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1 Introduction

Boundary value problems where a nonlocal term appears have attracted much attention
recently due to their role in many problems of physics and engineering. In [2], where we
improved some results of [4], we have dealt with some aspects concerning that kind of
problems, namely existence and approximation of radial solutions in a ball of RY.

There, we observed that there are obvious difficulties in using the method of lower
and upper solutions in the presence of nonlocal terms. Nevertheless, we developped a
monotone method for problems of the form

—u"(t) —

o =1 (o [ gy ). WO =0=u).

assuming that f(ugz,v) — f(u1,v) > —A%(ug — uy) for some A > 0, f(u,v) is k-Lipschitz
in v and g is ko-Lipschitz (which are similar conditions to those used in [5]). The method
is based on a “nonlocal maximum principle” asserting that

() — nT_lu’(t) N %u(t) + M /O el u(s) ds >0, W(0)<0,u1)>0  (2)
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implies that u > 0 in I = [0,1]. The fact that we needed the assumption A2 + M < 1 is a
limitation in the strength of this principle.

The purpose of this paper is basically to extend the nonlocal maximum principle so as
to allow its applicability to a large range of values of A > 0 and M > 0.

We investigate the admissible range of values in two cases: first we consider a simple
model - for which values of A > 0 and M > 0 do the inequalities

—u" () + Nu(t) + M/1 lu(s)| ds >0, u(0) >0, u(l)>0
0

yield a maximum principle? Then we proceed to the inequality (2), related to the impor-
tant class of radial problems in a ball. It turns out that the two situations may be dealt
in a similar way, although some computations are easier in the first case.

In the course of our approach we find it convenient to consider the linear singular
differential equation

() — Sl (0) + Noult) = h(), Q

and find an expression for one of its solutions as

1
u(t):/o Hy(t, s)h(s)ds,

where H) is a Green’s function. The solution we have in mind exists for a certain class
of right-hand sides h, and may satisfy boundary conditions «'(0) = a, u(1) = 0, where a
needs not be zero.

We have organized the paper as follows: In section 2 we collect our remarks concerning
the linear equation (3). In section 3 we study a class of nonlocal linear boundary value
problems that are useful in the sequel. In section 4 we proceed with the consideration of
nonlocal semilinear problems and establish the nonlocal maximum principle. In the final
section, we briefly illustrate the use of the principle to establish a monotone method for

(1).

2 Some remarks about the solutions of a linear problem

Let us consider the differential equation
k
—u"(t) — zu’(t) + Nu(t) = h(t), te€]o,1], (4)

where k> 1, A> 0 and h € L7 ,(0,1) = {h(t) measurable: fol TRE2h ()2 dr < oo}.
We shall use the Hilbert Spaces

Hy(0,1) = {u € AC10,1]: /01 ™ (1) dr < 00, u(l) = 0} :

1/2
lTku,(T)Q dT) / .

with the norm |Ju|| = ( 0

1/2
Following [1], for uw € Hy(0,1), with & > 1, we have (fol T =2y(7)? dT) < 22 lull,

so the functional

J(u) = /01 % (tku/(t)2 - )\Ztku(t)2> + t*h(t)u(t) dt



is well defined in Hy(0,1), since

/01 t*h(t)u(t) dt < </01 thu(t)2dt> v </01 th2n(t)? dt>

It is obvious that J(u) is a coercive strictly convex functional, so that equation (4) has a
unique solution in H(0,1).

1/2

Proposition 2.1. If h € L}(0,1) = {h(t) measurable: fol Th(T)?dr < oo}, then, the

unique solution u of (4) in Hy(0,1) is in fact in C1[0,1] and it satisfies u'(0) = 0 (note
that L3(0,1) C L7, ,(0,1)).

