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We consider unsteady flows of a homogeneous incompressible fluid-like material with the

viscosity depending on the temperature and on the shear-rate, and the heat conductivity
being a function of the temperature and its gradient. Restricting to the internal flows

and assuming Navier’s slip at the tangential directions on the boundary, we establish

a long-time and large-data existence of suitable weak solutions to the relevant models.
A combination of L∞ truncation method applied to establish the compactness of the

velocity gradient and the Lipschitz truncation method applied to establish to obtain

compactness of the temperature gradient leads to the existence results valid for range of
parameters interesting from the point of view of applications.
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1. Introduction

We consider a homogeneous incompressible fluid-like material with the nonconstant
material moduli: the viscosity depends on the temperature and on the shear-rate and
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2 Buĺıček, Consiglieri, Málek

the heat conductivity coefficient is a function of the temperature and its gradient.
Owing to the dependence of the viscosity on the shear-rate, the considered material
has the ability to capture shear-thinning or shear-thickening phenomena exhibited
by many non-Newtonian fluids. We refer to Málek and Rajagopal [2005] for a recent
description of features that cannot be exhibited by a Navier-Stokes (i.e. Newtonian)
fluid.

Dealing with a homogeneous incompressible fluid its motion, in our setting, will
be captured by (v, π, e), v being the velocity, π is the mean normal stress (the
pressure) and e is the internal energy.

We also assume that there is a one to one (possibly nonlinear) relationship
between the temperature θ and the internal energy e. As a consequence, the heat
conductivity coefficient k̃ is a function of e and ∇xe, and the viscosity ν̃ depends on
e and the shear rate that is usually generalized in a full three-dimensional setting,
to the quantity |Dv|2 = Dv : Dv where Dv is the symmetric part of the velocity
gradient ∇xv.

We are interested in mathematical analysis of the relevant model expressed as
the system of nonlinear partial differential equations (that describe the balance of
massa, the balance of momentum and the balance of energy. We require that the
model is thermomechanically consistent, i.e., the second law of thermodynamics
expressed in terms of the Clusius-Duhen inequality is met.

We restrict ourselves to internal flows (no flux of linear momentum through the
boundary is allowed). A special attention is however devoted to the slip effects on
the boundary. Regarding the temperature, we permit all possibilities that gamut
the nonhomogeneous Dirichlet and Neumann conditions. These types of boundary
conditions and the structural assumptions on the constitutive quantities specified by
certain growth, coerciveness and monotone-type conditions include various model
parameters.

Our aim in this paper is to establish a long-time and large-data existence result
for the largest range of model parameters. We clarify the precise meaning of the word
”largest” later after formulating our main result. To achieve this aim we incorporate
in our studies the following approaches and tools:

• We deal with the notion of weak solutions as it seems to be a very natural
concept of solution for the equations of continuum thermodynamics, as their relevant
weak formulation is ”equivalent”, at least for incompressible fluids, to the original
formulation of the balance equations over arbitrary (measurable) control volumes.
We may refer to Oseen [1927], Leray [1934] or Feireisl [2004] and many other studies
for details. There are natural bounds on certain quantities: the total energy is
bounded uniformly w.r.t. time, it means e and |v|2/2 belong to L∞(0, T ;L1), and
all dissipative quantities are at least L1-integrable.

• We prefer to work with the equation for the energy (e + |v|2/2) rather than

aSince the considered fluid is homogeneous, the density is constant at any spatial point x and any
time instant; the balance of mass thus simplifies to div v = 0.
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to use alternative formulations as the equation for the internal energy (or the equa-
tion for the temperature) since these alternative formulations are equivalent to the
equation for the total energy only if the velocity field v is smooth (More precisely,
only if v is an admissible test function in the weak formulation of the balance of
linear momentum).

The idea to use the equation for (e+ |v|2/2) (rather than the equation for e or
θ) in the existence theory has been put in the place firstly in Feireisl and Málek
[2006] and has been successfully incorporated in further recent studies Buĺıček et al.
[2007a] and Buĺıček et al. [2007b]. The advantage of this approach consists in dealing
with the quantity div(τv), T := −πI+ τ being the Cauchy stress, instead of τ ·∇v.
While τ · ∇v is in general only L1-integrable quantity, τv is not only Lq-integrable
quantity with q > 1, but it is also weakly compact.

• We consider the Navier’s slip on the boundary as for this type of boundary
conditions we know how to introduce the pressure globally as integrable function,
at least for C1,1 boundary. We are not able to treat the Dirichlet (no-slip) boundary
conditions at this moment.

• We incorporate L∞-truncation method that goes back to work Boccardo and
Murat [1992] in order to establish almost everywhere convergence of the velocity
gradient.

•We incorporate the properties of Lipschitz approximations of Sobolev functions
in order to establish almost everywhere convergence of the temperature gradient.

Let Ω be a bounded open subset of Rn(n ∈ N), Ω ∈ C1,1, with boundary ∂Ω,
T > 0 and Q = Ω×]0, T [. Thermal incompressible viscous flows are governed by the
following system of partial differential equations

div v =
n∑

i=1

∂vi

∂xi
= 0 in Q; (1.1)

∂tv + div(v ⊗ v)− div τ(·, e,Dv) = −∇π + f in Q; (1.2)

∂t

(
1
2
|v|2 + e

)
− div(q(·, e,∇e) + τ(·, e,Dv)v) =

=
(
f −∇(

1
2
|v|2 + e+ π)

)
· v in Q; (1.3)

∂te+ div(ve)− div q(·, e,∇e) ≥ τ(·, e,Dv) : Dv in Q, (1.4)

where v is the velocity vector, π denotes the pressure, f denotes the external forces,
and τ = (τij) denotes the viscous part of the Cauchy stress tensor T. The density is
constant and it is assumed equal to 1. The internal energy e is a nonlinear invertible
function of the temperature θ through the specific heat cp

e =
∫ θ

cp(s)ds⇔ θ = θ(e),

the heat flux (−q) is given by a general law, and the external source is only consti-
tuted by the dissipative term.
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The boundary ∂Ω is such that ∂Ω = Γ̄D ∪ Γ̄ where ΓD,Γ are open subsets
of ∂Ω with smooth boundaries and such that ΓD ∩ Γ = ∅, and meas(ΓD) > 0.
Hencefurther, let us assume the Dirichlet condition

e = er on ΓD×]0, T [; (1.5)

for the sake of simplicity er = 0, and the fluid-boundary interactions Hadrian and
Panagiotopoulos [1978]

vN = 0,
{
τT + α(·, e)vT = 0, on ΣD := ΓD×]0, T [;
τT + ϕ(·, e)|vT |s−2vT = 0, on Σ := Γ×]0, T [;

(1.6)

where vN ,vT are the normal and the tangential components of the velocity vector,
respectively, τT = τ ·n−τNn is the tangential component of τ , which coincides with
the tangential stress tensor σT , and ϕ denotes the friction coefficient. Here n = (ni)
denotes the unit outward normal to ∂Ω. Finally, the radiation heat transfer involving
the frictional work Hutter and Rajagopal [1994]

q(·, e,∇e) · n + γ(·, e) = ϕ(·, e)|vT |s, (1.7)

where the energy dependent function γ represents a general convective effect.

2. Assumptions and main results

Let us define the following Banach spaces, for p, q > 1 and 0 ≤ k ≤ 1,

W k,p
N = {v ∈ Wk,p(Ω) : vN = 0 on ∂Ω}

W k,p
N,div = {v ∈W k,p

N : div v = 0 in Ω}
Wq = {e ∈W 1,q(Ω) : e = 0 on ΓD};

endowed with the norms

‖ · ‖1,p,Ω = ‖D · ‖p,Ω + ‖ · ‖2,ΓD
‖ · ‖Wq

= ‖∇ · ‖q,Ω

with ‖ · ‖k,p denoting the canonical norms in scalar space W k,p as well as in the
vector space Wk,p. The Sobolev space W 0,p means the Lebesgue space Lp. We will
denote by ‖·‖p;X the usual norm in the Bochner space Lp(0, T ;X) with X a Banach
space.

Before we give the precise formulation of that what we mean by weak solution
and before we give the main existence theorem we prove two technical lemmas that
will be frequently use in what follows.

Let us begin by proving a trace lemma.

Lemma 2.1. Let r, c ∈ [1,∞[. Let v ∈ Lr(0, T ;W 1,r(Ω)) ∩ L∞(0, T ;Lc(Ω)). Then
there exists a constant C := C(‖v‖r;W 1,r , ‖v‖∞;Lc) such that

‖v‖La(0,T ;Lb(∂Ω)) ≤ C (2.1)
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for all a, b satisfying the following relation

a ≤ b
nr + rc− nc

bn+ c− cn
,


r ≤ n, r < c ≤ b ≤ (n−1)r

n−r ,

r ≤ n, c ≤ r ≤ b ≤ (n−1)r
n−r ,

r > n, r < c ≤ b ≤ ∞,

a ≤ br3

nbc+ rc− nrc− brc+ br2
r > n, c ≤ r ≤ b ≤ ∞.

(2.2)

Proof. The key observation that is used in the proof is that there exists continuous
trace operator tr such that

tr : W 1/b,b(Ω) → Lb(∂Ω) (2.3)

for all b ∈]1,∞). For proof see Triebel [1983]b.
We split the proof into two parts. First one for r ≤ n and second one for r > n.

Part 1 (r ≤ n): Here we restrict ourselves only to the case when c < nr/(n − r).
We use the following embeddings

W 1,r ↪→W l,c l = 1 +
n

c
− n

r
c > r, (2.4)

Wm,c ↪→W
1
b ,b m =

n

c
+

1
b
− n

b
c ≤ b ≤ (n− 1)r

n− r
, (2.5)

W k,r ↪→W
1
b ,b k =

n

r
+

1
b
− n

b
r ≤ b ≤ (n− 1)r

n− r
, (2.6)

and the standard interpolation inequalities

‖v‖r ≤ ‖v‖α
c ‖v‖1−α

1,r α =
rc

nr + rc− nc
, (2.7)

‖v‖j,r ≤ ‖v‖
j
q
q,r‖v‖

1− j
q

r 0 ≤ j ≤ q. (2.8)

First note that due to (2.3) it is enough to estimate
∫ T

0
‖v‖a

1
b ,b

. Thus,

∫ T

0

‖v‖a
1
b ,b

(2.5)

≤
(2.6)


∫ T

0

‖v‖a
m,c

(2.4), (2.8)

≤
∫ T

0

‖v‖
am

l
1,r ‖v‖

a(1−m
l )

c , (c > r)∫ T

0

‖v‖a
k,r

(2.8)

≤
∫ T

0

‖v‖ak
1,r‖v‖a(1−k)

r

(2.7)

≤
∫ T

0

‖v‖γ
1,r‖v‖δ

c, (c ≤ r)

bIn fact in Triebel [1983] there is not exactly proved the relation (2.3) but we can get it as

a simple consequence of several theorems that are also proved there. First in Subsection 2.2.2
(Remark 3) there is shown that W s,p(Ω) = Λs

p,p(Ω) for noninteger s > 0 and 1 ≤ p < ∞ (the

first spaces denotes the Sobolev-Slobodetski space and the second one is the Besov space). These
spaces are introduced in the same Section 2.2.2. Then in Subsection 2.3.5 there is proved that
Λs

p,q(Ω) = Bs
p,q(Ω) for s > 0, 1 ≤ p < ∞, 1 ≤ q ≤ ∞ (the first is again the Besov space and the

second one is the Triebel space, introduced in Subsection 2.3.1). Finally, in Subsection 3.3.3 (Trace

theorem) the following trace theorem is established tr : Bs
p,q(Ω) → B

s− 1
p

p,q (∂Ω) for s− 1
p

> 0, p > 1,

q > 0. As a simple consequence of these three facts we finally get (2.3).



