposition 3.3, let i ∈ {1, . . . , k} and denote

βi,ε := 〈u, φ2
i v〉ε + 〈v, φ2

iu〉ε + 2〈φiu, φiv〉ε − 2
∫

(f(x, u)u+ g(x, v)v)φ2
i .
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Then

βi,ε 6 oε(1)εN ,

where oε(1) → 0 as ε→ 0, uniformly in u, v.

Proof. We may subtract the quantity 2J ′ε(u, v)(φiu, φiv) = 0 in the expression of βi,ε,

the resulting quantity being then given by

2〈u, (φ2
i − φi)u〉ε + 2〈v, (φ2

i − φi)v〉ε + 2〈v − u, (φi − φ2
i )(v − u)〉ε

+ 2
∫

(f(x, u)u+ g(x, v)v)(φi − φ2
i ) + oε(1)εN ,

where the oε(1)εN term arises from the quantity 2〈φiu, φiv〉ε − 〈u, φ2
i v〉ε − 〈v, φ2

iu〉ε =

2ε2
∫
uv|∇φi|2. Since φi − φ2

i > 0 in Ω and φi − φ2
i = 0 in Λ, and since −∆(v − u) =

f(x, u)− g(x, v), the third and fourth terms above can be estimated in a similar manner,

yielding that

βi,ε 6 2〈u, (φ2
i − φi)u〉ε + 2〈v, (φ2

i − φi)v〉ε + δ

∫
(u2 + v2)(φi − φ2

i ) + oε(1)εN .

Moreover, 〈u, (φ2
i − φi)u〉ε = ε2

∫
|∇u|2(φ2

i − φi) +
∫
V (x)u2(φ2

i − φi) + oε(1)εN and so

βi,ε 6
∫

(2V (x)− δ)(u2 + v2)(φ2
i − φi) + oε(1)εN .

By letting δ 6 2 infRN V , the conclusion follows.

The expression for γε which appears in our next lemma is suggested by the one in the

proof of Lemma 2.2.

Lemma 3.6. Under the conditions of Proposition 3.3, let ψ ∈ H, µ1, . . . , µk ∈ R with∑
i µ

2
i = 1, and denote Φ :=

∑
i µiφi and

γε := 2||ψ||2ε +
∫

(
f(x, u)
u

+
g(x, v)
v

)ψ2

+
∫

(
∂f

∂s
(x, u)− f(x, u)

u
)(Φu+ ψ)2 +

∫
(
∂g

∂s
(x, v)− g(x, v)

v
)(Φv − ψ)2.

Then there exists η > 0 such that

γε > ηεN + ||ψ||2ε.

Proof. We may assume that µi = 1 for some i. By recalling that f ′(s) > (1 + δ′)f(s)/s

and similarly for g(s) for some δ′ > 0 we see that

γε − ||ψ||2ε > ||ψ||2ε + δ′
∫

Λi

(
f(u)
u

(u+ ψ)2 +
g(v)
v

(v − ψ)2
)
.
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We use the change of variables uε(x) := u(εx), vε(x) := v(εx), ψε(x) := ψ(εx). If the

expression above is not bounded below by some ηεN then there exist sequences ε→ 0 and

||ψε||1 → 0 such that∫
Λi/ε

(f(uε)uε + 2f(uε)ψε + g(vε)vε − 2g(vε)ψε) → 0.

Since (uε)ε and (vε)ε are bounded in H1(RN ), this contradicts (3.25) and proves Lemma

3.6.

Proposition 3.7. Under the conditions of Proposition 3.3, there exists ε0 > 0 such that

for any 0 < ε 6 ε0, any ψ ∈ H, and any i ∈ {1, . . . , k},

J ′ε(u, v)(φ
2
iu, φ

2
i v) + J ′′ε (u, v)(φiu+ ψ, φiv − ψ)(φiu+ ψ, φiv − ψ) < 0.

Proof. A straightforward computation shows that the above expression is given by

2αi,ε + βi,ε − γi,ε, where these quantities were defined respectively in Lemmas 3.4, 3.5

and 3.6 (here γi,ε stands for the expression in Lemma 3.5 with µi = 1 and µj = 0

if j 6= i). According to these lemmas, for ε small enough this is bounded above by

oε(1)εN/2||ψ||ε − εNη/2− ||ψ||2ε for some η > 0, and the conclusion follows.

