
Physics and Computation:

Essay on the unity of science through computation
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Abstract

S. Barry Cooper and Piergiorgio Odifreddi have written the most interesting
articles in our times on the philosophy of computing. In this paper I will try to
reconcile their own views with established science and scientific criticism. I will take
[3] as the main reference containing pointers to many ideas exposed in previous
work of the same authors.

Computability Theory has been considered a corpse for mathematicians who did
forget the old debate about whether computability theory has useful consequences
for mathematics other than those whose statements depend on recursion theoretic
terminology. In this context, hypercomputation is a forbidden word because it is
not implementable, as foundational criticism says, although mathematicians do not
mind to explore Turing degrees such as

KKK···

We explore the origins of this criticism and misinterpretations of concepts such as
super-Turing computational power.

To make the discussion opened for all generations of mathematicians and physi-
cists we developed our argumentation in a basis of a language of the late sixties
and early seventies, decade of decline of the most enthusiastic Debates in Science:
in Mathematics, in Physics, in Cosmology, etc., the times of Radio Programs by
Sir Fred Hoyle, the times of the phone calls at the middle of the night between Sir
Roger Penrose and Stephen Hawking, the times of the solution of Hilbert’s Tenth
Problem by Martin Davis, Hilary Putnam, Julia Robinson, and Yury Matiyasevich,
etc.
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1 Universe and universes, Reality and realities, where it is shown
that there is not such a difference between the real world and
models — Stonehenge as calculator and Stonehenge as calculator
with oracles.

The Astronomer Sir Fred Hoyle proved in [16,17] that Stonehenge can be
used to predict the solar and the lunar eclipse cycles. It doesn’t really matter
whether the Ancients — the Celts — used or not this huge Monument (mainly
the structure of what is called Stonehenge I) to predict the eclipse cycles, but
it matters to me that we, in our times, can use Stonehenge I to make good
predictions of celestial events like the azimuth of the rising Sun and of the
rising Moon, or that we can use this Astronomical Observatory as an eclipse’s
predictor (see also [24] for a short introduction). One important structure to
this task is the alignment of the Heelstone with the summer solstice and the
circle of Aubrey holes, made of 56 stones, buried until the XVII century, and
discovered by John Aubrey.

We make use of three counters (a 3-counter machine with bounded resources)
for the task: the first counter, one little stone, counts the days of the year
along the circle of Aubrey holes; the second counter counts the days of the
lunar month; finally a third counter takes care of the Metonic cycle, in which
the same phases of the moon are repeated on the same date of the year to
within an hour or so after a period of nineteen years, a fact discovered by
Meton around 430 B.C. but it is believed to have been known earlier — in
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other words it counts along the cycle of the lunar node, one of the intersection
points of the ecliptic with the Moon’s orbit.

Since 56× 13
2

= 365, the first counter has to move two places — two Aubrey
holes — each 13 days (one place per week roughly speaking), counterclockwise;
in a similar way, since 56÷ 2 = 28, the second counter is allowed to move two
places per day, counterclockwise. When the two counters meet at the same
hole an eclipse becomes possible, but only if the Sun and the Moon meets
close to the lunar’s node — intersection point of the ecliptic and the Moon’s
orbit. This point is represented by the third counter. Thus the three counters
have to meet at the same hole (more or less). This third little stone counts
along the Metonic cycle: 56 ÷ 3 = 18.67 (very close to the true value 18.61,
this is the most strange coincidence), meaning that it has to move 3 places —
3 Aubrey holes — per year, clockwise.

Thus the game — and the Rite — of the three stones around the circle of
Aubrey holes — like the tokens in a Petri net — allows to predict the solar
and the lunar eclipse cycles (seminal paper was published in Nature by the
Archeologist Gerald Hawkins in [13], but mathematical calculations were done
by Hoyle, years after). What do we have? A 3-counter machine with finite
memory, which is equivalent — abstracting from bounded resources — to a
Turing machine. Or else, think this way: a 3-counter machine implements an
eclipse cycle predictor using arithmetic modulo 56. Is it not simple? — A
quite straightforward algorithm is implemented by a special purpose machine,
directly implemented on a general purpose machine. Now, the question: when
playing with counter machines do we abstract the algorithm to see the Sun, a
physical body, and the Moon, another physical body, and (the words are taken
from Hoyle) a holy spirit, the lunar node, playing a dance — a macabre dance
(if this paper was not to be a short account, then I would have added a Celtic
invocation of the gods) — in the sky, projected into the celestial sphere? Yes,
of course, if we have a Rite associated to the ballet.

So, the Druids were “aware” of the Turing model of computation... But, the
counters, with time... loose accuracy (like making calculations with the real
numbers 1 ). This is not the whole story! Once in a year, the Sun rises over the
Heelstone. Some auxiliary stones (the post holes), to one side of the Heelstone,
can be used to fine tune the counters: the site of the rising mid-summer Sun
move to the north and then back to the south, allowing to fine tune the Sun’s
counter by observing from the center through the post holes its maximum
azimuth. Some auxiliary stones also help to fine tune the second counter. All

1 That is also what Barry Cooper and Piergiorgio Odifreddi consider in What the
Turing Model Delivers when they write That there are sufficient indicators, of both
a practical and theoretical nature, for us to look for a model for the Universe based
on presentations in terms of real numbers.
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the stones lie there is Salisbury, in the big circle. Observations operate like
oracles of the Sun and of the Moon. Thus the Master, in the center, can
substitute the accurate algorithm of the eclipse by a less accurate algorithm,
together with an oracle for the Sun and a second oracle for the Moon. Thus,
the Druids were “aware” of the Turing model with oracles...

The curious thing is that the putative referents to the real objects make a
simple model of solar system dynamics. We have a Reality in the sky, and
another reality in the big circle. In this sense we are very close to A New kind
of Science by Wolfram in [43]. The algorithm is captured by the real world in
the sense that the real world embeds the algorithm.

THESIS 1 — Computers exist in Nature when we abstract the phys-
ical entities. (This fact will be referred to as Galileo’s principle of
natural computation.)

Barry Cooper and Piergiorgio Odifreddi in [3] explain this fact digressing on A
Closer Look at the Turing Model: we expect that the Turing model supports the
(in)computability in Nature in the sense that nature embeds the Turing model
in a way or another. But for our authors (and we will discuss this aspect
later), (in)computability sounds more like an intrinsic limitation of knowledge
about the Universe than a hypercomputation manifesto.

The word Universe that these authors often use has a major disadvantage.
When used alone, without specification of the model we have in mind, it con-
veys the impression that we know the true nature of the Universe. A universe
is simply a model of the Universe. The word universe has the further ad-
vantage that it may be used freely and loosely without any need to remind
ourselves constantly that the Universe is still mysterious and unknown. The
same argumentation applies to Reality and realities.