6 Buĺıček, Consiglieri, Málek

with γ := a(1− (1− k)α) and δ := a(1− k)α. Hence for c > r we obtain that it is
enough to have

am/l ≤ r ⇔ a ≤ b
nr + rc− nc

bn+ c− cn
.

For c ≤ r, we have the condition

a(1− α(1− k)) ≤ r ⇔ a ≤ b
nr + rc− nc

bn+ c− cn
.

which are exactly the condition (2.2).
Part 2 (r > n): For c > r (and b ≥ c) we obtain the same result as above. For
c ≤ r instead the interpolation (2.7) we use

‖v‖r ≤ ‖v‖
c
r
c ‖v‖

r−c
r

1,r . (2.9)

Thus we have

∫ T

0

‖v‖a
1
b ,b ≤

∫ T

0

‖v‖ak
1,r‖v‖a(1−k)

r ≤
∫ T

0

‖v‖ak+a(1−k) r−c
r

1,r ‖v‖a(1−k) c
r

c .

Thus, we need

ak + a(1− k)
r − c

r
≤ r ⇔ a ≤ br3

nbc+ rc− nrc− brc+ br2

that is again exactly the relation (2.2).

Let us precise the upper bounds used along the paper at the following lemma.
First we define for p, r > 1

U := Lp(0, T ;W 1,p
N ) ∩ L∞(0, T ;L2

N ) (2.10)

E := Lr(0, T ;Wr) ∩ L∞(0, T ;L1(Ω)). (2.11)

With this notation we introduce the second interpolation lemma that will be again
used in the following text.
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Lemma 2.2. Let v ∈ U and e ∈ E then

v ∈ Lp(n+2)/n(Q), (2.12)

v ∈ L2(ΣD), p ≥ 2(n+ 1)
n+ 2

, (2.13)

v ∈ Ls(Σ), s ≤


p(n+ 2)− 2

n
if p ≤ n,

p(p2 + 2(n− 1))
p2 − 2p+ 2n

if p > n,

(2.14)

e ∈ Lr(n+1)/n(Q), (2.15)

e ∈ Ll(Σ), 1 ≤ l ≤


r(n+ 1)− 1

n
if r < n,

r(r2 + n− 1)
r2 − r + n

if r ≥ n,

(2.16)

v ⊗ v ∈ Lp(n+2)/(2n)(Q), (2.17)

|v|2v ∈ Lp(n+2)/(3n)(Q). (2.18)

Moreover if

r :



1 < r < q − n

n+ 1

q >
2n+ 1
n+ 1

 for p ≥ n,

max(1,
p(n− 1)

(p− 1)(n+ 1)
) < r < q − n

n+ 1

q > max(
2n+ 1
n+ 1

,
2np− p− n

(p− 1)(n+ 1)
),

 for
3n
n+ 2

≤ p < n

(2.19)

then

ev ∈ L1(Q). (2.20)

Proof. The relation (2.12) is standard and well known (see, for instance, Málek
et al. [1996]). The assertions (2.15), (2.17) and (2.18) can be also proved by Sobolev
embedding. The trace assertions (2.13), (2.14) and (2.16) are consequence of Lemma
2.1. Indeed, for r = p, c = 2 and a = b = s we obtain (2.14) and for r = r, c = 1
and a = b = l we obtain (2.16). We prove only the last relation (2.20) that is in
some sense nonstandard.

First, if p ≥ n then from Sobolev embedding we see that it is enough to have
r > 1 which is exactly (2.19). Notice that the condition on q in (2.19) is due to the
restriction on r.

For p < n we use two standard interpolation inequalities

‖.‖s ≤ ‖.‖1−α
2 ‖.‖α

1,p 2 ≤ s ≤ np

n− p
, α :=

s− 2
s

np

np+ 2p− 2n
(2.21)

‖.‖m ≤ ‖.‖1−β
1 ‖.‖β

1,r 1 ≤ m ≤ nr

n− r
, β :=

m− 1
m

nr

nr + r − n
. (2.22)
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Next, for an arbitrary s ∈]2, (np)/(n − p)[ we set m := s′ in (2.22) and we can
compute∫

Q

|v||e| ≤
∫ T

0

‖v‖s‖e‖s′ ≤ C

∫ T

0

‖v‖α
1,p‖e‖

β
1,r ≤ C

(∫ T

0

‖e‖
p

p−α β

1,r

) p−α
p

≤ C

(2.23)

providing

s′ ≤ nr

n− r
,

p

p− α
β ≤ r. (2.24)

Since
p

p− α
β =

s(np+ 2p− 2n)
s(np+ 2p− 3n) + 2n

nr

s(nr + r − n)

=
np+ 2p− 2n

s(np+ 2p− 3n) + 2n
nr

nr + r − n

we have that second condition in (2.24) is equivalent to

np+ 2p− 2n
s(np+ 2p− 3n) + 2n

≤ nr + r − n

n
= r

n+ 1
n

− 1. (2.25)

Because we want to have r as small as possible we are led to minimalize left-hand
side of (2.25) w.r.t. s. We restrict ourselves only onto the case when p ≥ 3n/(n+2)
that is exactly the same parameter when |v|3 is integrable. With this restriction on
p we see that we must set s as large as possible. Thus, we choose

s :=
np

n− p
=⇒ α = 1, β =

n− p

p

r

nr + r − n
.

And we see that the second condition in (2.24) is valid if

r ≥ p(n− 1)
(p− 1)(n+ 1)

, (2.26)

that is exactly the relation (2.19). It remains to recover that also the first condition
in (2.24) is valid with our choice of s. Thus, we get after some computation the
condition

r ≥ np

np− n+ 2p
.

However, because n > p we obtain again after some computation that

p(n− 1)
(p− 1)(n+ 1)

>
np

np− n+ 2p
.

Hence, for (2.19) the first condition in (2.24) is valid.

Definition 2.1. We say that the problem (1.1)-(1.7) is a (p−q) coupled fluid-energy
system if
• τ : Q×R×Mn×n → Mn×n is a Carathéodory function, that is, measurable with
respect to (x, t) ∈ Q for every (e,κ) ∈ R ×Mn×n, and continuous with respect to
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(e,κ) ∈ R × Mn×n for a. a. (x, t) ∈ Q. It satisfies τ(·, ·, 0) = 0, the p−coercivity,
the growth condition and the strict monotonicity:

∃p > 1, ∃ν∗ > 0 : τ(·, e,κ) : κ ≥ ν∗|κ|p, (2.27)

∃ν∗ > 0 : |τ(·, e,κ)| ≤ ν∗(|κ|p−1 + 1), (2.28)

(τ(·, e,κ)− τ(·, e, ζ)) : (κ − ζ) > 0, ∀κ, ζ ∈ Mn×n,κ 6= ζ; (2.29)

where Mn×n denotes the set of real symmetric matrices of the type n× n;
• q : Q× R× Rn → Rn is a Carathéodory function obeying

∃q > 1 ∃υ∗ > 0 : q(·, e, ζ) · ζ ≥ υ∗|ζ|q; (2.30)

∃υ∗ > 0 : |q(·, e, ζ)| ≤ υ∗(|ζ|q−1 + 1); (2.31)

(q(·, e, ζ)− q(·, e,κ)) · (ζ − κ) > 0, ∀ζ,κ ∈ Rn. (2.32)

Next we define what we mean by weak solution to the problem defined in Def-
inition 2.30. Lemmas 2.1 and 2.2 give us the precise bound on parameters p, q, l, s
for which it makes a good sense to define weak (distributional) solution.

Definition 2.2. Let τ,q satisfy Definition 2.1 with parameters p > 3n
n+2 , q > 2n+1

n+1 .
Moreover, let

ess inf
x∈Ω

e0(x) ≥ 0; (2.33)

f ∈ L2(0, T ; (W 1,p
N )∗), v0 ∈ L2

N,div, e0 ∈ L1(Ω). (2.34)

Let α : ΣD × R → R and ϕ, γ : Σ × R → R be Carathéodory functions such that
γ(·, 0) = 0 and

∃α∗ > 0 : 0 ≤ α(·, e) ≤ α∗, (2.35)

∃ϕ∗ > 0 : 0 ≤ ϕ(·, e) ≤ ϕ∗, ∀e ∈ R, a.e. in Σ; (2.36)

∃γ∗ > 0 : |γ(·, e)| ≤ γ∗(|e|l + 1), ∀e ∈ R, a.e. in Σ; (2.37)

γ(·, e)sign(e) ≥ 0, ∀e ∈ R, a.e. in Σ. (2.38)

We say that (v, π, e) is a weak solution to the (p − q) coupled fluid-energy system
(1.1)-(1.7) if v ∈ U , e ∈ E for some r > q − 1, and

π ∈
{
Lp(n+2)/(2n)(Q) if p < (3n+ 2)/(n+ 2)
Lp′(Q) if p ≥ (3n+ 2)/(n+ 2),

∂tv ∈ X := Lp′(0, T ; (W 1,p
N )′) ∩ Lp(n+2)/(2n)(0, T ; (W 1,p(n+2)/[p(n+2)−2n]

N )′)
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satisfy

〈∂tv,w〉 − (v ⊗ v, Dw) + (τ(·, e,Dv), Dw) +
∫

ΣD

α(·, e)vT ·wT dS dt

+
∫

Σ

ϕ(·, e)|vT |s−2vT ·wT dS dt = 〈f ,w〉+ 〈π,div w〉

for all w ∈ L∞(0, T ;W 1,∞
N ),

(2.39)

〈∂te, φ〉 − (ev,∇φ) + (q(·, e,∇e),∇φ) +
∫

Σ

γ(·, e)φ dS dt

≥ (τ(·, e,Dv), Dvφ) +
∫

Σ

ϕ(·, e)|vT |sφ dS dt

for all φ ∈ C1(Q̄);φ ≥ 0,

(2.40)

−
(
|v|2

2
+ e, ∂tφ

)
+ (q(·, e,∇e)− τ(·, e,Dv)v,∇φ) +

∫
Σ

γ(·, e)φ dS dt

= 〈f ,vφ〉+
((

|v|2

2
+ e+ π

)
v,∇φ

)
−
∫

ΣD

α(·, e)|vT |2φ dS dt

+
(
|v0|2

2
+ e0, φ(0)

)
for all φ ∈ C1(Q̄);φ(T ) = 0,

(2.41)

completed by initial conditions

v(·, 0) = v0,

(
|v|2

2
+ e

)
(·, 0) =

|v0|2

2
+ e0, (2.42)

where p′ = p/(p − 1) is the conjugate exponent to p, and the symbol 〈·, ·〉 denotes
a generic duality pairing, not distinguished between scalar and vector fields.