We conclude this section with the

Proof of Proposition 3.2.

1. For every t = (t1, . . . , tk) ∈ [0, 1]× · · · × [0, 1], let

uε,t :=
∑

i

tiui,ε, vε,t :=
∑

i

tivi,ε, (3.26)

and let Ψε,t be such that

J ′ε((uε,t, vε,t) + (Ψε,t,−Ψε,t))(φ,−φ) = 0, ∀φ ∈ H1
0 (Ω), (3.27)

that is, Ψε,t ∈ H1
0 (Ω) is such that

−2ε2∆Ψε,t + 2V (x)Ψε,t = −ε2∆vε,t + V (x)vε,t + ε2∆uε,t − V (x)uε,t

−f(x, uε,t + Ψε,t) + g(x, vε,t −Ψε,t). (3.28)

We have that, uniformly in ε and in t,∫
Ω

(
ε2|∇Ψε,t|2 + V (x)Ψ2

ε,t

)
6 C
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and ∫
Ω\Λ

(
ε2|∇Ψε,t|2 + V (x)Ψ2

ε,t

)
→ 0 as ε→ 0. (3.29)

Indeed, concerning for example the less obvious property (3.29) we observe that

−2ε2∆Ψε,t + 2V (x)Ψε,t = −f(Ψε,t) + g(−Ψε,t) in Ω \ Λ̃,

and this readily implies the estimate in (3.29) over the set Ω\Λ̃. As for Λ̃\Λ, in view of the

change of variables y = εx+ xi, let us denote φε
i (x) := φi(εx+ xi), V ε

i (x) := Vi(εx+ xi),

Ψε
t
(x) := Ψε,t(εx + xi), Λε

i := Λi−xi
ε , fε

i (x, s) := f(εx + xi, s) and so on, so that, taking

the previous remark into account, (3.29) will be a consequence of showing that, for every

i = 1, . . . , k, ∫
eΛε

i \Λε
i

(
|∇Ψε

t |
2 + V ε

i (Ψε
t )

2
)
→ 0 as ε→ 0, uniformly in t. (3.30)

To that purpose, let us fix ωi ⊂ Λi and let ξi be a cut-off function such that ξ1 = 1 in

Λ̃i \Λi, ξi = 0 in ωi and ξi = 0 outside a small neighborhood of Λ̃i. Then, over the support

of ξε
i (x) := ξi(εx+ xi), the function Ψε

t
satisfies

−2∆Ψε
t + 2V ε

i Ψε
t = tif

ε
i (x, ui)− fε

i (x, tiui + Ψε
t )

−tigε
i (x, vi) + gε

i (x, tivi −Ψε
t ) + o(1), (3.31)

since ||(1 − φε
i )ui||H1(RN ) → 0 and ||(1 − φε

i )vi||H1(RN ) → 0 as ε → 0. If we multiply this

equation by Ψε
t
ξε
i and integrate by parts we see that

2
∫ (

|∇Ψε
t |

2 + V ε
i (Ψε

t )
2
)
ξε
i 6

∫
(tifε

i (x, ui)− fε
i (x, tiui))Ψε

t ξ
ε
i

+
∫

(gε
i (x, tivi)− tig

ε
i (x, vi))Ψε

t ξ
ε
i + o(1)

6 C

∫
RN\Λε

i

(|ui|+ |vi|) |Ψε
t |+ o(1) = o(1),

since ui, vi ∈ L2(RN ) and since
∫

RN |Ψε
t
|2 is bounded uniformly in ε and in t. This proves

(3.30) and establishes (3.29).

2. Now, let us introduce the continuous function

θi,ε(t) := J ′ε((uε,t, vε,t) + (Ψε,t,−Ψε,t))(uε,tφi, vε,tφi), (3.32)
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where uε,t, vε,t and Ψε,t were defined in (3.26) and (3.27). We claim that there exist

ε0, µ > 0 such that, for any 0 < ε 6 ε0 and every points tj ∈ [0, 1], j 6= i,

θi,ε(t1, . . . , 1− µ, . . . , tk) > 0 > θi,ε(t1, . . . , 1 + µ, . . . , tk). (3.33)

We observe that, by Miranda’s theorem and by the definition in (3.27), this yields the

desired conclusion (3.3) (and also (3.4), thanks again to (3.27)).