Our model... our Stonehenge model of (a fragment of) the Universe is not
so bad, and it really tells about the Universe in the sense it can be found
in the intersection of all models of the Universe. That is why, I think, that
Computation Theory is not so far from Physics and, probably, with the ad-
vent of Quantum Computation, a serious transference of competence from
Mathematics to Physics will occur.

Stonehenge as model of the Universe can be also used as a calculator and
computer, just by doing bounded arithmetics and, why not, to implement some
more sophisticated algorithms. Moreover, Stonehenge implements natural phe-
nomena, the complex movements of the Sun and the Moon in the sphere.
Stonehenge possess’ the means of consulting oracles in Nature itself. Ora-
cles here handle some incomputabilities in nature, of the same kind described
above, that do not come out from the model, but come out of observations.
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The way we abstract the Turing model, being it through Recursion Theory or
a different formalism is not really important. Computability Theory becomes
a corpse to the mathematicians who will be continuously trying to develop
more and more mathematical tools to dig, sometimes as our authors say, too
deep into mathematics. I have a first disagreement: Computation Theory is a
recent field of Mathematics — it will never be as deep as Analysis with their
400 years of history, at least in short term.

This does not mean that modern mathematics does not play a puzzling role
in the development of knowledge. If Shimura-Taniyama conjecture to analytic
number theorists was a stupendous statement wrt Fermat’s Theorem provers
— it looked like saying (see [4]) if in a room there exist 7 women and 7 men,
and if we are aware of 7 marriages, then a bijection between men and women
would be the case –, then proofs of termination would be more theatrical,
even to analysts: take number 9 and write it in base 2, as 1 × 22+1 + 1 × 20;
Achilles arrives and replaces all 2 by 3 writing 1 × 33+1 + 1 × 30; now, the
turtle arrives and subtracts 1, making the amount 1 × 33+1; Achilles, very
secure of his job, rewrites everything in base 3, and substitutes 4 for 3 making
1 × 44+1; the turtle subtracts 1; then Achilles rewrites the result in base 4,
making 3 × 44 + 3 × 43 + 3 × 42 + 3 × 4 + 3 and replaces the 4 with 5. Does
this process terminate? Ordinal theory — can you imagine? — can be used
to prove that this process indeed terminates in finite time and the turtle wins
– do you believe? The termination is due to the fact that ordinals are well-
ordered. We simply substitute the ordinal ω for the numbers 2, 3, 4, ... that
were used as a base: ωω+1 + 1, ωω+1, 3ωω + 3ω3 + 3ω2 + 3ω + 3, ... It is easy
to see that we have a strictly decreasing sequence of ordinals and that such
a sequence is necessarily finite, which means that the tortoise wins (see [10]).
This is the kind of deep thoughts that Modern Mathematics brings about.

But, removing from our consideration the interesting meeting points of Modern
Mathematics, in order to get deep into mathematical reasoning we still have
to move to classical mathematics. The authors, recognize this fact somewhat
implicitly when they write:

... to outsiders classical computability had become hazardous and, even by
the standards of fundamental scientific research, lacking predictability of
outcome; in which mathematical applications depended on recursion theo-
retic terminology; and in which the undoubted contribution to theoretical
computer science and constructive mathematics did not depend on the sort
of things that recursion theorists currently occupied themselves with.

We end this section with a question: do these incomputabilities come out of an
unpredictable behaviour of the model or do they come out of a really essential
incomputability in nature — a hypercomputational character of some physical
phenomenon, as Sir Roger Penrose was looking for in [28–30]?
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Was Cristopher Moore the first to observe that essential chaos exist in nature.
We were accustomed to think of chaos as departure from initial conditions.
Moore proved that essential chaos exists, a chaos that is so essential (like
Black Holes in Hawking-Penrose’s theory) that the infinite precision in the
initial conditions will not remove it. The proof is straightforward: he shows
that the collection of dynamical maps contains many instances of simulations
of Universal Turing machines. In other words, any property that a map can
have, like being injective, or onto, or having an infinite domain, or having an
infinite range, or being total, is undecidable unless it is trivial (corresponding
to the empty set and to the set of all recursive maps). Now, in terms of
dynamical systems, these questions concern basins of attraction. These basins
are in general non-recursive, i.e., there is no hyper-algorithm that will tell us
whether or not a point is in them. In fact, we can even recall Theorem 10 from
[23]:

Proposition 1.1 (Moore’s undecidability theorem) The following ques-
tions about discrete-time [continuous-time] dynamic systems are undecidable.

(1) Given a point x and an open set A, will x fall into A?
(2) Given a point x and a periodic point p, will x converge to p? Will a dense

set of points converge to p?
(3) Is the set of periodic points on a given cylinder infinite? Dense?

Thus returning to our authors: to what kind of incomputability should we
search for in Nature?

POSSIBLE INTERPRETATIONS:

• (A) Should we look for partial information as incomputability
(like hidden variables in the Paris School of Quantum Mechanics),

• (B) Should we look for essential chaos, removable by means of
natural “hyper-machines” — a better saying is to control unpre-
dictability in Nature –, or

• (C) Should we look for hypercomputational phenomena in the
Universe (in the sense of [28–30]).

Article [3], written by top leading scientists in Computer Science raises many
questions about the nature of Computability and its Philosophy. This is, I
guess, a very important prospect to deliver Computer Science to other Sci-
ences.
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2 The n-clocks machine and computability in Nature, where it is
shown that making calculations in the real world is not a new
task, not even a difficult one.

Let us return to the Stonehenge’s counters. The n-counter machine for any n
greater than 1 has a very well known property.

Proposition 2.1 (Universality of n-Counter machine) There is a Tur-
ing universal 2-counter machine.

Now let me speak about the nice feature of the n-counter machine. Everybody
knows that counter machines are horrendous. Students play with the Turing
machine to get acquaintance of a model of computation: exercises like to de-
scribe Turing machines for calculating the (a) sum, (b) product, (c) division,
... are a common place in classes of Computability Theory. But, we know how
troublesome these programs for counter machines are! Otherwise, a computer
program, developed in a high-level computer language like C++, to predict
the eclipse cycles is cumbersome too! But, look at the miracle, the Stonehenge
computer, a 3-counter machine, computes this cycle very trivially. We have to
wait a long time... But the slowdown is linear. It is irrelevant.

Thus, in the Stonehenge case, the counter machine is a kind of natural com-
putor.

