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Abstract

We prove in this Note the existence and uniqueness of a strong local solution to the
Cauchy problem for the quasilinear Benney system (1).

Existence d’une solution locale forte

pour un système de Benney quasilinéaire

Résumé

Nous prouvons dans cette Note l’existence et unicité d’une solution locale forte du
problème de Cauchy pour le système de Benney quasilinéaire (1).

1. Introduction and main result.

We consider the system introduced by Benney in [1] to study the interaction between
short and long waves, for example gravity waves in fluids :







iut + uxx = |u|2u+ vu (a)
x ∈ R, t ≥ 0,

vt + [f(v)]x = |u|2x (b)
(1)

where f is a polynomial real function, u and v (real) represent the short and the long wave,
respectively.
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In [2] the existence of weak solutions for (1) was proved for f(v) = av2 − bv3, with a
and b real constants, b > 0, in the following sense:

Theorem 1.1 Given u0, v0 ∈ H1(R) with v0 real-valued, there exists functions

u ∈ L∞(R+;H1(R)), v ∈ L∞(R+; (L4 ∩ L2)(R))

such that

i

∫ ∞

0

∫

R

u
∂ϕ

∂t
dx dt+

∫ ∞

0

∫

R

∂u

∂x

∂ϕ

∂x
dx dt+

∫

R

u0(x)ϕ(x, 0) dx+

∫ ∞

0

∫

R

|u|2uϕdx dt+

∫ ∞

0

∫

R

vuϕ dx dt = 0,

∫ ∞

0

∫

R

v
∂ψ

∂t
dx dt+

∫ ∞

0

∫

R

f(v)
∂ψ

∂x
dx dt+

∫

R

v0(x)ψ(x, 0) dx−

∫ ∞

0

∫

R

∂

∂x
|u|2ψ dx dt = 0,

for all functions ϕ, ψ ∈ C1
0 (R × [0,+∞[) (i.e. in the class of continuously differentiable

functions with compact support), with ϕ being complex-valued and ψ real-valued.

This result was obtained for this particular system by application of the vanishing
viscosity method and we could not extend the necessary estimates to the Burger’s case
(a = 1, b = 0) or to more general cases. Here we will prove the existence of (local) strong
solutions to (1) for general f , extending previous results in [6, 7] for f linear :

Theorem 1.2 Let (u0, v0) ∈ H3(R)×H2(R) and f ∈ C3(R). Then there exists a unique
strong solution (u, v) of the Cauchy problem associated to (1), with

(u, v) ∈ Cj([0, T ];H3−2j(R)) × Cj([0, T ];H2−j(R)), j = 0, 1.

Here, the life-span T > 0 depends exclusively on f and on the initial data (u0, v0).

The main difficulty here is the derivative-loss in the right-hand side of equation (1 −
a). This cannot be handled easily by the Schrödinger kernel, due to its limited smoo-
thing properties. The method employed in [6, 7] for f linear, based in the inhomogeneous
smoothing effect of the Schrödinger group, can not be easily implemented for f nonlinear.
We will address this problem by introducing some auxiliary functions and rewriting system
(1) without derivative loss. A similar technique was introduced in [5] to solve the fully
nonlinear wave equation and employed in [4], in the context of the Zakharov-Rubenchik
system.

Another interesting open problem is the study of the probable blow-up of the local
smooth solutions.
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2. An equivalent system.

Let us take (u, v) a solution of (1). By setting F = ut, we obtain from (1 − a)

iF + uxx − u = |u|2u+ u(v − 1),

and
u = (∆ − 1)−1(|u|2u+ u(v − 1) − iF ), (2)

with ∆ =
∂2

∂x2
. Also, differentiating (1 − a) with respect to t leads to

iFt + Fxx = 2|u|2F + u2F̄ + Fv + uvt,

and from (1 − b),

iFt + Fxx = 2|u|2F + u2F̄ + Fv + u|u|2x − uvxf
′(v). (3)

These computations are our motivation to consider the following Cauchy problem:



















iFt + Fxx = 2|u|2F + u2F̄ + Fv + u|ũ|2x − uvxf
′(v) (a)

vt + [f(v)]x = |ũ|2x (b)

F (x, 0) = F0(x) ∈ H1(R), v(x, 0) = v0(x) ∈ H2(R)

(4)

where u and ũ are given in terms of F by

u(x, t) = u0 +

∫ t

0

F (x, s)ds and ũ(x, t) = (∆ − 1)−1(|u|2u+ u(v − 1) − iF ). (5)

Note that in this system derivative losses do not occur. Indeed, the regularization of
(∆ − 1)−1 puts ũ in H3 and therefore the right-hand side of (4 − a) is in H1, like F .

We will prove the following lemma:

Lemma 2.1 Let (F0, v0) ∈ H1(R)×H2(R) and f ∈ C3(R). Then there exists T > 0 and
a unique strong solution (F, v) of the Cauchy problem (4 − a, b), with

(F, v) ∈ Cj([0, T ];H1−2j(R)) × Cj([0, T ];H2−j(R)), j = 0, 1.

Here, the life-span T > 0 depends exclusively on f and on the initial data (F0, v0).

This lemma will be proved in the next section, using the general theory of Kato for quasi-
linear equations ([3]).

We now explain why Lemma 2.1 implies our main Theorem 1.2:
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If (F, v) is a solution of (4), by differentiating (5) with respect to t we obtain

ut = F.