3. In order to prove (3.33), and in view of Proposition 2.4, let us consider Ψti ∈ H1(RN )

such that

−2∆Ψti + 2V (xi)Ψti = tif(ui)− f(tiui + Ψti)

+g(tivi −Ψti)− tig(vi) in RN . (3.34)

Since Ψti is a continuous map as a function of ti, we can use Lebegue’s dominated con-

vergence theorem to deduce that∫
eΛε

i

(V (xi)− V (εx+ xi))Ψ2
ti → 0 as ε→ 0, uniformly in ti,

and thus also∫
eΛε

i

(V (xi)− V (εx+ xi))Ψti (Ψε
t −Ψti) → 0 as ε→ 0, uniformly in t. (3.35)

Similarly, we have that∫
RN\Λε

i

(
|∇Ψti |2 + V (xi)Ψ2

ti

)
→ 0 as ε→ 0, uniformly in ti. (3.36)

Now, by comparing (3.31) and (3.34) we see that

−2∆(Ψε
t −Ψti) + 2V ε

i (Ψε
t −Ψti) = 2(V (xi)− V ε

i )Ψti

+ ti(fε
i (ui)− f(ui)) + f(tiui + Ψti)− fε

i (tiui + Ψε
t)

+ ti(g(vi)− gε
i (vi)) + gε

i (tivi −Ψε
t )− g(tivi −Ψti) + o(1).

By recalling that fε
i (x, s) = f(x) if x ∈ Λε

i and by adding ±(fε
i (x, tiui +Ψε

ti)− g
ε
i (x, tivi−

Ψε
ti)) in the right-hand member of the above equation, we conclude from (3.30), (3.35)

and (3.36) that∫
eΛi

|∇(Ψε
t −Ψti)|2 + V (εx+ xi)(Ψε

t −Ψti)
2 → 0 as ε→ 0, uniformly in t. (3.37)
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4. At last, let us consider the map introduced in Proposition 2.4, namely

θi(ti) := I ′V (xi)
(ti(ui, vi) + (Ψti ,−Ψti))(ui, vi).

Taking (3.32) and (3.37) into account we see that, for any t = (t1, . . . , tk),

ε−Nθi,ε(t) = θi(ti) + oε(1) = δi(1− ti) + oti(1− ti) + oε(1), (3.38)

where

oti(1− ti)
1− ti

→ 0 as t1 → 1 and oε(1) → 0 as ε→ 0, uniformly in t.

Clearly, this implies the desired conclusion (3.33).

As for the estimate (3.5), we observe that it follows from (3.29), (3.36) and (3.37) that

ε−NJε(uε, vε) =
∑

i

IV (xi)(ti,ε(ui, vi) + (Ψti,ε ,−Ψti,ε)) + o(1).

On the other hand, it follows from (3.38) that ti,ε → 1 (and hence Ψti,ε → 0) as ε → 0,

and (3.5) follows. At last,∫
Λi

(u2
ε + v2

ε) > t2i,ε ε
N

∫
Λε

i

(u2
i + v2

i ) > ηεN ,

for some η > 0, and this concludes the proof of Proposition 3.2.

4 Proof of Theorem 1.1

We use the same notations as in the previous section.We recall that cε := infNε Jε and we

denote

J i
ε(u, v) :=

∫
eΛi

(
ε2〈∇u,∇v〉+ V (x)uv − F (x, u)−G(x, v)

)
.

Our main result in this section is the following.

Theorem 4.1. For every small ε > 0 there exists (uε, vε) ∈ Nε such that

Jε(uε, vε) = cε and J ′ε(uε, vε) = 0.

Moreover,

J i
ε(uε, vε) = εN (ci + o(1)) ∀i and cε = εN

(
k∑

i=1

ci + o(1)

)
as ε→ 0.
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Proof. 1. By the considerations at the beginning of Section 3, for any small ε > 0 there

exists a constrained Palais-Smale sequence for the functional Jε at the level cε, that is

there exist sequences (un, vn) ∈ Nε, λn
i ∈ R (i = 1, . . . , k) and ψn ∈ H such that, for any

