Équations aux Dérivées Partielles

Existence of local strong solutions for a quasilinear Benney system

João-Paulo Dias ${ }^{(1)}$, Mário Figueira ${ }^{(1)}$ and Filipe Oliveira ${ }^{(2)}$

(1) CMAF/UL and FCUL, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa - PORTUGAL
(2) Dep. Matemática, FCT/UNL, Monte da Caparica - PORTUGAL

Abstract

We prove in this Note the existence and uniqueness of a strong local solution to the Cauchy problem for the quasilinear Benney system (1).

Existence d'une solution locale forte pour un système de Benney quasilinéaire

Résumé

Nous prouvons dans cette Note l'existence et unicité d'une solution locale forte du problème de Cauchy pour le système de Benney quasilinéaire (1).

1. Introduction and main result.

We consider the system introduced by Benney in [1] to study the interaction between short and long waves, for example gravity waves in fluids :

$$
\left\{\begin{array}{l}
i u_{t}+u_{x x}=|u|^{2} u+v u \tag{1}\\
v_{t}+[f(v)]_{x}=|u|_{x}^{2}
\end{array} \quad x \in \mathbf{R}, t \geq 0\right.
$$

where f is a polynomial real function, u and v (real) represent the short and the long wave, respectively.

[^0]In [2] the existence of weak solutions for (1) was proved for $f(v)=a v^{2}-b v^{3}$, with a and b real constants, $b>0$, in the following sense:

Theorem 1.1 Given $u_{0}, v_{0} \in H^{1}(\mathbf{R})$ with v_{0} real-valued, there exists functions

$$
u \in L^{\infty}\left(\mathbf{R}_{+} ; H^{1}(\mathbf{R})\right), \quad v \in L^{\infty}\left(\mathbf{R}_{+} ;\left(L^{4} \cap L^{2}\right)(\mathbf{R})\right)
$$

such that

$$
\begin{aligned}
& i \int_{0}^{\infty} \int_{\mathbf{R}} u \frac{\partial \varphi}{\partial t} d x d t+\int_{0}^{\infty} \int_{\mathbf{R}} \frac{\partial u}{\partial x} \frac{\partial \varphi}{\partial x} d x d t+ \\
& \int_{\mathbf{R}} u_{0}(x) \varphi(x, 0) d x+\int_{0}^{\infty} \int_{\mathbf{R}}|u|^{2} u \varphi d x d t+\int_{0}^{\infty} \int_{\mathbf{R}} v u \varphi d x d t=0 \\
& \int_{0}^{\infty} \int_{\mathbf{R}} v \frac{\partial \psi}{\partial t} d x d t+\int_{0}^{\infty} \int_{\mathbf{R}} f(v) \frac{\partial \psi}{\partial x} d x d t+\int_{\mathbf{R}} v_{0}(x) \psi(x, 0) d x-\int_{0}^{\infty} \int_{\mathbf{R}} \frac{\partial}{\partial x}|u|^{2} \psi d x d t=0
\end{aligned}
$$

for all functions $\varphi, \psi \in C_{0}^{1}(\mathbf{R} \times[0,+\infty[)$ (i.e. in the class of continuously differentiable functions with compact support), with φ being complex-valued and ψ real-valued.

This result was obtained for this particular system by application of the vanishing viscosity method and we could not extend the necessary estimates to the Burger's case ($a=1, b=0$) or to more general cases. Here we will prove the existence of (local) strong solutions to (1) for general f, extending previous results in $[6,7]$ for f linear :

Theorem 1.2 Let $\left(u_{0}, v_{0}\right) \in H^{3}(\mathbf{R}) \times H^{2}(\mathbf{R})$ and $f \in C^{3}(\mathbf{R})$. Then there exists a unique strong solution (u, v) of the Cauchy problem associated to (1), with

$$
(u, v) \in C^{j}\left([0, T] ; H^{3-2 j}(\mathbf{R})\right) \times C^{j}\left([0, T] ; H^{2-j}(\mathbf{R})\right), j=0,1 .
$$

Here, the life-span $T>0$ depends exclusively on f and on the initial data $\left(u_{0}, v_{0}\right)$.
The main difficulty here is the derivative-loss in the right-hand side of equation (1 a). This cannot be handled easily by the Schrödinger kernel, due to its limited smoothing properties. The method employed in $[6,7]$ for f linear, based in the inhomogeneous smoothing effect of the Schrödinger group, can not be easily implemented for f nonlinear. We will address this problem by introducing some auxiliary functions and rewriting system (1) without derivative loss. A similar technique was introduced in [5] to solve the fully nonlinear wave equation and employed in [4], in the context of the Zakharov-Rubenchik system.