Replacing in (1 − a) yields by (4 − b)

(iut + uxx)t = 2|u|2F + u2F̄ + Fv + u|ũ|2x − uvxf
′(v)

= 2|u|2ut + u2ūt + utv + uvt

Hence (iut + uxx − |u|2u− uv)t = 0 and we get

iut + uxx − |u|2u− uv = φ0(x),

where φ0(x) = iF0(x) + u′′0(x) − |u0(x)|
2u0(x) − u0(x)v0(x). By setting

F0(x) = i(u′′0(x) − |u0(x)|
2u0(x) − u0(x)v0(x)), (6)

we obtain φ0 = 0 and (u, v) satisfies (1 − a). Furthermore, from (1 − a),

u = (∆ − 1)−1(|u|2u+ u(v − 1) − iut). (7)

Therefore u = ũ and (u, v) satisfies (1 − b). Note that ut = F ∈ C([0, T ];H1(R)). Also

u(., t) = u0(.) +
∫ t

0
F (., s)ds ∈ C([0, T ];H1(R)), but from (7) we have in fact

u ∈ C([0, T ];H3(R)).

3. Proof of Lemma 2.1.

In order to apply a variant of theorem 6 in [3] we need to set the Cauchy problem (4)
in the framework of real spaces. We introduce the new variables

F1 = ℜF, F2 = ℑF, u1 = ℜu, u2 = ℑu

and with U = (F1, F2, v), F10 = ℜF0, F20 = ℑF0 (4) can be written as follows :







∂

∂t
U + A(U)U = g(t, U)

(F1(x, 0), F2(x, 0), v(x, 0)) = (F10(x), F20(x), v0(x)) ∈ (H1(R))2 ×H2(R)

(8)

where

A(U) =







0 ∆ 0
−∆ 0 0

0 0 f ′(v)
∂

∂x
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and

g(t, U) =











2|u2|F2 − (u2
1 − u2

2)F2 + 2u1u2F1 + F2v + u2|ũ|
2
x − u2vxf

′(v)

−2|u2|F1 − (u2
1 − u2

2)F1 − 2u1u2F2 − F1v − u1|ũ|
2
x + u1vxf

′(v)

|ũ|2x











which is a non-local source term.
Now we set X = (H−1(R))2×L2(R), Y = (H1(R))2 ×H2(R) and introduce S : Y −→ X

defined by S = (1−∆)I, which is an isomorphism. Moreover A : U = (F1, F2, v) ∈W −→
G(X, 1, β), where W is an open ball in Y centered at the origin and with radius R and
G(X, 1, β) denotes the set of all linear operators D in X such that −D generates a C0 -
semigroup

{

e−tD
}

with
∥

∥e−tD
∥

∥ ≤ eβt, t ∈ [0,+∞[,

β =
1

2
sup
x∈R

|f ′′(v(x)) vx(x)| ≤ cRα(R),

where c > 0 is a numerical constant and α(R) is a continuous function (cf.[3], §8). It is
easy to see that g verifies, for fixed T > 0,

‖g(t, U)‖Y ≤ λ, t ∈ [0, T ], U ∈W.

Now, with B0(v) ∈ L(L2(R)), v in a ball W1 in H2(R), B0(v) defined by (8.7) in [3]

B0(v) = −[f ′′(v)vxx + f ′′′(v)v2
x]
∂

∂x
(1 − ∆)−1 − 2f ′(v)vx

∂2

∂x2
(1 − ∆)−1,

we introduce an operator B(U) ∈ L(X), U = (F1, F2, v) ∈W , defined by





0 0 0
0 0 0
0 0 B0(v)





In [3], §8, Kato proved that for v ∈W1 we have

(1 − ∆)

(

f ′(v)
∂

∂x

)

(1 − ∆)−1 = f ′(v)
∂

∂x
+B0(v).

Hence, we easily derive for U ∈W

SA(U)S−1 = A(U) +B(U).

Now, for each pair (U,U∗), U = (F1, F2, v) and U∗ = (F ∗
1 , F

∗
2 , v

∗) in W we will prove that

‖g(t, U)− g(t, U∗)‖L1(0,T ′;X) ≤ c(T ′) sup
0≤t≤T ′

‖U(t) − U∗(t)‖X (9)
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for T ′ ∈ [0, T ] where c(T ′) is a continuous increasing function such that c(0) = 0.
Let us point out that if h ∈ L2(R) and w ∈ H1(R) we easily derive

‖hw‖H−1 ≤ ‖h‖H−1‖w‖H1 .

Hence, for example, we get, with an obvious notation,

‖F1u1(u
∗
1 − u1)‖H−1 ≤ ‖F1‖H1‖u1‖H1‖u∗1 − u1‖H−1

and, for t ≤ T ′

∥

∥

∥

∥

f ′(v)vx

(
∫ t

0

F2dτ −

∫ t

0

F ∗
2 dτ

)
∥

∥

∥

∥

H−1

≤ ‖f ′(v)vx‖H1

∫ t

0

‖F − F ∗‖H−1dτ

≤ c(T ′) sup
0≤t≤T ′

‖U(t) − U∗(t)‖X

where c(T ′) is a continuous increasing function such that c(0) = 0. Now, Lemma 2.1 is an
easy consequence of Theorem 6 in [3], where the local condition (7.7) is replaced by (9)
which is sufficient for the proof of this theorem.
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