ζ, ξ ∈ H,

J ′ε(un, vn)(ζ, ξ) = J ′ε(un, vn)(Φnζ,Φnξ) + J ′′ε (un, vn)(Φnun + ψn,Φnvn − ψn)(ζ, ξ) + on(1)

where on(1) → 0 uniformly for bounded ζ, ξ as n → ∞, and Φn :=
∑

i λ
n
i φi; moreover,

Jε(un, vn) → cε. This can be checked in [27] (or in e.g. [16, p. 207 & 219] if one works

instead with the reduced functional mentioned just before Proposition 3.3). Let λn :=

(
∑

i(λ
n
i )2)1/2. We claim that

λn → 0 and ψn → 0. (4.1)

Indeed, we let ζ = (Φnun + ψn)/λn, ξ = (Φnvn − ψn)/λn so that J ′ε(un, vn)(ζ, ξ) = 0.

Similarly to Proposition 3.7 we find that, for some η > 0,

ηλ2
n + ||φn||2ε 6 on(1) (|λn|+ ||φn||ε)

with on(1) → 0 as n → ∞. Then (4.1) follows. (In case λn = 0 by letting (ζ, ξ) =

(ψn,−ψn) we immediately get that ψn → 0.)

2. It follows from (4.1) that (un, vn) is a (bounded) Palais-Smale sequence for Jε, namely

Jε(un, vn) → cε and J ′ε(un, vn) → 0 as n→∞. Up to a subsequence, let (uε, vε) be a weak

limit of the sequence (un, vn)n. Of course, J ′ε(uε, vε) = 0 and (uε, vε) ∈ Nε. Moreover, since

2Jε(un, vn) = 2Jε(un, vn)−J ′ε(un, vn)(un, vn)+on(1) =
∫

(f(x, un)un +g(x, vn)vn)+on(1),

we can use Fatou’s lemma to deduce that Jε(uε, vε) 6 cε, so that actually Jε(uε, vε) = cε.

3. Let ξ be a cut-off function in RN such that ξ = 0 in Λ and ξ = 1 in Ω \ Λ′. By testing

J ′ε(uε, vε)(ξvε, ξuε) = 0 we see that∫
Ω\Λ′

(ε2|∇uε|2 + V (x)u2
ε + ε2|∇vε|2 + V (x)v2

ε) = oε(εN ) as ε→ 0. (4.2)

This, in turn, readily implies that

J i
ε(uε, vε) = Jε(φiuε, φivε) + oε(εN ) ∀i ∈ {1, . . . , k}, (4.3)

and that

Jε(uε, vε) =
k∑

i=1

Jε(φiuε, φivε) + oε(εN ). (4.4)
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Also, 〈(φi − 1)uε, φivε〉ε + 〈φiuε, (φi − 1)vε〉ε = oε(εN ) and therefore

2Jε(φiuε, φivε) = 〈uε, φivε〉ε + 〈vε, φiuε〉ε + oε(εN )− 2
∫

(F (x, φiuε) +G(x, φivε))

>
∫

Λ′
i

(f(uε)uε − 2F (uε) + g(vε)vε − 2G(vε)) + oε(εN )

> δ′
∫

Λ′
i

(f(uε)uε + g(vε)vε) + oε(εN )

> ηεN , (4.5)

as follows from (3.25).

4. Since uε → u in L2(Λ′i), we may assume that |uε| remains bounded by a function in

L2(Λ′i) as ε → 0, and similarly for |vε|. So, by letting uε
i (x) := uε(εx + xi)φi(εx + xi),

vε
i (x) := vε(εx+ xi)φi(εx+ xi), Lebesgue’s dominated convergence theorem implies that∫

|V (xi)− V (εx+ xi)|((uε
i )

2 + (vε
i )

2) → 0 as ε→ 0.

Therefore, thanks again to (4.2),

Jε(φiuε, φivε) = εNIV (xi)(u
ε
i , v

ε
i ) + oε(εN ), (4.6)

in particular (cf. (4.5)) 0 < lim infε→0 IV (xi)(u
ε
i , v

ε
i ) 6 lim supε→0 IV (xi)(u

ε
i , v

ε
i ) < ∞, and

also

sup{|I ′V (xi)
(uε

i , v
ε
i )(φ, ψ)|, φ, ψ ∈ H1(RN ), ||φ||+ ||ψ|| 6 1} → 0.

Then, by Proposition 2.5 and the Remark following it,

IV (xi)(u
ε
i , v

ε
i ) > ci + oε(1), as ε→ 0.