Another interesting open problem is the study of the probable blow-up of the local smooth solutions.

2. An equivalent system.

Let us take (u, v) a solution of (1). By setting $F=u_{t}$, we obtain from ($1-a$)

$$
i F+u_{x x}-u=|u|^{2} u+u(v-1)
$$

and

$$
\begin{equation*}
u=(\Delta-1)^{-1}\left(|u|^{2} u+u(v-1)-i F\right) \tag{2}
\end{equation*}
$$

with $\quad \Delta=\frac{\partial^{2}}{\partial x^{2}}$. Also, differentiating $(1-a)$ with respect to t leads to

$$
i F_{t}+F_{x x}=2|u|^{2} F+u^{2} \bar{F}+F v+u v_{t},
$$

and from $(1-b)$,

$$
\begin{equation*}
i F_{t}+F_{x x}=2|u|^{2} F+u^{2} \bar{F}+F v+u|u|_{x}^{2}-u v_{x} f^{\prime}(v) . \tag{3}
\end{equation*}
$$

These computations are our motivation to consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
i F_{t}+F_{x x}=2|u|^{2} F+u^{2} \bar{F}+F v+u|\tilde{u}|_{x}^{2}-u v_{x} f^{\prime}(v) \tag{a}\\
v_{t}+[f(v)]_{x}=|\tilde{u}|_{x}^{2} \\
F(x, 0)=F_{0}(x) \in H^{1}(\mathbf{R}), v(x, 0)=v_{0}(x) \in H^{2}(\mathbf{R})
\end{array}\right.
$$

where u and \tilde{u} are given in terms of F by

$$
\begin{equation*}
u(x, t)=u_{0}+\int_{0}^{t} F(x, s) d s \quad \text { and } \quad \tilde{u}(x, t)=(\Delta-1)^{-1}\left(|u|^{2} u+u(v-1)-i F\right) \tag{5}
\end{equation*}
$$

Note that in this system derivative losses do not occur. Indeed, the regularization of $(\Delta-1)^{-1}$ puts \tilde{u} in H^{3} and therefore the right-hand side of $(4-a)$ is in H^{1}, like F.
We will prove the following lemma:
Lemma 2.1 Let $\left(F_{0}, v_{0}\right) \in H^{1}(\mathbf{R}) \times H^{2}(\mathbf{R})$ and $f \in C^{3}(\mathbf{R})$. Then there exists $T>0$ and a unique strong solution (F, v) of the Cauchy problem $(4-a, b)$, with

$$
(F, v) \in C^{j}\left([0, T] ; H^{1-2 j}(\mathbf{R})\right) \times C^{j}\left([0, T] ; H^{2-j}(\mathbf{R})\right), j=0,1 .
$$

Here, the life-span $T>0$ depends exclusively on f and on the initial data $\left(F_{0}, v_{0}\right)$.
This lemma will be proved in the next section, using the general theory of Kato for quasilinear equations ([3]).

We now explain why Lemma 2.1 implies our main Theorem 1.2:

If (F, v) is a solution of (4), by differentiating (5) with respect to t we obtain

$$
u_{t}=F
$$

Replacing in $(1-a)$ yields by $(4-b)$

$$
\begin{aligned}
\left(i u_{t}+u_{x x}\right)_{t} & =2|u|^{2} F+u^{2} \bar{F}+F v+u|\tilde{u}|_{x}^{2}-u v_{x} f^{\prime}(v) \\
& =2|u|^{2} u_{t}+u^{2} \bar{u}_{t}+u_{t} v+u v_{t}
\end{aligned}
$$

Hence $\left(i u_{t}+u_{x x}-|u|^{2} u-u v\right)_{t}=0$ and we get

$$
i u_{t}+u_{x x}-|u|^{2} u-u v=\phi_{0}(x),
$$

where $\phi_{0}(x)=i F_{0}(x)+u_{0}^{\prime \prime}(x)-\left|u_{0}(x)\right|^{2} u_{0}(x)-u_{0}(x) v_{0}(x)$. By setting

$$
\begin{equation*}
F_{0}(x)=i\left(u_{0}^{\prime \prime}(x)-\left|u_{0}(x)\right|^{2} u_{0}(x)-u_{0}(x) v_{0}(x)\right) \tag{6}
\end{equation*}
$$

we obtain $\phi_{0}=0$ and (u, v) satisfies $(1-a)$. Furthermore, from $(1-a)$,

$$
\begin{equation*}
u=(\Delta-1)^{-1}\left(|u|^{2} u+u(v-1)-i u_{t}\right) . \tag{7}
\end{equation*}
$$