I will consider now a more sophisticated machine that is not well known — I
presume that it is really very obscure — that I fetch from a paper by Joe Kil-
lian and Hava Siegelmann (see [18]). This model will reveal its extreme beauty
when regarding natural computing 2 in Stonehenge. The model of computa-
tion is the alarm clock machine. By an alarm in the physical world we can
consider, e.g., an astronomical ephemeris, like a conjunction of planets, or the
reaching of a perihelion, or an eclipse, or many other things in macroscopic or
microscopic worlds. Could well be a signal sent to Jupiter by the Monolith af-
ter its discovery by men on the Moon in the well known movie “2001, A Space
Odyssey”. This kind of automaton was first introduced in [18] for an ad hoc
purpose, and it is called n-alarm clock machine (or just n-clock machine) con-
sisting on a transition function δ : {0, 1}5n → 2{delay(i),lengthen(i):1≤i≤n}∪{halt}.
The fact that δ’s domain is {0, 1}5n means that δ’s input is simply the infor-
mation of which alarm clocks have alarmed in the last 5 time steps 3 and
when they did so. δ’s output is simply which clocks to delay, which clocks to

2 I know that natural computing is nowadays interpreted as DNA computing, mem-
brane computing, etc. ...
3 The number 5 is considered here just because we know the existence of a universal
n-clock machine with constant 5, Of course, it is not proved that a universal n-clock
machine exhibiting a lesser structural constant does not exist.
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lengthen, and whether the machine halts or not.

The input to A consists of ((p1, t1), . . . , (pn, tn)), where pi denotes the period
of clock i, and time ti denotes the next time it is set to alarm. For notation
ease, we keep arrays ai(t), for t ∈ N and 1 ≤ i ≤ n, with every entry initially
set to 0. At time step T , for 1 ≤ i ≤ n, if ti = T , then ai(T ) is set to 1 and
ti is set to ti + pi. This event corresponds to clock i alarming. δ then looks at
ai(t), for 1 ≤ i ≤ n and T −5 < t ≤ T , and executes 0 or more actions. Action
delay(i) sets ti to ti+1, action lengthen(i) sets pi to pi+1 and ti to ti+1, and
action halt halts the alarm clock machine. We make one final restriction to the
behavior of an alarm clock machine: when its transition function is applied to
a vector of 5n 0’s, then it outputs the empty set of actions. Intuitively, this
corresponds to demanding that the machine must be asleep until it is woken.

The role of the alarm clocks of the alarm clock machine is to store information
on the frequency at which they alarm. In the same way as in Turing machines
the tapes are potentially infinite, but at any given instant only a finite amount
of information is actually stored on the tape is finite, the period of the clocks
may increase unlimitedly, but any given instants all alarm clocks have a period
limited by some given constant.

A n-alarm clock machine A is then a total function from {0, 1}5n to a subset
of {delay(i), lengthen(i) : 1 ≤ i ≤ n} ∪ {halt} that verifies A(00 . . . 00) = ∅.
Given a n-alarm clock machine M , an instantaneous description of M , also
called a configuration, is a n-tuple ((p1, t1), (p2, t2), . . . , (pn, tn)), where pi ∈ N
denotes the period of the ith clock and ti ∈ N denotes the next time at
which the ith clock will alarm. A n-alarm clock machine does not receive as
an input a sequence over a given alphabet. Instead, the input to the alarm
clock machine consists of a n-tuple ((p1, t1), (p2, t2), . . . , (pn, tn)), where pi ∈ N
denotes the period of the ith clock and ti ∈ N denotes the next time at which
the ith clock will alarm, i.e., the input to the alarm clock machine is its initial
configuration. To make precise we define the following items:

Given a n-alarm clock machine M , and an initial configuration of M , ((p1, t1),
(p2, t2), . . . , (pn, tn)), the computation of M on the given configuration is a
sequence of configurations that verifies

pi(t+ 1) =

 pi(t) + 1 if lengthen(i) ∈ δ(t)

pi(t) otherwise

ti(t+ 1) =


ti(t) + 1 if delay(i) ∈ δ(t) or lengthen(i) ∈ δ(t)

ti(t) + pi(t) if ti = t

ti(t) otherwise
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Proposition 2.2 (Simulation of the n-counter machine) For a n-coun-
ter machine that computes in time T , there exists a k-alarm clock machine that
simulates it in time O(T 3) with k ∈ O(n2).

Proposition 2.3 (Universality of n-clock machine) There is a universal
n-clock machine, for some n.

The reader will recognized that this kind of machine implements astronomical
queries in the dynamics of the Solar System in a natural way, like Stonehenge
token game implements the eclipse cycle in a natural way. We can add oracles
at precise conjunctions of heavenly bodies. This machine is like the Turing
machine, universal, with unbounded memory and suitable for thinking with
physical bodies, e.g., in the Newtonian gravitational field. One idea to imple-
ment the heavenly machinery in Stonehenge in the big circle: take the orbit
of each planet and expand it — the radius vector — in Fourier series, in the
complex plane of its orbit, and consider the first n periods implemented by n
tokens around the circle of Aubrey holes.

THESIS 2 — Computers exist in Nature by the simple observation
of the sky. Moreover, the standard model — the Turing machine —
can be described in such a way that it resembles the old astronomical
observations in the sky by the Ancients. (This fact will be referred
to as physical principle of computation.)

I got this idea, although in a quite different context, not related to Stnohenge
or even to the clocks machine, from Hava Siegelmann and Eduardo Sontag,
and their hypercomputational dream settle in Science (the Journal) by Hava
Siegelmann (see [38], end of Book, for a more detailed account). As our authors
say, the experience I described above of celestial conjunctions is like looking to
the concept of incomputability as action at a distance in the time of Newton’s
vision of the Universe. Oracles are needed to fine tune the system once in a
while not only to remove errors (real to natural numbers), but also to remove
Moore’s unpredictability. This is exactly how Barry Cooper and Piergiorgio
Odifreddi start their curious paper, discussing our deterministic universes, our
Laplace demons. In theirs An Historical Parallel, in 2 to 3 pages, they question
about items (A) to (C) above, but in a very abstract level, in my spirit not
distinguishing very well the three items of the incomputability riddle.

I think that, here, our colleague Warren Smith gave a very good contribu-
tion in [40], when (this is ridiculous!) he says that although we are able to
show that Newton’s gravitation admits a non-computable orbit (a kind of
incomputability of the third kind (C)), special relativity removes it from con-
sideration. Dear reader, written in a different way the paper by Warren tells us
that the discovery of a non-computable orbit in Newtonian mechanics refutes
Newtonian gravitation theory according with the Church-Turing thesis in the
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same way, philosophically speaking, as the curvature of light rays from distant
stars in the proximity of the Sun refutes it. Warren’s paper tells us that the
Church-Turing thesis refutes classical Newtonian gravitation. As if Einstein
have had a computational reason to create a new theory of gravitation. Or
else we have to disclaim the Church-Turing thesis. I do not know if Warren is
aware of this philosophic riddle.

If the reader take a closer look at Piergiorgio Odifreddi’s text books ([26,27])
on the Church’s Thesis, from page 101 to page 123 in [26], he or she will
find different formulations of the classical Church’s Thesis, such like Kreisel’s
Thesis M (for mechanical) or like Kreisel’s Thesis P (for probabilistic), and so
on. Here, at this precise point of his text without rival (!), he wrote In the
extreme case, any physical process is an analog calculation of its own behaviour.
And... Piergiorgio Odifreddi adds a quite interesting footnote:

In this case, Church’s Thesis amounts to saying that the universe is, or
at least can be simulated by, a computer. This is reminiscent of similar
tentatives to assimilate nature to the most sophisticated available machine,
like the mechanical clock in the 17th Century, and the heat engine in the
19th Century, and it might soon appear as simplistic.