Thus, by (4.6),

Jε(φiuε, φivε) > εN (ci + oε(1)). (4.7)

5. At last, we observe that, thanks to (4.7), (4.4) and (3.7),

εN (
∑

i

ci + oε(1)) 6
∑

i

Jε(φiuε, φivε) + oε(εN ) = Jε(uε, vε) = cε 6 εN (
∑

i

ci + oε(1)),

and so equality holds, that is,∑
i

Jε(φiuε, φivε) = εN (
∑

i

ci + oε(1)). (4.8)

Combining (4.7) and (4.8) leads to the conclusion that, for every i ∈ {1, . . . , k},

Jε(φiuε, φivε) = εN (ci + oε(1)).

Taking (4.3) and (4.4) into account, this completes the proof of Theorem 4.1.
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From now on we consider the positive functions uε > 0, vε > 0 given by Theorem 4.1,

which satisfy

−ε2∆uε + V (x)uε = g(x, vε), −ε2∆vε + V (x)vε = f(x, uε), uε, vε ∈ H1(RN ). (4.9)

At this point we need to show that (uε, vε) solves our original problem (1.1) and that the

properties (i)-(iv) of Theorem 1.1 hold true. Most of this follows from standard arguments

and therefore we will be sketchy.

Lemma 4.2. The pair (uε, vε) solves (1.1) and moreover:

lim
ε→0

sup
Ω\Λ

{uε, vε} = 0 and lim inf
ε→0

min{sup
Λi

uε, sup
Λi

vε} > 0, (4.10)

for every i = 1, . . . , k.

Proof. The crucial step in the argument consists in showing that for given points zε ∈ Λi

the following holds:

lim inf
ε→0

min{uε(zε), vε(zε)} > 0 ⇒ lim
ε→0

V (zε) = inf
Λi

V. (4.11)

Indeed, up to subsequences we have that zε → z ∈ Λ and that the functions uε(x) :=

uε(εx + zε), vε(x) := vε(εx + zε) (which are bounded in H1(RN ), thanks to Proposition

3.3) converge weakly in H1(RN ) and in C2
loc(RN ) to a nonzero solution (u, v) of the system

−∆u+ V (z)u = g(v), −∆v + V (z)v = f(u), u, v ∈ H1(RN ) (4.12)

(c.f. [13, Lemma 2.3]); moreover, simple arguments (as in e.g. [11, Lemma 2.2]) imply that

IV (z)(u, v) 6 lim infε→0
1

εN J
i
ε(uε, vε), where IV (z) denotes the energy functional associated

to (4.12). By denoting by cV (z) the corresponding ground-state critical level, we deduce

from Theorem 4.1 that cV (z) 6 ci. Thus, as mentioned in the second Remark following

Proposition 2.5, we must have that V (z) 6 infΛi V , whence V (z) = infΛi V , and this

proves (4.11).

Now, it follows from (4.11) and our basic assumption infΛi V < inf∂Λi
V that sup∂Λi

uε →

0 and sup∂Λi
vε → 0, for every i = 1, . . . , k. Since, according to (4.9), −∆(uε + vε) 6 0

over Ω\Λ, the first conclusion in (4.10) follows from the maximum principle. By recalling

that f(x, u) = f(u) if either x ∈ Λ or x ∈ Ω \ Λ and u is small, and similarly for g(x, v),

we have that (uε, vε) solves (1.1).
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As for the second conclusion in (4.10), suppose that, say, supΛi
uε → 0 for some i ∈

{1, . . . , k} and let uε(x) := u(εx), vε(x) := v(εx). Then we have that supy∈Λi/ε

∫
BS(y)(u

ε)2 →

0 for every S > 0 and therefore
∫
NR(Λi/ε)(u

ε)p → 0 as ε→ 0, according to P.L. Lions’s con-

centration lemma (see e.g. [29, Th. 1.34]), for any neighborhood NR(Λi/ε) := {x ∈ RN :

dist(x,Λi/ε) < R}. It then follows as in (4.2) that
∫
Λi/ε(|∇u

ε|2 + V (εx)(uε)2 + |∇vε|2 +

V (εx)(vε)2) 6 oR(1) as ε→ 0, where oR(1) is small for large values of R. This contradicts

the fact that, according to Proposition 3.3, lim infε→0

∫
Λi/ε((u

ε)2 + (vε)2) > 0.