Theorem 2.1. Under the assumptions (2.33)-(2.38), if p > 3n/(n+ 2) and

1 ≤ s <

{
(p(n+ 2)− 2)/n if p ≤ n

p(p2 + 2(n− 1))/(p2 − 2p+ 2n) if p > n;
(2.43)

1 ≤ l <

{
(q − 1)(n+ 1)/n if q ≤ n(n+ 2)/(n+ 1)

Lmax if q > n(n+ 2)/(n+ 1);
(2.44)

where Lmax = qn+q−n
n+1 + (qn+q−n)(qn+q−2n−1)

(qn+q−n)(qn+q−2n−1)+n(n+1)2 , then there exists a weak
solution (v, e, π) to the (p − q) coupled fluid-energy system (1.1)-(1.7), for all r
satisfying (2.19). Moreover,

e(x, t) ≥ 0, for a.e. (x, t) ∈ Q. (2.45)

It represents the existence of a solution for

n = q = 2 : 1 < r < 4/3 p > 3/2

n = 3, q = 2 : 1 < r < 5/4 p > 9/5.
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Corollary 2.1. If the assumptions of Theorem 2.1 are fulfilled with er 6= 0 and
(2.33) replaced by

∃ē > 0 : ess inf
x∈Ω

e0(x) ≥ ē, (2.46)

and γ additionally verifies γ(·,min(e, er)) = 0 and the monotonicity property

γ(·, e)sign(e−min(e, er)) ≥ 0, ∀e ∈ R, a.e. in Σ, (2.47)

then, e ≥ min(e, er) a.e. in Q.

3. Approximate results

The proof of Theorem 2.1 will be done by using a sequence of approximative prob-
lems. Here, we give all theorems about the existence of approximative problems
that will be proved in the next sections. In what follows the symbol Mµ is the
”Helmholtz-mollification”, i.e., we define

Mµ(v) := (χv) ∗ ω −∇η

with ω denoting a mollifier with support in a ball of radii 1
µ ,

χ(x) =

{
0 if dist(x, ∂Ω) ≤ 2

µ

1 elsewhere,

and η is due to the Helmholtz decomposition, that is,

∆η = div[(χv) ∗ ω] in Ω,

∇η · n = 0 on ∂Ω,
∫

Ω

ηdx = 0.

Next Theorem establishes the existence of solution to the problem with mollified
convective term.

Theorem 3.1. Let the assumptions (2.33)-(2.44) be fulfilled under p > 2(n +
1)/(n + 2). For each µ ∈ N, there exists (vµ, eµ, πµ) in U × E × Lp′(Q), ∂tvµ ∈
Lp′(0, T ; (W 1,p

N )′), satisfying

div vµ = 0, (3.1)

〈∂tvµ,w〉+ (Dvµ,Mµ(vµ)⊗w) + (τ(eµ, Dvµ), Dw)− (πµ,div w)

+
∫

ΣD

α(eµ)vµT ·wT dS dt+
∫

Σ

ϕ(eµ)|vµT |
s−2vµT ·wT dS dt = 〈f ,w〉

for all w ∈ Lp(0, T ;W 1,p
N ),

(3.2)

〈∂teµ, φ〉+ (Mµ(vµ),∇eµφ) + (q(eµ,∇eµ),∇φ) +
∫

Σ

γ(eµ)φ dS dt

= (τ(eµ, Dvµ), Dvµφ) +
∫

Σ

ϕ(eµ)|vµT |
sφ dS dt

for all φ ∈ L∞(0, T ;Wr/(r−q+1)),

(3.3)

vµ(·, 0) = v0, eµ(·, 0) = e0.
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Next, let us state the quasi-compressible approximative problem.

Theorem 3.2. Under the assumptions of Theorem 3.1, for each ε > 0, there exists
(vε, eε, πε) in U × E × Lp(0, T ;W 2,p(Ω)), ∂tvε ∈ Lp′(0, T ; (W 1,p

N )′), satisfying

〈∂tvε,w〉+ (Dvε,Mµ(vε)⊗w) + (τ(eε, Dvε), Dw)− (πε,div w)

+
∫

ΣD

α(eε)vεT ·wT dS dt+
∫

Σ

ϕ(eε)|vεT |s−2vεT ·wT dS dt = 〈f ,w〉

for all w ∈ Lp(0, T ;W 1,p
N ),

(3.4)

〈∂teε, φ〉+ (Mµ(vε),∇eεφ) + (q(eε,∇eε),∇φ) +
∫

Σ

γ(eε)φ dS dt

= (τ(eε, Dvε), Dvεφ) +
∫

Σ

ϕ(eε)|vεT |sφ dS dt

for all φ ∈ L∞(0, T ;Wr/(r−q+1)),

(3.5)

ε(∇πε,∇φ) + (div vε, φ) = 0, for all φ ∈W 1,p(Ω) and a. a. t ∈ (0, T ); (3.6)

vε(·, 0) = v0, eε(·, 0) = e0.

4. Proof of Theorem 3.2 (µ, ε fixed)

For arbitrary w ∈ W 1,p
N and φ ∈ Wr/(r−q+1), there exist regularizing sequences in

W 1,β
N and Wβ , respectively, with β > n.

4.1. The Faedo-Galerkin approximation scheme

For ε > 0, consider the solution of the homogeneous Neumann problem for the
Laplace equation (see, for instance, Galdi [1994])

ε∆π(t) = div v(t) in Ω

∇π(t) · n = 0 on ∂Ω∫
Ω

π(t)dx = 0,

which satisfies

ε‖π(t)‖2,p ≤ C(Ω, p)‖v(t)‖1,p, ∀v(t) ∈W 1,p
N (4.1)

ε‖π(t)‖1,r ≤ C(Ω, r)‖v(t)‖0,r, ∀v(t) ∈W 1,p
N ∩ Lr(Ω), a.e. t ∈]0, T [. (4.2)

Denote by Fε : W 1,p
N →W 2,p(Ω) the well defined continuous operator such that

Fε(v) = π, and let {(wj , wj)}j∈N be a basis of W 1,β
N ×Wβ with β > n. From the

Carathéodory theory Zeidler [1990], there exists a local-in-time solution

vN,M ∈ 〈w1, · · · ,wN 〉 ⇔ vN,M (x, t) =
N∑

j=1

cN,M
j (t)wj(x),

eN,M ∈ 〈w1, · · · , wM 〉 ⇔ eN,M (x, t) =
M∑

j=1

dN,M
j (t)wj(x),
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to the following system of ordinary differential equations, for every M,N ∈ N,

d

dt
(vN,M ,wj)− (Mµ(vN,M )⊗ vN,M ,∇wj) + (τ(eN,M , DvN,M ), Dwj) +

+(α(eN,M )vN,M
T ,wj

T ) + (ϕ(eN,M )|vN,M
T |s−2vN,M

T ,wj
T )−

−(Fε(vN,M ),∇wj) = (f ,wj), j = 1, · · · , N ; (4.3)
d

dt
(eN,M , wj)− (eN,MMµ(vN,M ),∇wj) + (q(eN,M ,∇eN,M ),∇wj) +

+(γ(eN,M ), wj) = (τ(eN,M , DvN,M ) : DvN,M , wj) +

+(ϕ(eN,M )|vN,M
T |s, wj), j = 1, · · · ,M, (4.4)

under the initial conditions vN
0 , e

N,M
0 given by the projections of v0 and the mol-

lification eN
0 of e0 (after extending e0 by ē outside Ω), respectively, onto linear hulls

of the base’s vectors. Note that

vN
0 → v0 strongly in L2(Ω),

eN,M
0 → eN

0 strongly in L2(Ω),

eN
0 → e0 strongly in L1(Ω).

Using the fact that divMµ(vN,M ) = 0, we have the standard estimates, indepen-
dently of M ,

sup
t∈[0,T ]

‖vN,M (t)‖22,Ω + ‖DvN,M‖p
p,Q + ‖vN,M‖22,ΣD

+ ‖vN,M‖s
s,Σ

+ ε‖∇πN,M‖22,Q ≤ ‖v0‖22,Ω + C‖f‖p′

p′,Q := R,

(4.5)

sup
t∈[0,T ]

‖eN,M (t)‖22,Ω + ‖∇eN,M‖q
q,Q ≤ ‖eN

0 ‖22,Ω + C(N), (4.6)

‖q(eN,M ,∇eN,M )‖q′

q′,Q ≤ C(‖∇eN,M‖q
q,Q + 1), (4.7)∥∥∥∥ ddtcN,M

∥∥∥∥
L2(0,T )

≤ C(N), (4.8)

‖∂te
N,M‖q′,(Wq)′ ≤ C(N,µ). (4.9)

Hence, using Lemma 2.2, it follows

‖eN,M‖q(n+2)/n,Q ≤ C(N); (4.10)

‖eN,M‖l+ε,Σ ≤ C(N), ε > 0. (4.11)

The global-in-time existence of (vN , eN ) is a consequence of the above estimates.

4.2. Passage to the limit as M → ∞ (µ, ε fixed)

In order to pass to the limit with M , when M tends to infinity (N fixed), we can
extract a subsequence, still denoted by (vN,M , eN,M ), verifying (4.5)-(4.11) and
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consequently

cN,M ⇀ cN weakly* in L∞(0, T );
d

dt
cN,M ⇀

d

dt
cN weakly in L2(0, T );

eN,M ⇀ eN weakly* in L∞(0, T ;L2(Ω));

eN,M ⇀ eN weakly in Lq(0, T ;Wq);

∂te
N,M ⇀ ∂te

N weakly in Lq′(0, T ; (Wq)′);

eN,M → eN strongly in Lm(Q), for 1 ≤ m < q(n+ 2)/n;

eN,M → eN strongly in Ll(Σ);

q(eN,M ,∇eN,M ) ⇀ q̄N weakly in Lq′(Q).

Since we also have cN,M → cN strongly in C(0, T ) due to the Arsela-Ascoli Theorem,
we obtain the system

d
dt (v

N ,wj)− (Mµ(vN )⊗ vN ,∇wj) + (τ(eN , DvN ), Dwj) +

+ (α(eN )vN
T ,w

j
T ) + (ϕ(eN )|vN

T |s−2vN
T ,w

j
T )− (Fε(vN ),∇wj) =

= (f ,wj), j = 1, · · · , N ; (4.12)
d
dt (e

N , φ)− (eNMµ(vN ),∇φ) + (q(eN ,∇eN ),∇φ) + (γ(eN ), φ) =

= (τ(eN , DvN ) : DvN , φ) + (ϕ(eN )|vN
T |s, φ), ∀φ ∈Wq, a.e. in ]0, T [, (4.13)

providing that

q(eN ,∇eN ) = q̄N . (4.14)

Indeed, applying the strictly monotone assumption (2.32), using the Galerkin equa-
tion (4.4) and passing to the limit as M →∞, we conclude that〈

q̄N − q(eN ,∇φ),∇(eN − φ)
〉
≥ 0,

and (4.14) follows by using the Minty method.