In fact, Thesis P states that any possible behaviour of a discrete physical system
(according to present day physical theory) is recursive. Thus Warren Smith
disproofs this statement. There exists a Newtonian non-computable orbit. It
is not relevant that Relativity Theory removes this pathology: no one would
ever believe a few years ago that Thesis P would not be valid... Or is it still
valid? Well, physicists say, we don’t have point masses or two masses can
not come as closer as we want. I argue that these are qualitatively physical
aspects that are not in the formulation of Newtonian gravitation. I will restate
saying that no one would ever believe a few years ago that Thesis P would not
be valid even for the abstract gravitation theory taught in physical courses. 4

Please, let me know about a Student’s Manual that considers from scratch the
problem of two bodies with non-zero volume. If then Professor X shows that
the n-spherical-body problem gives rise to a non-computable orbit, physicists
will say that planets are not really spheres. Is it not the same problem as with
Black Holes, and the story of the meeting point between the collapsing star
and Black Hole formation? There is in here something to be better explained.

Thus when authors write:

Fortunately, there is another approach — let’s call it the “mathematical”
approach — which renews the link to Newton. This is a direction rooted

4 The most comprehensive study I know is a Treatise about stability of a spacecraft,
considering 2-body dynamics, on one side the spacecraft with non-zero dimensions
and on the other side the Earth just substituted by a its gravity center.
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in the old debate about whether computability theory has any useful con-
sequences for mathematics other than those whose statements depend on
recursion theoretic terminology,

I would have added: the new debate about whether computability theory has
any useful consequences for physics.

Then we can say that Nature has an algorithmic contents: it is greater than
the algorithmic contents of the Solar System, greater than the algorithmic
contents of the system Moon-Sun-Earth, graeter than the algorithm contents
of Stonehenge I. If Stonehenge IV would have been built than, certainly, it
would implement the n-clock machine. Does the Universe, or just the universes,
have an algorithm contents greater than the algorithm contents of Stonehenge
IV, abstracting from bounded resources?

3 Predictability, platonism, and the discovery of Neptune, where
it is shown that limits to hypercomputation exist no matter it
isn’t real.

I would like to start this section saying that the removal of action at a dis-
tance from physics in contemporary science is like the removal of the Rite in
Stonehenge I: for Newton action at a distance was done by means of (a) God
(too): space is the Sensorium Dei by means of which He stabilizes the system.
Newton himself writes in his Opticks:

... can be the effect of nothing else than the Wisdom and Skill of a powerful
ever-living Agent, who being in all Places, is more able by his Will to move
the Bodies within his boundless uniform Sensorium, and thereby to form
and reform the Parts of the Universe, than we are by our Will to move
the Parts of our own Bodies. And yet we are not to consider the World
as a Body of God, or the several Parts thereof, as the Parts of God. He
is an uniform Being, void of Organs, Members or Parts, and they are his
Creatures subordinate to him, and subservient to his Will; and he is no more
the Soul of them, than the Soul of Man is the Soul of the Species of Things
carried through the Organs of Sense into the place of its Sensation, where it
perceives them by means of its immediate Presence, without the Intervention
of any third thing.

Removal of the Rite in Stonehenge I is like the Laplacian removal of the Sen-
sorium Dei from Newton’s space. 5 But with a Sensorium Dei or without

5 As the reader can see, Newtonian space like Descartes’ substancial space was not
empty but the Nervous System of God.
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it, Warren Smith proved the existence of non-computable orbits: an incom-
putability of the third kind (C), although the proof is based on some abstract
physical systems related to the Poincaré Conjecture, proved by Jeff Xia in
[42], and others for particular cases.

Barry Cooper and Piergiorgio Odifreddi raise the question:

Why should those without a direct career interest care whether actual in-
computability (suitably formalized) occurs in Nature? Even if it did occur,
for all practical purposes, how would it be distinguishable from theoretically
computable but very “complex” phenomena? Whether chaotic phenomena —
such as turbulence — involve complexity or incomputability is interesting,
but does it really “matter”?

This questions are also related with Barry Cooper’s ideas stated in his later
nineties paper ([1]). We think that the answer to this question is not easy.
On contrary, this is singular and unexpected: differential equations do exist,
with computable coefficients, given computable initial conditions, which can
not be numerically solved via deterministic or non-deterministic methods by
a digital computer: their solution are beyond the Turing limit. Lady Marian
Pour-El and Jonathan Richards provided examples in [33–35]. Physicists say,
however, that these examples have initial conditions, or boundary conditions,
which are not smooth enough to describe real physical situations. Are then
(we ask) all physical laws digitally reproducible by a digital computer? If true,
then we may talk about non-computable functions as those functions that
can not be known through numerical analysis by means of digital computers,
although they satisfy very simple differential equations — and the knowledge
about these functions is fundamental in Mathematics. Calculating positions
of planets (ignoring some possible incomputabilities suggested in [40]) was,
in fact, a problem of precision: we don’t have real numbers in it. Intrinsic
non-computable functions of Pour-El and Richards are of a different kind. In
[34] (dealing with computability in models of physical phenomena), Marian
Pour-El and Richards wrote:

We consider first the three-dimensional wave-equation. It is well known that
the solution u(x, y, z, t) is uniquely determined by the initial conditions u and
du/dt at time t = 0. We ask whether computable initial data can give rise
to non-computable solutions. The answer is yes. [We give] an example in
which the solution u(x, y, z, t) takes a non-computable value at a computable
point in space-time.

Do we have a model to classify such sources of uncomputability found in [33–
35]? No, we don’t. Do you imagine an equation — Poisson’s equation — as
simple as

ψ(x, 0) = f(x),
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∂2ψ

∂x2
− ∂2ψ

∂t2
= 0,

having a non-computable unique solution (non-computable in the sense of
conventional computable analysis): there exists not a program such that giv-
ing the values of computable numbers x and t with increasing precision will
provide ψ(x, t) with increasing precision, despite existing such a program for
the function f .

Sir Roger refutes these examples as useful to a forthcoming Non-computa-
ble Physics, since boundary conditions or initial conditions involved are not
smooth enough. Penrose in [28] stresses this fact before considering the (non-
computable) ultimate physical theory to come and the human mind:

Now, where do we stand with regard to computability in classical theory?
It is reasonable to guess that, with general relativity, the situation is not
significantly different from that of special relativity — over and above the
differences in causality and determinism that I have just been presenting.
Where the future behaviour of the physical system is determined from initial
data, then this future behaviour would seem (by similar reasoning to that I
presented in the case of Newtonian theory) also to be computably determined
by that data (apart from unhelpful type of non-computability encountered by
Pour-El and Richards for the wave equation, as considered above — and
which does not occur for smoothly varying data). Indeed, it is hard to see that
in any of the physical theories that I have been discussing so far there can be
any significant “non-computable” elements. It is certainly to be expected that
“chaotic” behaviour can occur in many of these theories, where very slight
changes in initial data can give rise to enormous differences in resulting
behaviour. But, as I mentioned before, it is hard to see how this type of non-
computability — i.e. “unpredictability” — could be of any “use” in a device
which tries to “harness” possible non-computable elements in physical laws.