Therefore $u=\tilde{u}$ and (u, v) satisfies $(1-b)$. Note that $u_{t}=F \in C\left([0, T] ; H^{1}(\mathbf{R})\right)$. Also $u(., t)=u_{0}()+.\int_{0}^{t} F(., s) d s \in C\left([0, T] ; H^{1}(\mathbf{R})\right)$, but from (7) we have in fact

$$
u \in C\left([0, T] ; H^{3}(\mathbf{R})\right)
$$

3. Proof of Lemma 2.1.

In order to apply a variant of theorem 6 in [3] we need to set the Cauchy problem (4) in the framework of real spaces. We introduce the new variables

$$
F_{1}=\Re F, F_{2}=\Im F, u_{1}=\Re u, u_{2}=\Im u
$$

and with $U=\left(F_{1}, F_{2}, v\right), F_{10}=\Re F_{0}, F_{20}=\Im F_{0}$ (4) can be written as follows :

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} U+A(U) U=g(t, U) \tag{8}\\
\left(F_{1}(x, 0), F_{2}(x, 0), v(x, 0)\right)=\left(F_{10}(x), F_{20}(x), v_{0}(x)\right) \in\left(H^{1}(\mathbf{R})\right)^{2} \times H^{2}(\mathbf{R})
\end{array}\right.
$$

where

$$
A(U)=\left[\begin{array}{ccc}
0 & \Delta & 0 \\
-\Delta & 0 & 0 \\
0 & 0 & f^{\prime}(v) \frac{\partial}{\partial x}
\end{array}\right]
$$

and

$$
g(t, U)=\left[\begin{array}{c}
2\left|u^{2}\right| F_{2}-\left(u_{1}^{2}-u_{2}^{2}\right) F_{2}+2 u_{1} u_{2} F_{1}+F_{2} v+u_{2}|\tilde{u}|_{x}^{2}-u_{2} v_{x} f^{\prime}(v) \\
-2\left|u^{2}\right| F_{1}-\left(u_{1}^{2}-u_{2}^{2}\right) F_{1}-2 u_{1} u_{2} F_{2}-F_{1} v-u_{1}|\tilde{u}|_{x}^{2}+u_{1} v_{x} f^{\prime}(v) \\
|\tilde{u}|_{x}^{2}
\end{array}\right]
$$

which is a non-local source term.
Now we set $X=\left(H^{-1}(\mathbf{R})\right)^{2} \times L^{2}(\mathbf{R}), Y=\left(H^{1}(\mathbf{R})\right)^{2} \times H^{2}(\mathbf{R})$ and introduce $S: Y \longrightarrow X$ defined by $S=(1-\Delta) I$, which is an isomorphism. Moreover $A: U=\left(F_{1}, F_{2}, v\right) \in W \longrightarrow$ $G(X, 1, \beta)$, where W is an open ball in Y centered at the origin and with radius R and $G(X, 1, \beta)$ denotes the set of all linear operators D in X such that $-D$ generates a C_{0} semigroup $\left\{e^{-t D}\right\}$ with

$$
\begin{gathered}
\left\|e^{-t D}\right\| \leq e^{\beta t}, t \in[0,+\infty[\\
\beta=\frac{1}{2} \sup _{x \in \mathbf{R}}\left|f^{\prime \prime}(v(x)) v_{x}(x)\right| \leq c R \alpha(R)
\end{gathered}
$$

where $c>0$ is a numerical constant and $\alpha(R)$ is a continuous function (cf.[3], $\S 8$). It is easy to see that g verifies, for fixed $T>0$,

$$
\|g(t, U)\|_{Y} \leq \lambda, \quad t \in[0, T], U \in W
$$

Now, with $B_{0}(v) \in \mathcal{L}\left(L^{2}(\mathbf{R})\right), v$ in a ball W_{1} in $H^{2}(\mathbf{R}), B_{0}(v)$ defined by (8.7) in [3]

$$
B_{0}(v)=-\left[f^{\prime \prime}(v) v_{x x}+f^{\prime \prime \prime}(v) v_{x}^{2}\right] \frac{\partial}{\partial x}(1-\Delta)^{-1}-2 f^{\prime}(v) v_{x} \frac{\partial^{2}}{\partial x^{2}}(1-\Delta)^{-1}
$$

we introduce an operator $B(U) \in \mathcal{L}(X), U=\left(F_{1}, F_{2}, v\right) \in W$, defined by