Our next result concludes the proof of Theorem 1.1 (see also Section 5).

Proposition 4.3. The functions uε, vε satisfy the properties (i)-(iv) stated in Theorem

1.1.

Proof. (sketch) It follows from our previous lemma that for every i = 1, . . . , k there exist

xi,ε, yi,ε ∈ Λi such that u(xi,ε) = maxΛi uε and v(yi,ε) = maxΛi vε. Moreover (cf. (4.10)

–(4.11)) u(xi,ε), v(yi,ε) > b > 0 and limV (xi,ε) = limV (yi,ε) = infΛi V as ε → 0. We

claim that xi,ε = yi,ε if ε is sufficiently small. Indeed, we let uε(x) := uε(εx + xi,ε) and

vε(x) := vε(εx + xi,ε), to arrive at a limit problem as in (4.12) with V (z) = infΛi V . We

know from [4] that u and v are radially symmetric with respect to the origin and that they

are decreasing functions. Let ξi,ε := (xi,ε − yi,ε)/ε. In case |ξi,ε| → ∞ it follows as in [11,

p. 13] and from the estimates in Theorem 4.1 that 2ci 6 ci, a contradiction. Thus (ξi,ε) is

bounded and since ξi,ε is a local maximum of vε it follows from our previous observation

that ξi,ε → 0. By applying then the argument in [25, p. 3276], which is based on the fact

that either u′′(0) 6= 0 or v′′(0) 6= 0, we conclude that ξi,ε = 0 for small values of ε, thus

proving the claim.

Similarly, if zi,ε ∈ Λi is a given local maximum point of, say, uε such that 0 <

lim supε→0 uε(zi,ε) then the preceding argument yields that zi,ε = yi,ε (= xi,ε) for small

values of ε and this, together with the first statement in (4.10), establishes property (iv)

of Theorem 1.1

As for property (iii) and keeping the same notations as above, we may assume that b is

so small that c := infΩ V −f(b)/b−g(b)/b > 0. Since the limit functions u and v are radially

symmetric and thanks also to the first statement in (4.10), we can choose R > 0 so large

and ε so small that uε(x) + vε(x) 6 b ∀x ∈ ∂ω, where ω := RN \ (∪j 6=i(
Λj−xi,ε

ε ) ∪BR(0)).

The uniqueness of the maximum points implies that in fact uε(x)+vε(x) 6 b ∀x ∈ ω. As a
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consequence, f(uε)
uε+vε

+ g(vε)
uε+vε

6 f(uε)
uε

+ g(vε)
vε

6 f(b)
b + g(b)

b < infΩ V in ω and so −∆(uε+vε)+

c(uε + vε) 6 0 in ω. The conclusion also holds for a slightly smaller Λ′′j b Λj and ω′′ :=

RN \(∪j 6=i(
Λ′′

j−xi,ε

ε )∪BR(0)); we fix Λ′′j , small numbers 0 < δ′ < δ <
√
c and a finite number

of points y1, . . . , y`0 in such a way that ∂(∪j 6=iΛ′′j ) ⊂ ∪`0
`=1 (Bδ(y`) \Bδ′(y`)) ⊂ ∪j 6=iΛj and

|x−y`| > 2δ ∀` ∀x ∈ Ω\∪j 6=iΛj . Let w ∈ H1(RN \B1(0)) be such that −∆w+δ2w = 0 and

a1e
−2δ|x| 6 w(x) 6 a2e

−δ|x| ∀|x| > 1, for some a1, a2 > 0. It follows from the maximum

principle that uε(x) + vε(x) 6 λ0w(x) +
∑`0

`=1 λ`w(x − y`−xi,ε

ε ) in ω′′, for some λ0 > 0

and some 0 < λ` 6 Ce2δ2/ε. Hence uε(x) + vε(x) 6 C(e−
|x−xi,ε|

ε +
∑`0

`=1 e
2δ2−δ|x−y`|

ε ) over

Ω \ ∪j 6=iΛ′′j . Since δ|x− y`| − 2δ2 > µ|x− xi,ε| for every x ∈ Ω \ ∪j 6=iΛj and a small µ > 0,

(iii) follows.