4.3. Minimum principle

First, we prove that eN ≥ 0 a.e. in Q. We use the function φ(x, t) := min(0, eN (x, t))
as a test function in (4.13) to get (note that this is a possible test function because
φ = 0 on ΣD)

‖φ‖22,Ω +
∫ t

0

∫
Ω[eN <0]

q(eN ,∇eN ) · ∇eN +
∫ t

0

∫
Γ[eN <0]

γ(eN )eN ≤ 0.

Hence, we get that φ ≡ 0 that directly implies that eN ≥ 0.
Hencefurther, the set Ω[S] means {x ∈ Ω : S(x)} with S denoting a sentence

to be point-wisely satisfied. Analogously for Γ[S], Q[S] or simply {S} whenever the
meaning is not ambigous.
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4.4. Estimates independently of N

The existence of the pressure πN ∈W 2,p(Q) such that it belongs to a bounded set
independent on N is due to (4.1)-(4.5), and the following relation holds

∫
Ω

{∂tvN + (Mµ(vN ) · ∇)vN − div τ(eN , DvN )} · v =
∫

Ω

{f −∇πN} · v

a.e. in ]0, T [ ∀v ∈ 〈w1, · · · ,wN 〉.

Arguing as in Consiglieri [2000], we get

‖γ(eN )‖1,Σ ≤ ‖e0‖1,Ω + IN ; (4.15)

‖eN‖∞,L1(Ω) ≤ IN + T‖e0‖1,Ω + |Q|/2; (4.16)

‖∇eN‖r
r,Q ≤ C{IN + ‖e0‖1,Ω} × ‖eN‖r(q−r)/(qn)

∞,L1(Ω) ; (4.17)

IN := ‖τ(eN , DvN ) : DvN‖1,Q + ‖ϕ(eN )|vN
T |s‖1,Σ

for every exponent 1 < r < q − n/(n + 1) (cf. Boccardo et al. [1997] or Boccardo
and Gallouët [1989]). From (4.5), the standard energy estimates hold

‖vN‖∞;L2(Ω) ≤ C; (4.18)

‖vN‖p;W 1,p
N

≤ C; (4.19)

‖τ(eN , DvN )‖p′

p′,Q ≤ C(‖DvN‖p
p,Q + 1). (4.20)

Using Lemma 2.2, we can deduce from (4.15)-(4.17) that

‖vN‖p(n+2)/n,Q ≤ C; (4.21)

‖eN‖r(n+1)/n,Q ≤ C; (4.22)

‖vN ⊗ vN‖p(n+2)/(2n),Q ≤ C. (4.23)

Next, using the standard procedure (see for example Consiglieri [2006]) we can
estimate time derivatives such that for p ≥ 2n/(n+ 1):

∫ T

0

‖∂tvN‖p′

(W 1,p
N )′

dt ≤ C

(
µ+

1
ε

+ 1
)
‖vN‖p

p;W 1,p
N

+ C‖f‖p′

p′,Q; (4.24)

‖∂te
N‖1,(Wr/(r−q+1))′ =

∫ T

0

sup
‖φ‖Wr/(r−q+1)≤1

|〈∂te
N , φ〉|dt ≤

≤ ‖q(eN ,∇eN )‖r/(q−1),Q + C(µ)‖eN‖r/(q−1),Q + ‖γ(eN )‖1,Σ + IN . (4.25)
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4.5. Passage to the limit as N → ∞ (µ, ε fixed)

In order to pass to the limit with N , when N tends to infinity, we can extract a
subsequence, still denoted by (vN , eN , πN ), verifying (4.15)-(4.25) and consequently

vN ⇀ v weakly* in L∞(0, T ;L2
N );

vN ⇀ v weakly in Lp(0, T ;W 1,p
N );

∂tvN ⇀ ∂tv weakly in Lp′(0, T ; (W 1,p
N )′);

vN → v strongly in Lm(Q), for 1 ≤ m < p(n+ 2)/n;

vN → v strongly in L2(ΣD);

vN → v strongly in Ls(Σ), for s fulfiling (2.44);

eN ⇀ e weakly in Lr(0, T ;Wr), for 1 < r < q − n/(n+ 1);

eN → e strongly in Lm(Q), for 1 ≤ m < r(n+ 1)/n;

eN → e strongly in Ll(Σ), for l fulfiling (2.44);

πN ⇀ π weakly in Lp(0, T ;W 2,p(Ω));

τ(eN , DvN ) ⇀ τ̄ weakly in Lp′(Q);

q(eN ,∇eN ) ⇀ q̄ weakly in Lr/(q−1)(Q).

Since we can compute

‖∇(πN − π)‖22,Q =
1
ε
(vN ,∇πN )− (∇πN ,∇π)− (∇π,∇(πN − π)) (4.26)

we can conclude the strong convergence

∇πN → ∇π in L2(Q). (4.27)

Moreover, because of validity of the following energy equalities

‖vN (T )‖22,Ω +
∫

Q

τ(eN , DvN ) : DvN +
∫

ΣD

α(eN )|vN
T |2 +

∫
Σ

ϕ(eN )|vN
T |s +

+ε‖∇πN‖22,Q =
∫

Q

f · vN + ‖v0‖22,Ω;

‖v(T )‖22,Ω +
∫

Q

τ̄ : Dv +
∫

ΣD

α(e)|vT |2 +
∫

Σ

ϕ(e)|vT |s +

+ε‖∇π‖22,Q =
∫

Q

f · v + ‖v0‖22,Ω.

we can apply the strict monotone assumption (2.29), pass to the limit as N →
∞, and use the Minty method (we already have point-wise convergence of eN ) to
conclude that

τ(e,Dv) = τ̄ . (4.28)
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Moreover, we can easily obtain obtain the strong convergencesc

τ(eN , DvN ) : DvN → τ(e,Dv) : Dv in L1(Q) (4.29)

ϕ(eN )|vN
T |s → ϕ(e)|vT |s in L1(Σ). (4.30)

We argue as in Boccardo et al. [1997] to pass to the limit with the nonlinear
term q(eN ,∇eN ) in the energy equation and to conclude that

q(e,∇e) = q̄. (4.31)

Indeed, using the continuity of q(x, t, ·, ·) and Vitali Theorem, it is sufficient to
prove that ∇eN a.e. converges to ∇e (cf. Section 4.6).

Then (v, e, π) is the corresponding limit to solution (3.4)-(3.6).

4.6. Almost everywhere convergence of ∇eN

By the strict monotonicity assumption (2.32), it is sufficient to prove that, for some
θ > 0 and for some subsequence still denoted by eN ,

lim
N→+∞

∫
Q

[(q(eN ,∇eN )− q(eN ,∇e)) · ∇(eN − e)]θ = 0. (4.32)

Let us decompose the integral as∫
Q

[(q(eN ,∇eN )− q(eN ,∇e)) · ∇(eN − e)]θ =
∫
{|e|≥k}

[· · · ]θ +

+
∫
{|e|<k: |eN−Tk,ν(e)|>δ}

[· · · ]θ +
∫
{|e|<k: |eN−Tk,ν(e)|≤δ}

[· · · ]θ

:= IN,k
1 + IN,k,ν,δ

2 + IN,k,ν,δ
3 ,

where k, ν, δ > 0 are constants independent on N , Tk is the k-truncation,

Tk,ν(e) = max(−k,min(k, Tν(e))), (4.33)

and Tν is the time regularization

Tν(e) = ν

∫ t

−∞
ẽ(x, ς) exp[ν(ς − t)]dς (4.34)

with ẽ denoting the zero extension of e outside [0, T ]. Here we use the notation
introduced in Section 4.3.

Using Hölder inequality, the assumption (2.31) and the estimate (4.17), we ob-
tain for θ < r/q < 1

IN,k
1 ≤

(
‖∇eN‖r

r,Q + ‖∇e‖r
r,Q

)θq/r
[meas({|e| ≥ k})]1−θq/r

≤ C [meas({|e| ≥ k})]1−θq/r −→
N,k→+∞

0. (4.35)

cIndeed, to show (4.29) it is enough to take into account the weak convergence τ(eN , DvN ) ⇀
τ(e, Dv) the strict monotonicity of τ and the fact that (τ(eN , DvN ), DvN ) → (τ(e, Dv), Dv).
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Since the integrand is positive, we can argue as before

IN,k,ν,δ
2 ≤

∫
{|eN−Tk,ν(e)|>δ}

[
(q(eN ,∇eN )− q(eN ,∇Tk(e))) · ∇(eN − Tk(e))

]θ
≤ C

[
meas({|eN − Tk,ν(e)| > δ})

]1−θq/r −→
N,k,ν→+∞

0, (4.36)

taking into account that the characteristic function verifies the following properties
[Boccardo et al., 1997, Lemma 3.2], for almost every δ > 0,

lim
N→+∞

χ{|eN−Tk,ν(e)|>δ} = χ{|e−Tk,ν(e)|>δ}, ∀k, ν > 0,

lim
ν→+∞

χ{|e−Tk,ν(e)|>δ} = χ{|e−Tk(e)|>δ}, ∀k > 0.

As done to IN,k,ν,δ
2 , now using Hölder inequality (with exponents 1/θ and 1/(1−θ))

we obtain

IN,k,ν,δ
3 ≤

∫
{|eN−Tk,ν(e)|≤δ}

[(q(eN ,∇eN )− q(eN ,∇Tk(e))) · ∇(eN − Tk(e))]θ

≤

(∫
{|eN−Tk,ν(e)|≤δ}

[· · · ]

)θ

[meas(Q)]1−θ

:=
(
IN,k,ν,δ
4 + IN,k,ν,δ

5

)θ

[meas(Q)]1−θ.

We can write, using the fact that |Tk,ν(e)| ≤ k,

IN,k,ν,δ
5 :=

∫
{|eN−Tk,ν(e)|≤δ}

q(eN ,∇Tk(e)) · ∇(eN − Tk(e))

=
∫
{|e−Tk,ν(e)|≤δ}

q(Tk+δ(e),∇Tk(e))) · ∇(Tk+δ(e)− Tk(e)) + o(1)

=
∫
{|e−Tk,ν(e)|≤δ}

q(e,∇Tk(e)) · ∇(e− Tk(e)) + o(1) = o(1),

(4.37)

where o(1) vanishes as N → +∞. When we look for

IN,k,ν,δ
4 :=

∫
{|eN−Tk,ν(e)|≤δ}

q(eN ,∇eN ) · ∇(eN − Tk,ν(e) + Tk,ν(e)− Tk(e))

= IN,k,ν,δ
6 +

∫
{|eN−Tk,ν(e)|≤δ}

q(eN ,∇eN ) · ∇(Tk,ν(e)− Tk(e))

≤ IN,k,ν,δ
6 + ‖q(Tk+δ(e),∇Tk+δ(e))‖q′,Q‖∇(Tk,ν(e)− Tk(e))‖q,Q,

we take φ = Tk(eN ) ∈ Wq as a test function in (4.13) and recalling (2.31) we can
rewrite the estimates (4.6)-(4.7) as

‖∇Tk(eN )‖q
q,Q ≤ (‖e0‖1,Ω + C) k;

‖q(Tk(eN ),∇Tk(eN ))‖q′

q′,Q ≤ C(k + 1).
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Then, for every k > 0,

∇Tk(eN ) ⇀
N→+∞

∇Tk(e) in Lq(Q),

and we can conclude the strong convergence of Tk,ν(e) to Tk(e) in Lq(0, T ;Wq) as
ν tends to infinity.