Proof. Equation (4) is obviously equivalent to
!/
- (tku’(t)) 2R q(t) = tRh(t).
If h € L2(0,1), it is easy to verify that }tku’(t)’ satisfies Cauchy’s condition at ¢t = 0,

therefore there exists L € R such that lim¢_o [t*u/(t)| = L. Necessarily L = 0, because
otherwise we would not have v € Hy(0,1). Applying Cauchy-Schwarz inequality, it is easy
t
/ NrFu(r) dr

to see that
t
/ Tkh(T) dr
0 0
1/2

t 12 5 t
<c </ Tk_2u(7')2 dT) t 2 +oc (/ Th(7)2 d7'> tk,
0 0

for some constants ¢, ca > 0.
If % >k (k < 3), it is obvious that lim;_g /() = 0. Otherwise, if k£ > 3, we have

‘tku’(t)’ < +

k43

‘t’%/(t)‘ <ctz, (5)

for some constant ¢ > 0.
In general, if we have |t"u/(t)| < ct®, then |u(t)] < C + Ct* %1, for some C' > 0,
hence, we can conclude that near ¢ = 0, there exists a constant c3 > 0 such that

t 1/2 . k—1 2a—k+1
(/ 7‘1‘;_211(7')2 d7‘> < c3 pmin(F55, 2652
0

Consequently, for some ¢4 > 0, we have

¢ 1/2
‘tku/(t)’ < gqtmintbrlat2) 4o </ Th(r)? dT) t*
0

and setting a = %, it is easy to see that with a finite number of iterations of this process,
we will get
t 1/2
’t’“u’(t)‘ <Yt e (/ Th(T)QdT> tk,
0
where k* > k, and then the conclusion follows easily. O



It is a standard procedure in the literature to associate solutions of a boundary value
problem to fixed points of some functional operator. In our case, the solutions of the
second order homogeneous differential equation

() — %u’(t) +X2u(t) = 0, (6)

which is equivalent to (tku’(t))/ = A2tku(t), with initial conditions u(0) = 1, «/(0) = 0,
may be viewed as fixed points of the operator

t)\Z T
Tu(t) = 1—i—/0 7_k/0 s*u(s) ds dr,

defined in some functional space. Considering the space Z = {u € C10,to]: u(0) = 1}, for
some tg small enough, T" has a unique fixed point since it is a contraction. The singularity of
equation (6) is at the point ¢ = 0, so it is obvious that this solution can be extended to the
interval [0,1]. Let u; be this solution, and consider the function v () = wuy(t) ftl Skuﬁ%,
which is the solution of (6) obtained by the standard method of reducing the order of an
ordinary differential equation. The solutions u; and vy are linearly independent and their
associated Wronskian is W (t) = uy (t)v}(t) — u} (t)v1(t) = —t~*. Furthermore, they satisfy
the following properties, which we shall use in the next proposition: u}(¢) > 0, v1(1) =0,
vi(t) ~ =D and v (t) ~ t7F as t — 0 (we write f(t) ~ g(t) as t — 0 if and only if
limy_g % =L +#0).

Proposition 2.2. Let he X ={h(t) measurable:3c € R, ho € L3(0,1), h(t) = ¢ + ho(t)}.
Then the boundary value problem

() — %u’(t) FA2u(t) = h(t), t€]0,1], u(l) =0, (7)

has a unique solution in C?)0,1] N C1[0,1], given by the integral expression

Loi(s)h(s tuqg(s)h(s
utt) = —unfe) [ ds ) [0 g ®)

Proof. Let us first note that L3(0,1) C X C L?,,(0,1), so that equation (4) has a unique
solution in H(0, 1), that satisfies u(1) = 0.

Suppose that h € L3(0,1), that is, ¢ = 0. Applying the method of undetermined
coefficients, we see that the unique solution of

—u"(t) — %u’(t) + Mu(t) = h(t), t€]o,1], o' (0) = u(l) =0, 9)

is given by the well defined integral expression

Lur(s)h(s tui(s)h(s
u(t)——ul(t)/t st—vl(t)/o 1‘;/)(};)()ds. (10)

If we differentiate this expression, we get

! tu S S
u’(t):—u’l(t)/t MS)h(S)dS_v/l(t)/o w(®h(s) ,

(
W (s) w(s)

from which, after some computation, we can confirm that u/(0) = 0.



Suppose now that h(t) ¢ L3(0,1), that is, h(t) = $+ho(t) for some ¢ # 0, hg € L7(0,1).
In this case, the integral expression (8) is still well defined, satisfies equation (4), and

u'(0) = _%i_%vll(t)/o st = %l_r)l(l) C’Ui(t)/o ui(s)s"Lds = —%

Remark 2.3. Expression (8) can obviously be written in the form

1
/0 Hi(t, $)h(s) ds, (11)

which allows us to get the explicit form of the Green’s function associated to (9). From
the expression of Hy, it is a simple matter to verify that it is continuous in [0, 1] x [0, 1]
and positive in |0, 1[x]0, 1.