5 The case p 6= q

In Section 4 we have proved Theorem 1.1 except that we have worked with a truncated

problem, as explained at the end of Section 1. The full statement of Theorem 1.1 will

be established once we prove uniform bounds in L∞(Ω) of the solutions constructed so

far. So, let us suppose that p, q > 2 are such that 1/p + 1/q > (N − 2)/N with, say,

2 < p < 2∗ = 2N/(N − 2) and p < q.

Given n ∈ N, we consider the functions fn and gn already defined in (1.3). Then, for

a fixed n, thanks to Theorem 1.1 there exists ε0,n > 0 such that for 0 < ε < ε0,n there are

positive solutions uε, vε of the problem

−ε2∆u+ V (x)u = gn(v), −ε2∆v + V (x)v = fn(u) in Ω, u, v ∈ H1
0 (Ω), (5.1)

satisfying the conclusions of that theorem; at this point, all the quantities appearing in

the theorem depend of n. Moreover, by Theorem 4.1 we have

In
ε (uε, vε) = εN

(
k∑

i=1

ci,n + on(1)

)
as ε→ 0,

where In
ε (uε, vε) =

∫
{ε2〈∇u,∇v〉+V (x)uv−Fn(u)−Gn(v)} with obvious notations, and

ci,n is the ground-state critical level of

−∆u+ V (xi)u = gn(v), −∆v + V (xi)v = fn(u) in RN . (5.2)

Therefore, given n we can consider ε0,n > 0 small enough such that for 0 < ε < ε0,n we

have In
ε (uε, vε) 6 2εN

∑k
i=1 ci,n.
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Lemma 5.1. For every n ∈ N there exists ε0,n > 0 such that, for every 0 < ε < ε0,n we

have

In
ε (uε, vε) 6 CεN ,

for some C > 0 independent of n and ε. In particular, also∫
(fn(uε)uε + gn(vε)vε) 6 CεN . (5.3)

Proof. We only have to prove that ci,n 6 C, with C > 0 independent of n, for any fixed

i = 1, . . . , k. We recall that from our assumptions on f we have that f ′(s) > f(s)/s >

f(1)sδ′ for some 0 < δ′ < p− 2. We set

hf (s) :=

{
f(s) , s 6 1
f ′(1)
1+δ′ s

1+δ′ + f(1)− f ′(1)
1+δ′ , s > 1.

Then, for a small λ > 0 (namely, λ < (1 + δ′)f(1)/f ′(1)) it follows easily that λh′f 6 f ′n,

thus also λhf 6 fn. We proceed in a similar way with the function g, yielding some function

hg such that λhg 6 gn. Then, according to the second Remark following Proposition 2.5,

we conclude that ci,n 6 cλhf ,λhg , where the latter quantity refers to the ground-state

critical level associated to the problem

−∆u+ V (xi)u = λhg(v), −∆v + V (xi)v = λhf (u), u, v ∈ H1(RN ).

The final conclusion follows from the fact that the left-hand side of (5.3) is bounded by
2(2+δ′)

δ′ In
ε (uε, vε), according to our assumption (fg3).

We denote by xi,ε the maximum points of uε and vε over Λi, as mentioned in Theorem

1.1.

Lemma 5.2. Given ρ > 0, i ∈ {1, . . . , k} and n ∈ N, there exists ε0,n such that for

0 < ε < ε0,n we have uε(x), vε(x) 6 1, for all x ∈ Ω\ ∪j 6=i Λj such that |x− xi,ε| > ρ.

Proof. According to Theorem 1.1 we have uε(x), vε(x) 6 γne
−βn

ε
|x−xi,ε|, for all x ∈

Ω\ ∪j 6=i Λj . Then we just have to choose ε0,n 6 ρβn/ log γn.

Taking the previous lemma into account, we are left to the analysis of the behavior of

uε(x), vε(x) over small neighborhoods of the points xi,ε. To that purpose, we introduce
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a cutoff function φi such that φi = 1 in B2ρ(xi,ε), φi = 0 in RN \ B3ρ(xi,ε), and denote

φi,ε(x) = φi(εx+ xi,ε). We also consider the functions

ūε(x) = uε(εx+ xi,ε), v̄ε(x) = vε(εx+ xi,ε),

which satisfy, in the whole space RN ,{
−∆(ūεφi,ε) = −V (εx+ xi,ε)ūεφi,ε + gn(v̄ε)φi,ε − ūε∆φi,ε − 2〈∇ūε,∇φi,ε〉
−∆(v̄εφi,ε) = −V (εx+ xi,ε)v̄εφi,ε + fn(ūε)φi,ε − v̄ε∆φi,ε − 2〈∇v̄ε,∇φi,ε〉