Now, it remains to show that

IN,k,ν,δ
6 =

∫
{|eN−Tk,ν(e)|≤δ}

q(eN ,∇eN ) · ∇(eN − Tk,ν(e)) → 0.

Thus, taking φ = Tδ(eN − Tk,ν(e)) as a test function in (4.13) we have

IN,k,ν,δ
6 = −〈∂te

N , Tδ(eN − Tk,ν(e))〉 −
(
∇eN · Mµ(vN ), Tδ(eN − Tk,ν(e))

)
−
∫

Σ

γ(eN )Tδ(eN − Tk,ν(e)) dS dt+
∫

Σ

ϕ(eN )|vN
T |sTδ(eN − Tk,ν(e)) dS dt

+
(
τ(eN , DvN ) : DvN , Tδ(eN − Tk,ν(e))

)
≤
(
C(µ)‖∇eN‖r

r,Q + ‖γ(eN )‖1,Σ + C‖DvN‖p
p,Q + ϕ∗‖vN‖s

s,Σ

)
δ,

applying the following property [Boccardo et al., 1997, Lemma 3.1]:

〈∂te
N , Tδ(eN − Tk,ν(e))〉 ≥ o(1), ∀k, ν, δ. (4.38)

Thus recalling the estimates (4.17), (4.15), (4.19), (4.20) and taking δ → 0, we
conclude (4.32).

5. Proof of Theorem 3.1 (µ fixed)

In order to pass to the limit, when ε tends to zero, the estimate (4.24) is no more
valid. To estimate πε independently of ε we choose w = ∇ηε as a test function in
(3.4), where ηε is the solution of the following homogeneous Neumann problem for
the Laplace equation (see, for instance, Galdi [1994])

∆ηε(t) = |πε(t)|p
′−2πε(t)−

1
|Ω|

∫
Ω

|πε(t)|p
′−2πε(t)dx in Ω

∇ηε(t) · n = 0 on ∂Ω∫
Ω

ηε(t)dx = 0,

which satisfies

‖ηε(t)‖p
2,p ≤ C(Ω, p)‖πε(t)‖p′

0,p′ , a.e. t ∈]0, T [. (5.1)

Then it results

‖πε‖p′

p′,Q =
6∑

i=1

Ii
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where, using embedding, Hölder and Young inequalities,

I1 := 〈∂tvε,∇ηε〉 ≤ 01

I2 := −
∫

Q

Mµ(vε)⊗ vε : D∇ηε ≤ C‖Mµ(vε)⊗ vε‖p′

p′,Q +
1
6
‖πε‖p′

p′,Q;

I3 :=
∫

Q

τ(eε, Dvε) : D∇ηε ≤ C‖τ(eε, Dvε)‖p′

p′,Q +
1
6
‖πε‖p′

p′,Q;

I4 :=
∫

ΣD

α(eε)vεT · ∇ηε;

I5 :=
∫

Σ

ϕ(eε)|vεT |s−2vεT · ∇ηε;

I6 := −
∫

Q

f · ∇ηε ≤ ‖f‖p′

p′,Q +
1
6
‖πε‖p′

p′,Q.

For p ≥ 2(n+1)/(n+2), the integrals I2, I3 and I6 are estimated independently of
ε due to (4.21), (4.20) and (2.34), respectively. To estimate the remaining boundary
integrals, i.e., terms I4, I5 it is enough to combine Lemma 2.1 with our assumptions
on s-(2.43):

I4 ≤

C
∫ T

0
‖vε‖p′

p(n−1)
n(p−1) ,ΓD

dt+ 1
6‖πε‖p′

p′,Q p < n;

C
∫ T

0
‖vε‖p′

1,ΓD
dt+ 1

6‖πε‖p′

p′,Q p ≥ n;

I5 ≤

C
∫ T

0
‖vε‖p′(s−1)

(s−1)p(n−1)
n(p−1) ,Γ

dt+ 1
6‖πε‖p′

p′,Q, p < n;

C
∫ T

0
‖vε‖p′(s−1)

(s−1),Γdt+ 1
6‖πε‖p′

p′,Q, p ≥ n.

We can extract a subsequence, still denoted by (vε, eε, πε), verifying (4.15)-(4.22)

aWe give only a formal proof of this inequality. We denote by fε function solving the equation

4fε = div vε =
1

ε
4πε

with homogeneous Neumann boundary condition. Then we obtain that

I1 = 〈∂t∇fε,∇ηε〉 = −
1

ε

Z
Q

∂tπε · 4ηε = −
1

2p′ε
(‖πε(T )‖p′

p′ − ‖πε(0)‖p′

p′ ) ≤ 0

because πε(0) ≡ 0 since div vε(0) = 0.
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such that

vε ⇀ v weakly* in L∞(0, T ;L2
N );

vε ⇀ v weakly in Lp(0, T ;W 1,p
N );

∂tvε ⇀ ∂tv weakly in Lp′(0, T ; (W 1,p
N )′);

vε → v strongly in Lm(Q), for 1 ≤ m < p(n+ 2)/n;

vε → v strongly in L2(ΣD);

vε → v strongly in Ls(Σ), for s fulfilling (2.44);

eε ⇀ e weakly in Lr(0, T ;Wr), for 1 < r < q − n/(n+ 1);

eε → e strongly in Lm(Q), for 1 ≤ m < r(n+ 1)/n;

eε → e strongly in Ll(Σ), for l fulfilling (2.44);

πε ⇀ π weakly in Lp′(Q);

τ(eε, Dvε) ⇀ τ̄ weakly in Lp′(Q);

q(eε,∇eε) ⇀ q̄ weakly in Lr/(q−1)(Q).

Furthermore (v, e, π) is the limit solution given by

〈∂tv,w〉+ (Dv,Mµ(v)⊗w) + (τ(e,Dv), Dw) +
∫

ΣD

α(e)vT ·wT dS dt

+
∫

Σ

ϕ(e)|vT |s−2vT ·wT dS dt = 〈f ,w〉+ (π,div w)

for all w ∈ Lp(0, T ;W 1,p
N ),

(5.2)

〈∂te, φ〉+ (Mµ(v) · ∇e, φ) + (q(e,∇e),∇φ) +
∫

Σ

γ(e)φ dS dt

= (τ(e,Dv), Dvφ) +
∫

Σ

ϕ(e)|vT |sφ dS dt

for all φ ∈ L∞(0, T ;Wr/(r−q+1)),

(5.3)

div v = 0, v(·, 0) = v0, e(·, 0) = e0,

providing that τ̄ = τ(e,Dv), q̄ = q(e,∇e) and

vε ⇀ v strongly in Lp(0, T ;W 1,p
N ).

Arguing as in the section 4.5 we use the monotonicity assumption (2.29) to get for
all ϕ ∈ Lp(0, T ;W 1,p

N )

0 ≤ 〈τ(eε, Dvε)− τ(eε, Dϕ), Dvε −Dϕ〉 (5.4)

and taking w := vε as a test function in (3.4) we obtain after passing to the limit
as ε→ 0 and using (5.2)

(τ̄ − τ(e,Dϕ), D(v − ϕ)) ≥ lim
ε→0

−(πε,div vε) = lim
ε→0

ε‖∇πε‖22,Q ≥ 0

and we can conclude that τ̄ = τ(e,Dv) by using the Minty method. Note that it is
not required the strong convergence of the pressure since (3.6) holds for φ = πε.
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Finally, it remains to prove that q̄ = q(e,∇e). Again using the continuity of
q(x, t, ·, ·) and Vitali Theorem, it is sufficient to prove that ∇eε a.e. converges to
∇e. Indeed, the argument used for N in Section 4.6 can be repeated for ε.

Then (v, e, π) is the corresponding limit solution (3.2)-(3.3).

6. Proof of Theorem 2.1

First, we rewrite the system (3.2)-(3.3) into the form of equations (2.39)-(2.41). To
do it, we set in (3.2) w := vµφ add the result equation to (3.3) and obtain

〈∂tvµ,w〉+ (vµ ⊗Mµ(vµ), Dw) + (τ(eµ, Dvµ), Dw)

+
∫

ΣD

α(eµ)vµT ·wT dS dt+
∫

Σ

ϕ(eµ)|vµT |
s−2vµT ·wT dS dt

= 〈f ,w〉+ (πµ div w)

for all w ∈ Lp(0, T ;W 1,p
N )

(6.1)

−
〈
|vµ|2

2
+ eµ, ∂tφ

〉
+ (q(·, eµ,∇eµ)− τ(·, eµ, Dvµ)vµ,∇φ)

= 〈f ,vµφ〉+
∫

Σ

ϕ(·, eµ)|vµT |
sφ dS dt−

∫
Σ

γ(·, eµ)φ dS dt

+
((

|vµ|2

2
+ eµ + πµ

)
vµ,∇φ

)
+
(
|v0|2

2
+ e0, φ(0)

)
for all φ ∈ C1(Q̄) : φ(T ) = 0,

(6.2)

〈∂teµ, φ〉 − (eµMµ(vµ),∇φ) + (q(eµ,∇eµ),∇φ) +
∫

Σ

γ(eµ)φ dS dt

= (τ(eµ, Dvµ), Dvµφ) +
∫

Σ

ϕ(eµ)|vµT |
sφ dS dt

for all φ ∈ L∞(0, T ;Wr/(r−q+1)).

(6.3)

We decompose the pressure πµ such that πµ := πµ,1 + πµ,2 where the two
particular pressures, πµ,1 and πµ,2, belong to bounded sets of Lp(n+2)/(2n)(Q) and
Lp′(Q), respectively, independently of µ. For each t ∈]0, T [, let us introduce πµ,1 as
the unique solution to the problem (for details see Buĺıček et al. [2007b])

−〈πµ,1(t),∆φ〉 = 〈vµ ⊗Mµ(vµ)(t), D∇φ〉, ∀φ ∈W 2,p(Ω) : ∇φ ∈W 1,p
N ,∫

Ω

πµ,1(t)dx = 0, (6.4)

and define πµ,2 := πµ − πµ,1. Since div vµ = 0, πµ,2 solves at each time level

〈πµ,2,∆φ〉 =
∫

Ω

τ(eµ, Dvµ) : D∇φ+
∫

ΓD

α(eµ)vµT · ∇φ+

+
∫

Γ

ϕ(eµ)|vµT |
s−2vµT · ∇φ−

∫
Ω

f · ∇φ, ∀φ ∈W 2,p(Ω) : ∇φ ∈W 1,p
N . (6.5)
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Using (4.23) and (4.20), it follows that

‖πµ,1‖p(n+2)/(2n),Q ≤ C;

‖πµ,2‖p′,Q ≤ C.