From the proof of the previous proposition, we infer that formula (11), where the
Green’s function H) appears, provides us the unique solution of (4) for all the boundary
conditions u/(0) = a € R, u(1) = 0, whenever h(t) + %2 € L3(0,1).

The boundary value problem

() — %u'(t) FN2u(t) = h(D),  u(l)=b,

with b # 0, has also a unique solution in C'?]0, 1]NC*[0, 1] (if we had two different solutions
w1, ws, then w; — we would be the unique solution of the homogeneous problem, which is
identically zero), given by ug(t) + %(1)“1(15), where ug(t) is the unique solution of

—u"(t) — %u/(t) + Nu(t) = h(t),

in Hi(0,1). Note that for some functions h(t) ¢ X we can still obtain a solution of
equation (4) via the Green’s function, which possibly has infinite derivative at ¢ = 0, or
simply does not have derivative at ¢ = 0, but we will not consider these cases.

Consider now the equation for £ =1

() — %u'(t) +2u(t) = h(), tel0,1), (12)

where A > 0 and h € L{(0,1) = {h(t) measurable : fol th(t)?dt < oo}, for some 1 < ¢ < 2.
Consider also the functional

1
J(u) = /0 5 (' (£)? + N2t u?(t)) + th(t) u(t) dt,

defined in H;(0,1). We have

/0 LR u(t) dt < ( /0 (e dt> . ( /0 1 th(t)th> v

Following [3], since for any p > 2 we have u? < Ce|“|2_n, for some C, n > 0, we know that
fol tu(t)P dt < oo, and therefore the functional J(u) is well defined in H;(0,1).

We can state exactly the same results obtained above for £ > 1 in the case k = 1, just
noticing that in this case vy (t) ~ Int, and v () ~ t~1. The fact that 1 < g < 2 allows us
to conclude that with a function h(t) ~ 1, J(u) is well defined, and the associated solution
is the one obtained via Green function, with non-zero derivative at ¢ = 0.



3 Nonlocal Linear Problems

Let us consider the linear boundary value problem in the interval [0, 1]
—u(t) + Nu(t) = h(t), u(0)=u(1) =0, (13)

where A > 0 and h € C[0,1].
This problem has a well known Green’s function

sinh(\) cosh(At) sinh(As)—cosh()\) sinh(As) sinh(A¢)

Gt s) = X sinh(\) ; t=s
AL, 8) = sinh(\) cosh(As) sinh(At)—cosh()) sinh(At) sinh(As) + <
Xsinh(\) V=S
and therefore we have .
u(t) = / Gt 5)h(s) ds.
0
Proposition 3.1. Let w € C[0,1] N C?]0, 1] be such that
1
—w(t) + N2w(t) + M / w(r)dr =0, w(0) = w(1) =0, (14)
0

for some X\ >0, M > 0. Then we have w(t) =0 for all t € [0, 1].

Proof. Assume towards a contradiction that there exists w(t) # 0 satisfying (14).
If w(t) > 0 (by > we mean > and #), then w reaches a positive maximum for some
to €]0, 1[, where we would have the contradiction

1
0 < —w”(to) + Nw(te) + M/ w(r)dr = 0.
0

If w(t) <0, we get a contradiction with a similar argument. So w(¢) must have a positive
maximum for some ¢; €0, 1] and a negative minimum for some ¢3 €0, 1[. With ¢t =¢; in
(14) we get fol w(T)dr < 0, and with t = t5 in (14) we get fol w(t)dr > 0. The conclusion
now follows. O

Lemma 3.2. Let u € C[0,1] N C?]0, 1] be such that
1
—u" () + Nu(t) + M/ u(r)dr = f(t) >0, wu(0)=a>0, u(l)=>b>0, (15)
0

for some A > 0, M > 0, and consider the C2[0,1] functions U,V , where U(t) is the unique
solution of (13) with h(t) = 1 and V(t) is the unique solution of —V"(t) + A2V (t) = 0,
with boundary conditions V(0) = a, V(1) = b (note that U and V depend on X).