Now, what is the consequence of this to Science? Even for complex phenom-
ena like the dynamics of the atmosphere we have strong methods of numerical
integration. We take Navier-Stokes equation and we consider (a) spherical co-
ordinates, (b) that the Earth is not an inertial reference frame, (c) boundary
conditions around east North-America’s shore and West-Europe’s and North-
Africa’s coast, and we (a) presume that such differential equations are inte-
grable by numerical methods and (b) that a prediction of the Weather for to-
morrow can be obtained before tomorrow. Thus we still have (a) computability
considerations and (b) computational complexity considerations. Philosophi-
cally speaking, we are turned to models of Nature which are of a predictable
intrinsic nature. Science in this way is used (a) to make a synthesis of our
knowledge about the Universe and (b) to forecast future events. I think that
the answers to Barry Cooper and Oiergiorgio Odifreddi are “yes”, “we don’t
know”, and “yes”. A non-computable world like the model intended by Sir
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Roger Penrose would have a quite different meaning. Assuming that no more
computational power is added to computers, we wouldn’t have general predic-
tions. The model would be looked like a God: suddenly a pattern formation
occurs out of that model and some sophisticated computer programs would
be able to trace and forecast its trajectory, like a hurricane that although can
not be exactly predicted (but expected) can be followed, either by satellites,
either by computer programs. A Non-computable Science would be more like
a painting in the National Gallery — to look at with respect, admiration, and
fascination, but although interpreted by many, not really being interpreted
by none besides digressions and elucubrations of the critics (probably it will
fulfill Susan Sontag in hers Against Interpretation). May well be that Barry
Cooper and Piergiorgio Odifreddi questions are more likely to be as follows:
(a) are our Contemporary Science a pattern of a non-computable model? or
(b) do we already have a Non-computable Science, hidden in our theoretical
achievements? or either (c) Non-computable Science is no more than contem-
porary fiction, motor and product of the creative process, like the stone was
for alchemy. No matter the true answer, they make the concluding statement
that:

Our model says nothing about the mystery of material existence. But it does
offer a framework in which a breakdown in reductionism is a commonplace,
certainly not inconsistent with the picture given of levels we do have some
hope of understanding. It can tell us, in a characteristically schematic way,
how “things” come to exist. 6

We also know that modern science loosed some identity. There is just one

Newtonian gravitation theory, 7 but with the advent of General Theory of
Relativity, physicists realized that Einstein’s beautiful field equation

Rij −
1

2
gij R = κ Tij

could be replaced by different field equations delivering the same realities,
delivering the same predicted observations of our Universe. Most probable
an non-computable model will deliver also a class of similar observations of
the Universe. E.g., is Hoyle’s or Hoyle-Narlikar’s field of creation ex nihilo
non-computable? This is not philosophy, since Hoyle’s field of creation out of
nothing is hard mathematics, being it refutable nowadays, not accepted by the

6 The reader can have a look at the sixties Niels Bohr’s Cosmic Equation, that was
a source of explanation of how the Universe came into existence.
7 In fact, for some time, physicists were tempted to define the law

1
r2.0···025

.

Ridiculous, isn’t it? But it worked for a few years, when physicists loosed their faith
for reasons that will become clear soon.
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scientific community as the Big Bang Theory is — the standard model. It holds
the same observations as Einstein field equations up to some cosmological and
astrophysical observations.

Hoyle arrived at the alternative equation

Rij −
1

2
gij R + Cij = κ Tij.

Associated with the creation tensor Cij was a vector field parallel to a geodesic
at each point of the homogeneous and isotropically expanding universe. The
field was written

Cm =
3c

a
(1, 0, 0, 0),

where a is a constant. Hoyle then showed that the solution of the field equa-
tions would be given by a metric with space of zero curvature.

Bondy, Gold, and Hoyle used the word creation rather than formation, just to
express the existence of matter where none had been before.

With the Hoyle-Bondi-Gold’s model we can evaluate the amount of matter
being created at any step of time. But can we predict the point in space
where a proton (Hoyle guessed that the spontaneous creation of matter might
possible be generated in the form of neutrons) will next appear? This is an
example of how a non-computable aspect of a theory (we can not even guess
a distribution of matter created 8 ) can deliver also computable trajectories of
our Universe.

8 Edward Harrison explains these features in [12]:

There are two kinds of creation: creation of the universe and creation in the uni-
verse. On one hand, we have creation (as in cosmogenesis) of the whole universe
complete with space and time; on the other, we have creation of things in the space
and time of an already existing universe. In the Big Bang universe, everything
including space and time is created; in the steady-state universe [of Bondi, Gold,
and Hoyle], matter is created in the space and time of a universe already created.
Failure to distinguish between the two violates the containment principle... The
steady-state theory employs creation in the magical sense that at certain place in
space at a certain instant in time there is nothing, and at the same place a mo-
ment later is something. But the creation of the universe has not this meaning,
unless we revert to the old belief that time and space are metaphysical and extend
beyond the physical universe; in that case, creation of a universe is in principle
the same as the creation of a hazel nut. But in fact uncontained creation (cosmo-
genesis) is tottally unlike contained creation. Cosmogenesis involves the creation
of space and time, and this is what makes it so difficult to understand.
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Barry Cooper and Piergiorgio Odifreddi recognizes these different presenta-
tions of the Universe stating that:

we look for a mathematical structure within which we may informatively
interpret the current state of the scientific enterprise. This presentation
may be done in different ways, one must assume, but if differing modes
of presentation yield results which build a cohesive description of the Uni-
verse, then we have an appropriate modeling strategy. Going more deep into
the quantum they say ... non-locality was first suggested by the well-known
Einstein-Podolsky-Rosen thought experiment, and again, has been confirmed
by observation. The way in which definability asserts itself in the Turing uni-
verse is not known to be computable, which would explain the difficulties in
predicting exactly how such a collapse might materialize in practice, and the
apparent randomness involved.

The n-clock machine can be implemented with bounded resources in Stone-
henge using colored stones, a color for each clock, 5 colored tokens for each
clock. 9 It would have made Stonehenge a huge Observatory (although many
existent stones — like the post holes — can handle a large number of calcu-
lations that, despite the non-existence of a useful — to the Celts — imple-
mentation of the n-clock machine, make Stonehenge I and II a rather huge
Astronomical Observatory). But I am going to talk now about a feature that
can not be implemented in Stonehenge: the discovery process!