Thus, we conclude the following uniform estimates

‖∂tvµ‖X ≤ C
(
1 + ‖vµ‖p

p,W 1,p
N

+ ‖vµ‖2p(n+2)/n,Q

)
;

‖eµvµ‖1,(Wβ)′ ≤ C;

for 1/β = 1− n/[r(n+ 1)]− n/[p(n+ 2)] > 0,

‖∂teµ‖1,(Wβ)′ ≤ C.

In order to pass to the limit in (3.2) and (6.2)-(6.3) when µ tends to infinity, we
can extract a subsequence, still denoted by (vµ, eµ, πµ), verifying (4.15)-(4.22) such
that

vµ ⇀ v weakly* in L∞(0, T ;L2
N );

vµ ⇀ v weakly in Lp(0, T ;W 1,p
N ); (6.6)

∂tvµ ⇀ ∂tv weakly in X ;

vµ → v strongly in Lm(Q), for 1 ≤ m < p(n+ 2)/(2n); (6.7)

vµ → v strongly in L2(ΣD); (6.8)

vµ → v strongly in Ls(Σ), for s fulfilling (2.44); (6.9)

eµ ⇀ e weakly in Lr(0, T ;Wr), for 1 < r < q − n/(n+ 1);

eµ → e strongly in Lm(Q), for 1 ≤ m < r(n+ 1)/n; (6.10)

eµ → e strongly in Ll(Σ), for l fulfilling (2.44);

πµ ⇀ π weakly in Lp(n+2)/(2n)(Q);

πµ,1 → π1 strongly in Lm(Q), for 1 ≤ m < p(n+ 2)/(2n); (6.11)

πµ,2 ⇀ π2 weakly in Lp′(Q);

τ(eµ, Dvµ) ⇀ τ̄ weakly in Lp′(Q);

q(eµ,∇eµ) ⇀ q̄ weakly in Lr(q−1)(Q).

Note that (6.11) is consequence of (6.4) together with (6.7). Then (v, e, π) is the
limit solution (2.39)-(2.41), if we prove that Dvµ is a.e. convergent to Dv (see
Section 6.1), and as in the sections 4 and 5, we need at least pointwise convergence
of ∇eµ to ∇e. However the method that has been successfully used in the section
4.6 cannot be used here because the term u∇e is not integrable function anymore.
We introduce the method of Lipschitz truncation function (cf. Section 6.2). This
method was firstly used by Kinnunen and Lewis in Kinnunen and Lewis [2002]
to improve integrability of very weak solution to the incompressible Navier-Stokes
equations with power-law relationship. For proof of existence of solution to Navier-
Stokes equation it was firstly used by Diening, Růžička and Wolf in Diening et al.
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[2006]. The authors were able to establish the existence of solution for all p > 2n
n+2

by using this method. However this method cannot be simply used also on heat
equation because of L1 term on the right-hand side. To be more concrete, the most
important ingredient of this method is the fact that dissipative term has some q−1
growth and apriori estimates gives boundedness in some q space. In our setting this
is not true because our estimates on the ∇e are only in the space Lr (r < q) and
the growth of q is q− 1. However this not true for Tk(e). For this function we have
desired estimates and growth. Hence, the main idea is to used Lipschitz truncation
method onto this function. The second problem is that for using this method we
need to say something about time derivative of Tk(e). However, our limit function
do not have time derivative, hence we are led to use this method only for double
sequence (en, em). Moreover, it will be clear from the proof (cf. Section 6.3), we in
fact do not know anything also about time derivative of Tk(en) but we have some
information about this derivative for some mollified function Tk,δ(em).

6.1. Almost everywhere convergence of Dvµ

As in Section 4.6 by the monotonicity assumption (2.29), it is sufficient to prove
that, for some θ > 0 and for some subsequence,

lim
k→+∞

∫
Q

[(τ(ek, Dvk)− τ(ek, Dv)) : D(vk − v)]θ = 0. (6.12)

We adapt the argument described in Frehse et al. [2000] for flows with shear
dependent viscosity. Let µ ∈ N and set

gµ := (|∇vµ|+ |∇v|)p + (|τ(eµ, Dvµ)|+ |τ(e,Dv)|)(|Dvµ|+ |Dv|).

From the estimates (4.19) and (4.20), there exists a constant K ≥ 1 such that

0 ≤
∫

Q

gµdx dt ≤ K.

Let δ > 0 be arbitrary and fixed, there exists L ≤ δp/θ/K and a subsequence
{vk}k∈N ⊂ {vµ}µ∈N that satisfy (for details see Frehse et al. [2000])

Ek = {(x, t) ∈ Q : L2 ≤ |(vk − v)(x, t)| < L} :
∫

Ek

gkdx dt ≤ δp/θ.

Thus, we can decompose the following integral as∫
Q

[(τ(ek, Dvk)− τ(ek, Dv)) : D(vk − v)]θ =

=
∫
{|vk−v|≥L}

[· · · ]θ +
∫
{|vk−v|<L}

[· · · ]θ := Ik,L
1 + Ik,L

2 .
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Using Hölder inequalities for θ < 1 and (6.6)-(6.9) we get

Ik,L
1 ≤

(∫
Q

gk

)θ

[meas({|vk − v| ≥ L})]1−θ

≤ Kθ[meas({|vk − v| ≥ L})]1−θ −→
k→+∞

0,

Ik,L
2 ≤ (Ik,L

3 + Ik,L
4 )θ[meas({|vk − v| < L})]1−θ

Ik,L
3 :=

∫
{|vk−v|<L}

τ(ek, Dvk) : D(vk − v),

Ik,L
4 :=

∫
{|vk−v|<L}

τ(ek, Dv) : D(v − vk) −→
k→+∞

0.

In order to estimate Ik,L
3 , we define

wk = (vk − v)
(

1−min
(
|vk − v|

L
, 1
))

.

By using (6.6)-(6.9) and |wk| ≤ L a.e. in Q̄, we get

wk ⇀ 0 weakly in Lp(0, T ;W 1,p
N );

wk → 0 strongly in Lm(Q), for 1 ≤ m < +∞; (6.13)

wk → 0 strongly in Lm(ΣD);

wk → 0 strongly in Lm(Σ).

Next, we decompose wk as

wk = wk,div +∇ηk ,

due to Lm-theory for the Laplace operator, it follows that

∇ηk → 0 strongly in Lm(Q), for all 1 ≤ m < +∞, (6.14)

and consequently

wk,div → 0 strongly in Lm(Q), for all 1 ≤ m < +∞. (6.15)

On the other hand, using the Lp-regularity for the Laplace operator it follows that∫ T

0

‖∇ηk(t)‖p
p(n−1)/(n−p),Γdt ≤ C(Ω, p)‖∇2ηk‖p

p,Q

≤ C(Ω, p)‖div wk‖p
p,Q

≤ C

(∫
Ek

|∇(vk − v)|p + L

∫
{|vk−v|<L2}

|∇(vk − v)|p
)

≤ C

(∫
Ek

gkdx dt+
δ

K

∫
Q

gkdx dt

)
≤ Cδp/θ. (6.16)
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Then

wk,div ⇀ 0 weakly in Lp(0, T ;W 1,p
N ); (6.17)

wk,div → 0 strongly in L2(ΣD); (6.18)

wk,div → 0 strongly in Ls(Σ). (6.19)

Next, after some calculations we can decompose the integral Ik,L
3 as

Ik,L
3 =

∫
Q

τ(ek, Dvk) : Dwk,div + Ik,L
5 + Ik,L

6 + Ik,L
7 ,

Ik,L
5 :=

∫
{|vk−v|<L}

τ(ek, Dvk) : D∇ηk,

Ik,L
6 :=

∫
{|vk−v|<L}

τ(ek, Dvk) : D(vk − v)
|vk − v|

L
,

Ik,L
7 :=

∫
{|vk−v|<L}

τ(ek, Dvk) :
(vk − v)

L
⊗∇(|vk − v|).

(6.20)

From (6.16) and the uniform estimates (4.19)-(4.20) we have

|Ik,L
5 |θ ≤ ‖τ(ek, Dvk)‖θ

p′,QCδ ≤ Cδ.

For the integrals Ik,L
6 and Ik,L

7 , we can argue as in the estimate (6.16) concluding
that

|Ik,L
6 | ≤

∫
Ek

gkdx dt+ L

∫
Q

gkdx dt ≤ 2δp/θ < 2δ1/θ ;

|Ik,L
7 | ≤

∫
Ek

gkdx dt+ L

∫
Q

gkdx dt ≤ 2δp/θ < 2δ1/θ,

for 0 < δ < 1 and p > 1.
Finally to study the remaining integral in (6.20), we choose w = wk,div (diver-

genceless function) as a test function in (3.2) and we pass to the limit as k → +∞
to obtain (6.12). Indeed we use the convergences (6.15), (6.18)-(6.19) and observe
that

〈∂tvk,wk,div〉 = 〈∂t(vk − v),wk〉+ 〈∂t(vk − v),∇ηk〉+ 〈∂tv,wk,div〉
≥ 〈∂t(vk − v),∇ηk〉+ 〈∂tv,wk,div〉 −→

k→+∞
0,

applying the convergences (6.14) and (6.17).

6.2. Lipschitz truncation

Here, we give several lemmas that will be needed in what follows. Let us begin with
introductory remarks. We denote by the symbol dα the modified parabolic metric,
that is defined on Rn+1 such that

dα(X,Y ) := max
(
|x− y|, |t− s|1/2

α1/2

)
, α > 0,
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where X,Y ∈ Rn+1, X := (x, t), Y := (y, s). We also define the so-called parabolic
cube Qα

R by

Qα
R(X) :=

{
Y ∈ Rn+1; dα(X,Y ) < R

}
, R > 0.

Next, we introduce an important covering lemma.

Lemma 6.1. Let E ⊂ Rn+1 be an open bounded set. Then there exists family of
cubes {Qα

Ri
(Xi)}i∈N and family of smooth functions {ψi}i∈N such that

∞⋃
i=1

Qα
Ri/2 =

∞⋃
i=1

Qα
Ri

= E

4Ri ≤ dα(Xi, ∂E) ≤ 8Ri, ∀i ∈ N, with 0 < Ri < 1 (6.21)

Rj > 2Ri ⇒ Qα
Ri

(Xi) ∩Qα
Rj

(Xj) = ∅

Qα
Ri/4(Xi) ∩Qα

Rj/4(Xj) = ∅ ∀i, j ∈ N, i 6= j

card(Ai) ≤ C(n), ∀i ∈ N with Ai := {j ∈ N : Qα
2Ri
3

(Xi) ∩Qα
2Rj
3

(Xj) 6= ∅}

ψi ∈ C∞0 (Qα
2Ri/3(Xi)), ∀i ∈ N

αR2
i |∂tψi|+Ri|∇ψi| ≤ C(n) in Rn+1 ∀i ∈ N

∞∑
i=1

ψi(X) = 1, ∀X ∈ E.