(5.4)

We now use the same variational setting as in [26]. We define s, t such that s + t = 2,

s, t < N
2 and p < 2N

N−2s , q <
2N

N−2t (see [26, p. 1453]). This implies the following continuous

injections Hs(RN ) ↪→ Lp(RN ), Ht(RN ) ↪→ Lq(RN ). The linear map As : Hs → L2 will

denote the canonical isomorphism As(u) := ((1 + |ξ|2)
s
2 |û(ξ)|)∨, where ̂ is the Fourier

transform and ∨ is its inverse. To be precise, in our next lemma we take instead As given

by As(u) := (α+ |ξ|2)
s
2 |û(ξ)|)∨, α := infΩ V .

Lemma 5.3. Given n ∈ N, there exists ε0,n such that for 0 < ε < ε0,n we have

‖ūεφi,ε‖Hs + ‖v̄εφi,ε‖Ht 6 C, with C > 0 independent of n and ε.

Proof. We know from (5.3) that
∫

(fn(ūε)ūε + gn(ūε)ūε) 6 C. Also, for every s > 1,

|fn(s)| 6 C|s|p−1 and |gn(s)| 6 C|s|q−1 with 1/p + 1/q > (N − 2)/N . Therefore our

argument is quite similar to the one in [26, p. 1457] and so we only stress the differences.

We first add on both sides of the first equation in (5.4) the term V (xi,ε)ūεφi,ε and then

use the test-functions A−tAs(ūεφi,ε). With respect to the computations in [26], we now

have addicional terms∫
(V (xi,ε)− V (εx+ xi,ε))ūεφi,εA

−tAs(ūεφi,ε) −
∫
ūεA

−tAs(ūεφi,ε)∆φi,ε

− 2
∫
〈∇ūε,∇φi,ε〉A−tAs(ūεφi,ε).

Since V is α-Hölder continuous over B3ρ(xi,ε) (for some α > 0), we see that∫
(V (xi,ε)− V (εx+ xi,ε))ūεφi,εA

−tAs(ūεφi,ε) 6 ραC‖ūεφi,ε‖2
Hs .

Also, for some positive constant Cn depending on n but not on ε,

−
∫
ūεA

−tAs(ūεφi,ε)∆φi,ε − 2
∫
〈∇ūε,∇φi,ε〉A−tAs(ūεφi,ε) 6 εCn ‖ūεφi,ε‖Hs .
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Therefore, proceeding similarly with the second equation in (5.4) and by choosing ε0,n

small enough, it follows as in [26] that

‖ūεφi,ε‖2
Hs + ‖v̄εφi,ε‖2

Ht 6 ραC(‖ūεφi,ε‖2
Hs + ‖v̄εφi,ε‖2

Ht) + C(‖ūεφi,ε‖Hs + ‖v̄εφi,ε‖Ht).

So, provided ρ > 0 is chosen sufficiently small, the conclusion follows.

Lemma 5.4. Given n ∈ N, there exists ε0,n such that for 0 < ε < ε0,n we have

‖uε‖∞ + ‖vε‖∞ 6 C, with C > 0 independent of n and ε.

Proof. Thanks to Lemma 5.3, we can bootstrap similarly to [26, p. 1450 & 1451].

After a finite number of steps and by taking if necessary a smaller ε0,n, we conclude that

‖ūεφi,ε‖HN/2 +‖v̄εφi,ε‖HN/2 6 C. The conclusion follows from the imbedding H
N
2 (RN ) ↪→

L∞(RN ).

Our final result completes the proof of Theorem 1.1 in its full generality.

Proposition 5.5. There exist n0 ∈ N and ε0 > 0 such that for every 0 < ε < ε0 our

solutions uε, vε of problem (5.1) with n = n0 satisfy all the assertions of Theorem 1.1.

Proof. According to Lemma 5.4 we may choose n0 ∈ N large enough so that ‖uε‖∞ +

‖vε‖∞ 6 n0 for every 0 < ε < ε0,n0 and in this way we solve the original problem (1.1).

The conclusion follows then from Proposition 4.3.
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