After Herschell discovery of Uranus, deviations from computed orbit, using
Gauss methods, produced more and more observations of the new slow planet,
enforcing calculations of more and more accurate orbits. But the new planet
always failed to meet the computed orbit: the n-clock machine programmed
with the beautiful Newtonian gravitation system refused to explain Uranus’
orbit; our Obervatory at Stonehenge fails too to meet Uranus’ potential con-
junctions.

There are two attitudes. First one, to accept a decadence period, the Druids
failed the prediction of planet cycles — Hoyle admits a period of mental deca-
dence —, Stonehenge fails as Observatory, but the remembrance of the glo-
rious Stonehenge compelled the Celts to built the Stonehenge’s Sanctuary,
named Stonehenge III, the colossal construction of central 3-liths; second one,
to accept that the Newtonian law is wrong and search for the “true” law of
gravitation.

But, as we know, it was to early to reject Newtonian theory of the Universe.
Empirists failed. The law 1

r2 failed... But Leverrier and Adams, one in Paris the
other in London, admitted that a new planet existed — later called Neptune

9 It would be like a Calendar with many entries. It reminded me, at a first glance,
Edward M. Reingold and Nachum Dershowitz’ Calendrical Calculations, the Book.
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— to justify the true (Newtonian) law of gravitation, to justify departure from
predicted orbits. This can not be done by a computer program... Can it? Well,
Herbert Simon (a more comprehensive study can be found in [36]) says that
it can! — at least Kepler’s laws can be rediscovered by computer programs
(given Tycho Brahe’s data) –, ... but not predicting a new planet. What is
the difference (if the planet was not found) between predicting a planet and
replacing Newton’s law by another law, being it computable or not? Is the
discovery of a new planet a kind of incomputability removal? This example is
close to Penrose super-program conceived to mock a mocking bird, i.e., capable
of reproducing any kind of scientific achievement.

What did the scientists about Leverrier and Adams predictions? Simple: they
rejected them, they simply didn’t believe. Is it not an amazing fact of strong
computability of scientists mind: if some hypothesis not in the system is sug-
gested, then it should be immediately rejected. E.g., Airy rejected Adams sev-
eral times: how, I would like to go to Greenwich and knock at the door to hear
him saying NO! As Morton Grosser tells the story in [11], Airy was an extreme
perfectionist, and he divided the people around him into two groups: those who
had succeeded and were worthy of cultivation, and those who had not succeded
and were beneath consideration [...] Adams solution of the problem of inverse
perturbation was thus a direct contradiction of Airy’s considered opinion. The
Astronomer Royal’s negative feelings were indicated by the unusually long time
he waited before replying. Airy habitually answered his correspondence by re-
turn mail. In Adams case he delayed the answer the much he could.

It would have been enough to look to the sky with the telescope, considering
the calculations of Leverrier and Adams that Airy was aware of. It would have
been enough if Sir Airy have agreed in doing so using calculated positions of
Neptune.

Feel the pleasure of the following letter of Airy to Adams, that could have
been a letter about any other relevant thing by any other illustrious scientist
of our times:

I have often trought of the irregularity of Uranus, and since the receipt of
your letter have looked more carefully to it. It is a puzzling subject, but I
give it as my opinion, without hesitation, that it is not yet in such a state as
to give the smallest hope of making out the nature of any external action on
the planet [...] But [even] if it were certain that there were any extraneous
action, I doubt much the possibility of determining the place of a planet
which produced it. I am sure it could not be done till the nature of the
irregularity was well determined from successive revolutions.

In a further letter, Sir Airy writes to Adams:

I am very much obliged by the paper of results which you left here a few days
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since, showing the perturbations on the place of Uranus produced by a planet
with certain assumed elements. The latter numbers are all extremely satis-
factory: I am not enough acquainted with Flamsteed’s observations about
1690 to say whether they bear such an error, but I think it extremely prob-
able.

But I should be very glad to know whether this assumed perturbation will
explain the error of the radius vector of Uranus. This error is now very
considerable.

According with [11], on September 18, 1846, Leverrier wrote to Johann Got-
tfried Galle, assistant to Olaus Roemer. This letter reached Galle on Septem-
ber 23, and he immediately asked his superior, Johann Franz Encke, Director
of the Berlim Observatory, for permission to search the planet. The same night
Galle and d’ Arrest found the planet: that star is not on the map — exclaimed
d’Arrest; right ascension 22h 53m 25s.84 against the predicted value of Lever-
rier 22h 46m. Although impressing this accuracy is smaller than Stonehenge’s
accuracy for the eclipse cycle.

I think that serendipity in the case of Archimedes’ Eureka!, or in the case
of Kepler’s laws by Kepler, or Kepler’s laws by Herbert Simon’s program are
different from the kind of discovery related to the existence of Neptune.

We are ready to introduce our

THESIS 3 — Hypercomputation as tool to supersede Natural laws
and control them is beyond the limits of science (principle of hyper-
computation upper bounds.)

I don’t say that hypercomputation is to the discovery of Neptune, but that, cit-
ing Barry Cooper and Piergiorgio Odifreddi, Science since the time of Newton,
at least, has been largely based on the identification and mathematical descrip-
tion of algorithmic contents in the Universe. We will look at phenomena —
primarily subatomic phenomena — which appear to defy such description.

It seems that the hidden planet Neptune stands as a hidden variable to
quantum mechanics defeating Copenhagen school and crediting Paris and De
Broglie main hypothesis. This incomputability can be seen with the help of
the n-clock machine.

We all know that pendulum clocks are quantum systems: each one has exactly
two different energy levels, two oscillatory modes: one with the pendulum at
rest and other with the pendulum oscillating in a stable orbit. We all know
that clocks in the same wall propagate across the wall sound waves, together
with their delays or advances, forcing the (coupled) clocks altogether, to a
same delay or a same advance. In Stonehenge, this effect can not be seen be-
tween colored tokens, but on the human machinery that puts the little tokens
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in motion. Some people forget clocks 10 when they think about the quantum
realm. Quantum mechanics in this way also applies to the macroscopic world
(of course, not in the sense of making Planck’s constant going to zero! 11 ), in
the sense of operators, eigenvectors and eigenvalues. It works like coordinated
Druids working according the same teleological implicit thinking: a disagree-
ment in the predicted Metonic cycle compels the Druids to add a further token
to the game.

4 Algorithm contents, where it is shown that author’s thinking
differ in subtle items from other authors.

I disagree in a few statements stated in sections Finitism in a Universe with
Algorithmic Content and The Inseparability of Algorithmic Content, Complex-
ity and Incomputability. First Barry Cooper and Piergiorgio Odifreddi states
that

... incomputability has about as much significance for a complete description
of the Universe as it does for any other finite relational structure, such as
a graph — that is none. In fact (see the discussion of Church’s thesis in
volume I of “Classical Recursion Theory”) no discrete model — finite or
otherwise — presents likely host for incomputable phenomena.