Moreover,

Qα
Rj

(Xj) ⊂ Qα
4Ri

(Xi) ⊂ E, ∀j ∈ Ai . (6.22)

The proof can be found in [Diening et al., 2006, Lemma 3.1, Remark 3.8 and
Proposition 3.4].

For sake of completness, we also introduce the notation of some types of the
maximal function. All properties of such function that will we described bellow are
also proved in [Diening et al., 2006, (see Appendix A)].

We define M for some g ≥ 0, g ∈ La(0,∞;La(Rn)), as the parabolic maximal
function

M(g)(x, t) := sup
0<ρ<∞

∫
−

(t−ρ,t+ρ)

 sup
0<R<∞

∫
−

BR(x)

g(y, s) dy

 ds.

Moreover, we also define Mα as

Mα(g)(x, t) := sup
Qα

R(x,t)

∫
−

Qα
R(x,t)

g(y, s) dy ds.

The following properties are valid

‖M(g)‖a;La ≤ ‖g‖a;La

Mα(g) ≤M(g) in Rn+1.
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Note that we use the following notation for mean value over the set Qα
R for an

integrable function u:

uQα
R

:=
∫
−
Qα

R

u dx dt.

Next lemma is an important Poincaré inequality.

Lemma 6.2. Let u, f ∈ L1(Qα
R) and ∇u,q ∈ L1(Qα

R) satisfy

−
∫

Qα
R

u∂tφ =
∫

Qα
R

q · ∇φ+
∫

Qα
R

fφ ∀φ ∈ C∞0 (Qα
R). (6.23)

Then ∫
Qα

R

|u− uQα
R
| ≤ CR

(∫
Qα

R

|∇u|+ α|q|+ αR|f |

)
. (6.24)

Proof. The proof for Q1
1 is the same as the proof of Theorem 5.1 in Diening et al.

[2006]. For general Qα
R we assume that it is a cube with center 0. Let u be defined

on Qα
R. Then we define the function v on Q1

1 as v(x, t) := u(Rx, αR2t). Then we
can derive that

∂tv(x, t) = αR2∂αR2tu(Rx,αR2t)
(6.23)
= α

(
R divx q(Rx,αR2t) +R2f(Rx,αR2t)

)
.

Thus, we are in position to apply our estimate for Q1
1 to obtain∫

Q1
1

|v(x, t)− vQ1
1
| ≤ C

(∫
Q1

1

|∇v(x, t)|+ αR|q(Rx,αR2t)|+ αR2|f(Rx, αR2t)|

)
.

After standard substitution, we easily obtain (6.24).

Finally, let E ⊂ Q be an open set and u ∈ L1(Q). Let {Qα
Ri
} be the covering

of E from Lemma 6.1 and {ψi} be the corresponding partition of unity. Then we
introduce the following truncation operator Lα

E such that

Lα
Eu(x, t) :=


u(x, t) if (x, t) ∈ Q \ E
∞∑

i=1

ψiuQα
Ri

if (x, t) ∈ E

It is also proved in Diening et al. [2006] that

‖Lα
Eu‖a,La ≤ c‖u‖a,La .

The last lemma of this subsection deals with the most important behavior of the
Lipschitz truncation and say something about its time derivative.

Lemma 6.3. Let Ω be an open bounded set in Rn, 0 < T < ∞, Q := Ω×]0, T [.
Let u ∈ L∞(0, T ;L2(Ω)) ∩ Lr(0, T ;W 1,r(Ω)), f ∈ L1(Q) and q ∈ Lr′(0, T ; (Wr)′),
(1 < r <∞), be such that

∂tu = div q + f
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in sense of distribution. Moreover, let E ⊂⊂ Q be an open set such that

Mα(|∇u|) + αMα(|q|) + αMα(|f |) ≤ C < +∞, a.e. in Q \ E. (6.25)

Then there holds

∇Lα
Eu ∈ L

∞(0, T ;L∞(Ω))

∂t (Lα
Eu) (Lα

Eu− u) ∈ L1 (Q \ E)
(6.26)

and for all φ1 ∈ C∞0 (Ω) and all φ2 ∈ C∞0 (0, T ) we have∫ T

0

〈∂tu, Tε(Lα
Eu)φ1〉φ2 dt = −

∫
Q

(u− Lα
Eu) ∂t (Tε(Lα

Eu))φ1φ2 dx dt−

−
∫

Q

∂t[Tε(Lα
Eu)]φ1φ2 dx dt−

∫
Q

(u− Lα
Eu)Tε(Lα

Eu)φ1 (∂tφ2) dx dt
(6.27)

where Tε is the usual truncation function and

Tε(v) :=
∫ v

0

Tε(s) ds.

The proof can be found in [Diening et al., 2006, (see Theorem 3.9)]. To be correct
there is proved this conclusion without the truncation function Tε.

6.3. Pointwise convergence of energy gradient

First, we relabel eµ = eµ(n) = en and we define cut-off function ζ ∈ C∞0 (Q) such
that

ζ(x, t) := ζ1(t)ζ2(x),

where ζ1 ∈ C∞0 (0, T ) and ζ2 ∈ C∞0 (Ω) such that ζ(x, t) = 1 if dist(x, ∂Ω) > η > 0,
η < t < T − η. Thus, we are in the position to apply local theory of monotone
operators. Indeed it is enough to show that for some θ > 0 it holds

lim
n,m→∞

∫
Q

[ζ(q(en,∇en)− q(en,∇em)) · ∇(en − em)]θ = 0. (6.28)

We can split the integral appearing in (6.28) such (after using monotonocity of q)
that

0 ≤
∫

Q

[ζ(q(en,∇en)− q(en,∇em)) · ∇(en − em)]θ

=
∫
{|en−em|≤ε}

[. . .]θ +
∫
{|en−em|>ε}

[. . .]θ := I1 + I2, for ε > 0. (6.29)

For θ < r/q, we have

I2 ≤ C

∫
{|en−em|>ε}

|∇em|θq + |∇en|θq

≤ C [meas({(x, t) ∈ Q : |en(x, t)− em(x, t)| > ε})]
r−θq

r
n,m→∞−→ 0.
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In order to study the integral I1 we decompose

I1 =
∫

Q

[ζ(q(en,∇en)− q(en,∇em)) · ∇Tε(en − em)]θ

=
∫
{|em|>k}

[. . .]θ +
∫
{|em|≤k}

[. . .]θ := I3 + I4, for k > 0.

For I3 we obtain I3 ≤
(

C
k

) r−θq
r . For I4, considering the minimum principle 4.3, we

can compute

I4 =
∫
{em≤k}

[
ζ(q(en,∇en)T ′k+ε,δ(en)− q(en,∇em)T ′k,δ(em))

·∇Tε(Tk+ε,δ(en)− Tk,δ(em))
]θ
, for δ > 0,

where

Tk,δ(e) :=

{
e if e ≤ k

k + δ/2 if e > k + δ

is nondecreasing smooth function such that T ′k,δ ≤ 1.
Next, denoting

gmn := |∇Tk+ε,δ(en)|q + |∇Tk,δ(em)|q,

we know (it is consequence of apriori estimates) that for all ν > 0 there exists a
sequence {λmn} ⊂ (22ν

, 22ν+1
) such that (for details see Diening et al. [2006])

λq
mnmeas({M(gmn) > λq

mn}) ≤ Ck2−ν . (6.30)

Moreover, if we denote by the symbol Dmn the following set

Dmn := {(x, t) : M(gmn) > λq
mn},

then we have

I4 =
∫
{em≤k}∩Dmn

[. . .]θ +
∫
{em≤k}\Dmn

[. . .]θ =: I5 + I6.

The integral I5 can be estimated as I5 ≤
(

ck
λr

mn

) r−θq
r

. Using the fact that for em ≥
k + δ the term in the integral has the correct sign we can compute

I6 ≤
∫

({em≤k}∪{em≥k+δ})\Dmn

[. . .]θ ≤ C

(∫
[. . .]

)θ

Thus, we have

CI
1
θ
6 ≤

∫
Q\Dmn

[. . .]−
∫
{k<em<k+δ}\Dmn

[. . .]

=: I7 + I8
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But for I8 we have the estimate (for a.a. k and δ)

|I8| ≤ Cλq
mnmeas({k < em < k + δ})

m→∞
≤ C

(
sup
mn

λq
mn

)
meas({k < e < k + δ}) δ→0−→ 0.

To simplify the notation, hencefurther we denote by ωmn the function

ωmn := Tk+ε,δ(en)− Tk,δ(em).

Thus, we apply Hölder inequality after we see that I7 can be rewritten in the
following form

I7 =
∫

Q\Dmn

[ζ(q(en,∇en)T ′k+ε,δ(en)− q(em,∇em)T ′k,δ(em)

+ q(em,∇em)T ′k,δ(em)− q(en,∇em)T ′k,δ(em)) · ∇Tε(ωmn)]

≤ CI9 +
∫

Q\Dmn

[ζT ′k,δ(em)(q(em,∇em)− q(en,∇em)) · ∇Tε(ωmn)].

(6.31)

First, we observe that the last integral in (6.31) tends to zero as m,n → +∞.
Indeed, we have∫

Q\Dmn

[ζT ′k,δ(em)(q(em,∇em)− q(en,∇em)) · ∇Tε(ωmn)]

≤ λmn

∫
{|∇em|≤λmn}∩{|em|+|en|≤2(k+δ+ε)}

|q(em,∇em)− q(en,∇em)|

and continuity of q w.r.t. the first variable together with strong convergence (6.10)
imply that this integral vanishes as m,n→∞.

To show that I9 also tends to zero we denote

Gmn := {(x, t) : M(|∇vn|p) +M(|∇vm|p)+
+M(|T ′′k+ε,δ(en)q(en,∇en) · ∇en|) +M(|T ′′k,δ(em)q(em,∇em) · ∇em|) > Λ},

Hmn := {(x, t) : M(|vnTk+ε,δ(en)− vmTk,δ(em)|) > 1}.

Thus, we have for the term I9 that

I9 ≤
∫

Q\(Dmn∪Gmn∪Hmn)

+

∣∣∣∣∣
∫

(Q\Dmn)∩Gmn

∣∣∣∣∣+
∣∣∣∣∣
∫

(Q\Dmn)∩Hmn

∣∣∣∣∣ =
=: I10 + I11 + I12,

and for I11, I12 we obtain that

I11 ≤ Ckλq
mnmeas(Gmn) ≤ Ck

δΛ
sup
mn

λq
mn

Λ→∞−→ 0;

I12 ≤ Ckλq
mnmeas(Hmn)

m,n→∞−→(
sup
mn

Ckλq
mn

)
·meas{|v||Tk+ε,δ(e)− Tk,δ(e)| > 1} ε→0−→ 0.
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Finally, we define the open set Emn as

Emn := Dmn ∪Gmn ∪Hmn

and, since Emn is such that (6.25) holds, we can introduce the Lipschitz truncation
operator Lαmn

Emn
. Hence the integral I10 can be rewritten into the form

I10 =
∫

Q\Emn

ζ(q(en,∇en)T ′k+ε,δ(en)− q(em,∇em)T ′k,δ(em)) · ∇Tε(Lαmn

Emn
(ωmn))

=
∫

Q

−
∫

Emn

=: I13 + I14.