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & B_{0}(v)
\end{array}\right]
$$

In [3], $\S 8$, Kato proved that for $v \in W_{1}$ we have

$$
(1-\Delta)\left(f^{\prime}(v) \frac{\partial}{\partial x}\right)(1-\Delta)^{-1}=f^{\prime}(v) \frac{\partial}{\partial x}+B_{0}(v) .
$$

Hence, we easily derive for $U \in W$

$$
S A(U) S^{-1}=A(U)+B(U)
$$

Now, for each pair $\left(U, U^{*}\right), U=\left(F_{1}, F_{2}, v\right)$ and $U^{*}=\left(F_{1}^{*}, F_{2}^{*}, v^{*}\right)$ in W we will prove that

$$
\begin{equation*}
\left\|g(t, U)-g\left(t, U^{*}\right)\right\|_{L^{1}\left(0, T^{\prime} ; X\right)} \leq c\left(T^{\prime}\right) \sup _{0 \leq t \leq T^{\prime}}\left\|U(t)-U^{*}(t)\right\|_{X} \tag{9}
\end{equation*}
$$

for $T^{\prime} \in[0, T]$ where $c\left(T^{\prime}\right)$ is a continuous increasing function such that $c(0)=0$. Let us point out that if $h \in L^{2}(\mathbf{R})$ and $w \in H^{1}(\mathbf{R})$ we easily derive

$$
\|h w\|_{H^{-1}} \leq\|h\|_{H^{-1}}\|w\|_{H^{1}} .
$$

Hence, for example, we get, with an obvious notation,

$$
\left\|F_{1} u_{1}\left(u_{1}^{*}-u_{1}\right)\right\|_{H^{-1}} \leq\left\|F_{1}\right\|_{H^{1}}\left\|u_{1}\right\|_{H^{1}}\left\|u_{1}^{*}-u_{1}\right\|_{H^{-1}}
$$

and, for $t \leq T^{\prime}$

$$
\begin{aligned}
\| f^{\prime}(v) v_{x} & \left(\int_{0}^{t} F_{2} d \tau-\int_{0}^{t} F_{2}^{*} d \tau\right)\left\|_{H^{-1}} \leq\right\| f^{\prime}(v) v_{x}\left\|_{H^{1}} \int_{0}^{t}\right\| F-F^{*} \|_{H^{-1}} d \tau \\
& \leq c\left(T^{\prime}\right) \sup _{0 \leq t \leq T^{\prime}}\left\|U(t)-U^{*}(t)\right\|_{X}
\end{aligned}
$$

where $c\left(T^{\prime}\right)$ is a continuous increasing function such that $c(0)=0$. Now, Lemma 2.1 is an easy consequence of Theorem 6 in [3], where the local condition (7.7) is replaced by (9) which is sufficient for the proof of this theorem.

Acknowledgements: This research was partially supported by FCT under program POCI 2010 (Portugal/FEDER-EU).

REFERENCES

[1] D.J. Benney, A general theory for interactions between short and long waves, Studies in Appl. Math., 56 (1977), 81-94.
[2] J.P. Dias and M. Figueira, Existence of weak solutions for a quasilinear version of Benney equations, J. Hyp. Diff. Eq., to appear.
[3] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, Lecture Notes in Math.,Springer, 448 (1975), 25-70.
[4] F. Oliveira, Stability of the Solitons for the one-dimensional Zakharov-Rubenchik Equation, Physica D, 175 (2003), 220-240.
[5] Y. Shibata and Y. Tsutsumi, Local existence of solutions for the initial boundary problem of fully nonlinear wave equation, Nonlinear Analysis TMA, 11 (1987), 335365.
[6] M. Tsutsumi and S. Hatano, Well-posedness of the Cauchy problem for the long wave - short wave resonance equations, Nonlinear Anal., TMA, 22 (1994), 155-171.
[7] M. Tsutsumi and S. Hatano, Well-posedness of the Cauchy problem for Benney's first equations of long wave short wave interactions, Funkcialaj Ekvacioj, 37 (1994), 289-316.

[^0]: Adresses e-mail: dias@ptmat.fc.ul.pt (J.P. Dias)
 figueira@ptmat.fc.ul.pt (M. Figueira)
 fso@fct.unl.pt (F. Oliveira)