We have at least two exceptions: Wolpert in [44] studies a discrete neural
model with super-Turing capabilities, but with a transfinite number of neu-
rons, and Pollack in [31] proved that a model of higher-order neural nets is at
least universal. Other results on neural networks involve the real numbers. We
have an idea that infinite automata can have super-Turing powers, even not
involving the real numbers. Secondly, scientifically presenting the Universe
with real numbers is not enough to embed in it super-Turing powers. I am
always amazed when I hear that a computational model equipped with real
numbers allows for hypercomputation. I will start by defining super-Turing
power of the scientific presented Universe:

10 Many people don’t really care about clocks. One Professor in may Faculty used
to start his lectures in Relativity Theory by saying Space is measured with rulers,
time is measured with clocks, clocks come from Switzerland. How many of you have
listen to lectures about clock functioning?
11 It is a wonderful exercise to retrieve

~F = m
d2~r

dt2

out of Schröndinger’s equation with ~F given by −grad U , where U is the classical
potential field in the original equation.
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THESIS 4 — Up to Turing power, all computations of the Universe
are describable by suitable programs, which correspond to the pre-
scription by finite means of some rational parameters of the system
or some computable real numbers. From Turing power up we have
computations that are not describable by finite means: computa-

tion without a program. (Gandalf’s principle of hidden Universe
computation.)

Is it not funny? Computation without a program... When we observe natural
phenomena and endow them with computational significance, it is not the
algorithm we are observing but the process. Some objects near us may be
performing hypercomputation: we observe them, but we will never be able
to simulate their behaviour on a computer. What is then the profit of such
a theory of computation to Science? The point is that Gandalf ’s principle
does not tell us about hyper-machines. In this sense hypercomputation can
exist. I presume that most of the reactions of the scientific community against
hypercomputation are more related with the crazy idea of building a hyper-
machine. I think it is also one of the sources of criticism against the work of
Hava Siegelmann and Eduardo Sontag in [38,39]

But to help the reader to understand that the real numbers are not enough to
produce any kind of hypercomputation we call Analog Computation for the
rescue.

In the 1940s, two different views of the brain and the computer were equally
important. One was the analog technology and theory that had emerged before
the war. The other was the digital technology and theory that was to become
the main paradigm of computation. 12 The outcome of the contest between
these two competing views derived from technological and epistemological ar-
guments. While digital technology was improving dramatically, the technology
of analog machines had already reached a significant level of development. In
particular, digital technology offered a more effective way to control the pre-
cision of calculations. But the epistemological discussion was, at the time,
equally relevant. For the supporters of the analog computer, the digital model
— which can only process information transformed and coded in binary —
wouldn’t be suitable to represent certain kinds of continuous variation that
help determine brain functions. With analog machines, on the contrary, there
would be few or no steps between natural objects and the work and structure
of computation (cf. [25,14]). The 1942–52 Macy Conferences in cybernetics
helped to validate digital theory and logic as legitimate ways to think about
the brain and the machine [25]. In particular, those conferences helped made
McCulloch-Pitts’ digital model of the brain [22] a very influential paradigm.

12 For example, students at MIT could at that time learn both about differential
analyzers and electronic circuits for binary arithmetic [25].
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The descriptive strength of McCulloch-Pitts model led von Neumann, among
others, to seek identities between the brain and specific kinds of electrical
circuitry [14].

Going back to the roots of Analog Computation theory by starting with Claude
Shannon’s so-called General Purpose Analog Computer (GPAC). 13 This was
defined as a mathematical model of an analog device, the Differential Analyzer,
the fundamental principles of which were described by Lord Kelvin in 1876 (see
[2]). The Differential Analyzer was developed at MIT under the supervision of
Vannevar Bush and was indeed built in 1931, and rebuilt with important im-
provements in 1941. The Differential Analyzer input was the rotation of one or
more drive shafts and its output was the rotation of one or more output shafts.
The main units were gear boxes and mechanical friction wheel integrators, the
latter invented by the Italian scientist Tito Gonella in 1825 ([2]). From the
early 1940’s, the differential analyzers at Manchester, Philadelphia, Boston,
Oslo and Gothenburg, among others, were used to solve problems in engineer-
ing, atomic theory, astrophysics, and ballistics, until they were dismantled in
the 1950s and 1960s following the advent of electronic analog computers and
digital computers ([2,15]). Shannon (in [37]) showed that the GPAC generates
the differentially algebraic functions, which are unique solutions of polynomial
differential equations with arbitrary real coefficients. This set of functions in-
cludes simple functions like the exponential and trigonometric functions as
well as sums, products, and compositions of these, and solutions of differential
equations formed from them. Pour-El in [32] made this proof rigorous.

The fact is that, although GPAC model is physical realizable and is analog
model of the Universe, inputting and outputting real numbers, it does not
compute more that the Turing machine, in the sense of Computable Analysis.
E.g., we can not output, for a specific architecture of integrators, the digits of
the halting number.

Barry Cooper and Piergiorgio Odifreddi proceed to say that The association of
incomputability with simple chaotic situations is not new. For instance, Georg
Kreisel sketched in [20] a collision problem related to the 3-body problem as a
possible source of incomputability.

I think that these ideas are indeed conceived in a few theoretical experiences
like in [7,42], although they qualitatively require an unbounded amount of
energy 14 , and for this reason, not for theoretical reasons, they are not imple-
mentable. E.g., returning to Kreisel, the pure mathematical model of Newto-
nian gravitation is probably capable of encoding the halting problem of Turing
machines. This hint is given by Frank Tipler too in [41], based on constructions

13 In spite of being called “general”, which distinguish it from special purpose analog
computing devices, the GPAC is not a uniform model, in the sense of von Neumann.
14 Although the total amount of energy involved does not change.
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similar to Xia’s 5-body system (in [42]), were we have two parallel binary sys-
tems and one further particle oscillating perpendicularly to both orbits. This
particle suffers an infinite number of mechanical events in finite time (e.g.,
moving back and forth with increasing speed). Can we encode a universal
Turing machine in the initial conditions? This is an unsolved mathematical
problem. Thus, it may well be that the system of Newtonian mechanics to-
gether with the inverse square law is capable of non-Turing computations. The
hypercomputation power that this system may have is not coded in any real
number but in its own dynamics. How to classify such a Gedanken experiment?

In the Billiard Ball Machine model, proposed by Fredkin and Toffoli in [8], any
computation is equivalent to the movement of the balls at a constant speed,
except when they are reflected by the rigid walls or they collide (preserving
global kinetic energy) with other balls, in which case they ricochet according
to the standard Newtonian mechanics. The Billiard Ball Machine is Universal.
Moreover, the faster the balls move, the faster a given computation will be
completed.