To bound the remaining integral, we use the estimates that come from parabolic
truncation. As it was already mentioned, we need to know something about the time
derivative of truncated function. In our setting, it means that we need to have the
equation for ∂t(Tk+ε,δ(en)− Tk,δ(em)). But because the truncation function Tk,δ is
smooth and every term in the equation (5.3) have good meaning, we can (formally
but rigorously) multiply the equation for internal energy by T ′k,δ. More precisely,
we multiply the equation (5.3) for en by T ′k+ε,δ(en), the equation (5.3) for em by
T ′k,δ(em), subtracting the resulting equations then leads to the relation (in sense of
distribution)

∂tωmn + div
(
vnTk+ε,δ(en)− vmTk,δ(em)

)
− div

(
q(en,∇en)T ′k+ε,δ(en)− q(em,∇em)T ′k,δ(em)

)
+ T ′′k+ε,δ(en)q(en,∇en) · ∇en − T ′′k,δ(em)q(em,∇em) · ∇em

= T ′k+ε,δ(en)τ(en, Dvn) : Dvn − T ′k,δ(em)τ(em, Dvm) : Dvm

(6.32)

First, we bound the integral I14. From apriori estimates, we obtain

I14 ≤ Ck

(∫
Emn

|∇(Lαmn

Emn
(ωmn))|q

) 1
q

.

Next, let {QRi
(Xi)} be the covering from Lemma 6.1. Then we decompose the set

Emn into two parts such that

Eρ
mn,1 := {X = (x, t) ∈ Emn : ∃Ri > ρ,X ∈ QRi

(Xi)}

Eρ
mn,2 := Emn \ Eρ

mn,1, for ρ > 0.

If X ∈ Eρ
mn,1 then it follows from the definition of the parabolic truncation Lαmn

Emn

and the properties of covering that

∣∣∇x(Lαmn

Emn
(ωmn))(X)

∣∣ =
∣∣∣∣∣∣∇
∑
j∈Ai

ψj(X)ωmnQαmn
Rj

∣∣∣∣∣∣
≤ C

∑
j∈Ai

1
Rj

∫
− |ωmn| ≤

C

ρn+3
‖ωmn‖1;L1 .

(6.33)
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Secondly for X ∈ Eρ
mn,2 we use again the properties of our covering to deduce

∣∣∇x(Lαmn

Emn
(ωmn))(X)

∣∣ =
∣∣∣∣∣∣∇
∑
j∈Ai

ψj(X)ωmnQαmn
Rj

∣∣∣∣∣∣
=

∣∣∣∣∣∣∇
∑
j∈Ai

ψj(X)(ωmnQαmn
Rj

− ωmnQαmn
4Ri

) + ωmnQαmn
4Ri

∣∣∣∣∣∣
≤
∑
j∈Ai

C

Rj

∣∣∣ωmnQαmn
Rj

− ωmnQαmn
4Ri

∣∣∣
=
∑
j∈Ai

C

Rj

∣∣∣∣∣∣∣∣
∫
−

Qαmn
Rj

ωmn(Y )− ωmnQαmn
4Ri

dY

∣∣∣∣∣∣∣∣
≤ C

Ri

∫
−

Qαmn
4Ri

|ωmn(Y )− ωmnQαmn
4Ri

| dY.

(6.34)

Next, if we denote

Q := q(en,∇en)T ′k+ε,δ(en)− q(em,∇em)T ′k,δ(em)

H := vnTk+ε,δ(en)− vmTk,δ(em)

G := −T ′′k+ε,δ(en)q(en,∇en) · ∇en + T ′′k,δ(em)q(em,∇em) · ∇em

+ T ′k+ε,δ(en)τ(en, Dvn) : Dvn − T ′k,δ(em)τ(em, Dvm) : Dvm

(6.35)

and use this notation in (6.32) we see that ωmn solves in the sense of distribution
the equation

∂tωmn − div(Q−H) = G. (6.36)

Applying Poincaré inequality (6.24) for ωmn to the estimate (6.34) together with
the fact (Ri ≤ ρ) we have for all X ∈ Eρ

mn,2∣∣∇x(Lαmn

Emn
(ωmn))(X)

∣∣ ≤ C

∫
−

Qαmn
4Ri

|∇ωmn|+ αmn(|Q|+ |H|+ ρ|G|)dY.

Moreover, from the property (6.21) of the covering, that there exists Z ∈ Q \ Emn

such that Qαmn

4Ri
(Xi) ⊂ Qαmn

12Ri
(Z), thus∣∣∇x(Lαmn

Emn
(ωmn))(X)

∣∣ ≤ C(λmn + αmn(λq−1
mn + 1 + ρΛ)). (6.37)

Finally, using (6.37) and (6.33) we can easily bound the integral I14 such that

Iq
14 ≤ Ckq(ρ−n−3‖ωmn‖1;L1 + λmn + αmn(λq−1

mn + 1 + ρΛ))

· (meas(Dmn) + meas(Gmn) + meas(Hmn)).
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The last step is to bound the integral I13. We use ζTε(Lαmn

Emn
(ωmn)) as a test

function in (6.32) to obtain that

I13 ≤
Ckε

δ
+ max{λmn, αmnΛ}‖ωmn‖1;L1 −

∫ T

0

〈∂tωmn, Tε(Lαmn

Emn
(ωmn))〉. (6.38)

For the integral with time derivative we use (6.27) to get

−
∫ T

0

〈∂tωmn, Tε(Lαmn

Emn
(ωmn))〉 dt ≤ C‖ωmn‖1;L1+

+
∫

Emn

|∂t(Lαmn

Emn
(ωmn))| · |ωmn − Lαmn

Emn
(ωmn)| dx dt.

Next, we estimate the time derivative in the last integral. Let X ∈ Qαmn

Ri
then

∂t(Lαmn

Emn
(ωmn))(X) = ∂t

∑
j∈Ai

ψj(X)(ωmnQαmn
Rj

− ωmnQαmn
4Ri

) + ωmnQαmn
4Ri


=
∑
j∈Ai

∂tψj(X)
∫
−

Qαmn
Rj

ωmn(Y )− ωmnQαmn
4Ri

dY.

Thus, using the properties of ψj and our covering we have

|∂t(Lαmn

Emn
(ωmn))(X)| ≤ Cα−1

mnR
−2
i

∫
−

Qαmn
4Ri

|ωmn(Y )− ωmnQαmn
4Ri

| dY. (6.39)

Moreover, for the second term in the integral we have

(ωmn − Lαmn

Emn
(ωmn))(X) =

∑
j∈Ai

ψj(X)(ωmn(X)− ωmnQαmn
Rj

)

=
∑
j∈Ai

ψj(X)
∫
−

Qαmn
Rj

(ωmn(X)− ωmn(Y )) dY.

Integrating this relation w.r.t. X adding and subtracting ωmnQαmn
4Ri

and using the
property (6.22) of covering, we are led to the following inequality∫

Qαmn
Ri

|(ωmn − Lαmn

Emn
(ωmn))(X)| dX ≤ C

∫
Qαmn

4Ri

|ωmn(Y )− ωmnQαmn
4Ri

| dY. (6.40)

Combining the estimates (6.39) and (6.40), we finally have∫
Qαmn

Ri

|∂t(Lαmn

Emn
(ωmn))||Lαmn

Emn
(ωmn)− ωmn|

≤ Cα−1
mnR

−2
i meas(Qαmn

Ri
)

 ∫
−

Qαmn
4Ri

|ωmn − ωmnQαmn
4Ri

| dY


2

.

(6.41)
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Thus, we obtain ∫
Emn

≤
∑

i:Ri≥ρ

∫
Qαmn

4Ri

+
∑

i:Ri≤ρ

∫
Qαmn

4Ri

. (6.42)

The first sum in (6.42) can be estimated with help of (6.41) as∑
i:Ri≥ρ

∫
Qαmn

4Ri

≤ Cα−1
mnρ

−2n−6meas(Emn)‖ωmn‖1;L1 . (6.43)

To estimate the second sum we use the same trick as in (6.37), we apply Poincaré
inequality to get∑

i:Ri≤ρ

∫
Qαmn

4Ri

≤ C
∑

i:Ri≤ρ

α−1
mnmeas(Qαmn

Ri
)(λmn + αmnλ

q−1
mn + αmn + ραmnΛ)2

≤ meas(Emn)
(
α−1

mnλ
2
mn + αmn(λ2q−2

mn + 1 + ρ2Λ2)
)
.

(6.44)

Next, we have already all prepared to prove our conclusion. Indeed having the
sequence of λmn as in (6.30) we define the sequence {αmn} such that

αmn := λ2−q
mn .

Finally, we begin to pass to the limit in all relations that we have to show that
(6.29) converges to zero.
• First, we pass to the limit with m,n, hence I2 → 0 and

ωmn → ω = Tk+ε,δ(e)− Tk,δ(e)

strongly in L1(Q).
• Secondly, we set ε → 0. Thus, I12 → 0, meas(Hmn) → 0 and ω → 0. Moreover,
we also know that meas(Gmn) ≤ Ck

Λδ . Thus, the relation for I14 is reduced to

Iq
14 ≤ Ckq+1(2−ν + C(ν, δ)(ρΛ +

1
Λ

)).

The relation for I13 is also simplified. We see that the first two terms in (6.38) tends
to zero and for the remaining term we use (6.44). Hence we have

I13 ≤ Ck2−ν +
C(k, δ, ν)

Λ
+ ρC(δ,Λ, ν, k).

• Next, passing to the limit with ρ → 0 and then with Λ → ∞, we obtain that
I11 → 0 and also that

Iq
14 + I13 ≤ Ck2−ν .

• Passing to the limit with δ → 0 shows that I8 tends to zero.
• Next setting ν →∞ (i.e., supmn λmn →∞) then implies that I5, |I13|+|I14| → 0.
• Finally, passing to the limit with k → ∞ shows that I3 → 0, and consequently
the whole right-hand side of (6.29) tends to zero.

Thus, using strict monotonocity, we obtain point-wise convergence of energy
gradient ∇en that completes the proof. 2
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7. Proof of Corollary 2.1

Let us prove that eN ≥ min(e, er) a.e. in Q. For each t ∈]0, T [, let us choose
φ(x) = min(0, eN (x, t)−min(e, er)) ≤ 0 as a test function in (4.13) and integrating
over ]0, t[, we obtain

‖φ‖22,Ω +
∫ t

0

∫
Ω[eN <min(e,er)]

q(eN ,∇eN ) · ∇eN +

+
∫ t

0

∫
Γ[eN <min(e,er)]

γ(eN )(eN −min(e, er)) ≤ 0,

taking into account the assumption (2.33). Using (2.47) and (2.30), we conclude
that eN ≥ min(e, er) a.e. in Q.
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M. Buĺıček, E. Feireisl, and J. Málek. Navier-stokes-fourier system for incompress-
ible fluids with temperature dependent material coefficients. to appear, 2007a.
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