Newtonian physical systems that perform an infinite number of operations in
a finite time are well known. Specifically, we just have to consider 4 point
particles moving in a straight line under the action of their mutual gravity.
Mather and McGee have shown in [21] that the masses and the initial data
of the particles can be adjusted to impress to the particles infinite velocity in
finite time. Gerver in [9] published a paper reporting on a model where, using
5 point particles in the plane moving around a triangle, all particles could be
sent to infinity in a finite time.

Can these systems encode hypercomputational sets? We aim at obtaining ei-
ther a positive or a negative answer to this question, i.e., (a) either we will be
able to prove that initial conditions do exist coding for a universal Turing ma-
chine, (b) either we are not able to prove such a lower bound but, we will prove
that encoding of input and output exists, together with adjustable parameters
coding for finite control such that we will have an abstract computer inspired
by Newtonian gravitation theory. This result, together with a non-computable
character of the n-body problem as shown in [40] inter alia, will turn to be
a strong basis to discuss a possible Church-Turing thesis’ violation. In fact,
the non-computable character of the n-body problem is close to Pour-El and
Richards’ results [33], and not so close to a mechanical computer rooted in
the structure of the inverse square law.
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5 Routes to hypercomputation.

Martin Davis published a paper called The Myth of Hypercomputation (see
[6]) where he introduces the Davidism (doctrine in which I have reasons to
believe). Martin Davis fight against hypercomputation in [6] is much more re-
lated with the dream of building a hypermachine. In fact in [39] two branches
of such a discipline are opened: first, the route to a hyper-machine that culmi-
nates in Hava Siegelmann’s paper in Science and which I think, in agreement
with Martin, can be misinterpreted, and, second, the theoretical hypercom-
putation field were we search for neural nets with weights of several types as
representatives of diverse computational classes: integer nets are equivalent
to finite automata, rational nets equivalent to Turing machines, polynomial
time real nets equivalent to polynomial size Boolean circuits — P/poly —,
and so on. In the latter interpretation, neural nets are a uniform model to all
these classes. And, indeed nets with real weights are to worth to be investi-
gated since for decades engineers have been using them theoretically to exploit
learning models, in the same sense that differential equations in the field of
real numbers are used to model Newtonian gravitation. In the former inter-
pretation, philosophical thinking goes towards Martin’s considerations. Just
because we don’t believe, e.g., in a physical constant  L of something (let us
called it Leopold’s universal constant) with the value of the halting number.
Because, if such a constant existed, then we could apply Gandalf’s principle to
see objects around us performing hypercomputation having we not a tool to
reproduce it. That would be the case of having hypercomputation as Alchemy,
Barry Cooper and Piergiorgio Odifreddi when they start their article [3]:

To the average scientist, incomputability in nature must appear as likely as
‘action at a distance’ must have seemed before the appearance of Newton’s
“Principia”. One might expect expertise in the theory of incomputability —
paralleling that of Alchemy in the seventeenth century — to predispose one
to an acceptance of such radical new ideas.

This is precisely the point I wanted to reach. Alchemy ended and Chemistry
started when the scale was introduced in Alchemy, a quite good interpretation
due to Alexander Koyré. How do we measure hypercomputational behaviour?
Supposing that we have a physical stable constant having the value of the
halting number, then if we measure this constant up to, let us say, 250 digits
of precision, becoming aware that the program of code 250 halts for every
input, how could we verify it? This would work as a call for observational
refutation, it would be, like for Leverrier and Adams, a matter of faith, but in
this case without Roemer’s telescope in Berlin. Hava’s paper in Science looks
like Leverrier and Adams trying to convince the scientific community that
there is an alien out there. Why was the community not convinced? Well, in
first place it seems that nothing in computing escapes to mathematical expla-
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nation, like Uranus escaped to his computed orbit. But this is not obvious,
since sometimes the scientific community do not react as Airy did. Do you
remember about the scandalous trial in London in 1877? (I learned this from
Michio Kaku’s Hyperspace in [19].)

A psychic from U.S.A. visited London and bent metal objects at a distance. He
was arrested for fraud. Normally, this trial might have gone unnoticed. But
eminent physicists came to his defense, claiming that his psychic feats actually
proved that he could summon spirits living in the fourth dimension. Many of
defenders were Nobel laureates to be. Do you believe that Professor Johann
Zollner, from the University of Leipzig came in his defence? William Crookes,
do you believe? And what about J. J. Thompson? And Lord Rayleigh? More
names?

[Why this difference of attitude? Airy’s reaction to the letters of Leverrier and
Adams, with mathematical calculations; Thompson and Crookes reaction to
the possibility of psychokinesis working with Zollner.]

Many references to [1] across the paper put me in the trail of Barry Cooper’s
philosophy that we found very rich, showing how a computer scientist can
flight over the boundaries of his expertize to meet other sciences. Newton’s
Sensorium Dei was a metaphysical tool to understand a system of the world
that without the intervention of God would collapse in his center of grav-
ity. Leverrier and Adams made people believe again in Newtonian’s system
of physics. Departures of computed lunar orbit against observations were ex-
plained by Euler. The space is ready for Laplacian demon to remove God
from physical space since Mr. de Laplace ne besoin pas de cette hypothese to
understand the marry-go-round of the heavenly bodies in the sky. However,
what Laplace didn’t know is that, most probably, although this system is de-
terministic, it encodes its own unpredictability and its own incomputability.
Probably, not even Laplace’s demon have such a computer. While discussing
with Barry Cooper, we got this answer from him:

... it seems to me that recursion theorists have not until recently really under-
stood or cared what their subject is about, and most still resist even thinking
about it (and maybe the same can be said about complexity theorists...). Ac-
tually, Gandy was interesting to talk to — as is Martin Davis, of course. I
think it is hard for people of my generation and before to adjust to the new
fluidity of thinking (or maybe I should say the old fluidity of thinking of the
inter-war years).

The study of hypercomputation should pursue with formal math as any math-
ematical concept, and not as constrained research as if Mr. Javert was again
put in his pursuite fantastique of Mr. Jean Valjean.
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This essay could well have ended with a beautiful Celt song to the Oak, maybe
taken from Ray Bradbury’s Secret Tree, in the center of Stonehenge, at the
sunrise of the longest day in mid-summer, looking to the far Heelstone at a
distance.
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[39] Hava T. Siegelmann and Eduardo Sontag. Analog computation via neural
networks. Theoretical Computer Science, 131:331-360, 1994.

[40] Warren D. Smith. Church’s thesis meets the N-body problem. Applied
Mathematics and Computation, 178:154-183, 2006.

[41] Frank Tipler. The Physics of Immortality: Modern Cosmology, God and the
Ressurrection of the Dead, Anchor, 1997.

[42] Jeff Xia. The existence of noncollision singularities in Newtonian systems. The
Annals of Mathematics, 135(3):411-468, 1992.

[43] S. Wolfram. A New kind of Science, Wolfram Media, 2002.

[44] D. Wolpert. A computationally universal field computer which is purely
linear. Technical Report LA-UR-91-2937, Los Alamos National Laboratory, Los
Alamos, NM, 1991.

27