Suppose that

M . Gi(t,s) MU(t) V()
< inf —/2%. an < .
1+ Mfol U(r)dr ~ 0<ts<1 U(t)U(s)’ 1+ Mfol Ur)dr fol Vir)dr

(16)

Then we have u(t) > 0 for allt € [0,1].
Proof. Let v and w be such that
S0 4 () = £, 0(0) = a, v(1) = b,

. 200(p) — Mfol o(T)dr
)+ XNu(t) = 1+Mf01U(7')d7'7




1
As w(t) = %U@), it can be easily verified that v — w satisfies (15). Proposi-

tion 3.1 allows us to conclude that u = v — w, so we only need to prove that v > w.
Using the Green’s function G defined above and the fact that G)(¢,s) = Ga(s,t), we

have

/GAts s)ds+V(t), and

w(t)zlJer](\)l/[ dT/G)\tO'dU/ (/ Ga(T,8)f(s)ds + V(T ))d

T +MfM o (/1 Ut)U(s)f(s) ds+U(t)/O V(r) dT>,
0

and therefore, if the conditions in (16) are verified, we have v > w. O

Remark 3.3. The explicit form of U and V is:
e M (=1 +et) (—et + eMt)

Ut) = — (ETERE
e (—be + ae? — ae?M 4 beA)
v = —1+e2 '

Let us now consider the linear boundary value problem
k
—u"(t) — ;u’(t) + A2u(t) = h(t), wu(l)=b, ue C?0,1]nCo,1], (17)

where £k > 1, A > 0 and h € X.
As stated before, this problem has a unique solution given by

/ths d3+ b ui(t),

where, as before, ui(t) is the solution of the homogeneous equation with uq(0) = 1,
!/

Lemma 3.4. The Green’s function Hy(t,s) satisfies the following symmetry property:
tRH\(t,5) = s H)(s,1).
Proof. Let ui,us be such that
k .
—uf (t) — ;u;(t) + Mu(t) = fi(t), ub(0) =wui(1) =0, i=1,2
for some continuous functions fi, fo. The equations above are obviously equivalent to
/
- (tku;(t)) + N2 tRu(t) =t £i(t)
Using this form of the equations, integrating by parts we obtain
1 1
/ t* 1 (t)ua(t) dt = / t* fo(t)us (t) dt,
0 0
and therefore

1 1 1 1
/ / £ FL () Ha(t, 8) fals) ds df = / /  fo(£) Ha(t, 5) o (s) ds dt.
0 0 0 0

Given the arbitrariness of f; and f2, the conclusion follows now easily. O



Proposition 3.5. Let w € C?[0,1] be such that
k 1
—w'(t) — ;w/(t) + Nw(t) + M/ w(t)ds =0, w'(0) =w(1) =0, (18)
0

for some X\ >0, M > 0. Then we have w(t) =0 for all t € [0,1].

Proof. We obtain w(t) = 0 using similar arguments to those used in the proof of Proposi-
tion 3.1. O

Lemma 3.6. Let u € C?[0,1] be such that

k 1
—u”(t) — ;u'(t) + MNu(t) + M/O u(r)ds = f(t) >0, ©'(0)=a<0, u(l)=b>0,

(19)
for some A\ >0, M > 0. Suppose that
M H M
i < inf Lﬁ)k, and IU( ) <3 un(t)
1+ M [ 7*U(r) dr ~ 0<ts<1 U(t)U(s)s L+ M [y T*U(r)dr — [y TFui(r)dr
(20)

where U(t) is the unique solution of (17) with h(t) =1, a, b = 0. Then we have u(t) > 0
for all t € [0,1].

Proof. Note that f € X. Let v and w be such that

—"(t) - %v’(t) + Mo(t) = f(1), vE 02]0, 11N cCto,1], v(1) = b,
o —Ew 2 Mf T)dr W(0) = w(l) =
(6) ~ Mt (1) + Xu(t) = 1+Mf0 D WO =) =0

B Mf01 TRu(T) dr

As U}(t) B 1+Mf01 ThU(7)dr

tion 3.5 allows us to conclude that u = v — w, so we only need to prove that v > w.
Using the Green’s function H) defined above and the previous lemma, we have

U(t), it can be easily verified that v — w satisfies (19). Proposi-

/ Hy(t,s)f(s)ds + ui(t), and

b
u(1)
w(t) = 1+Mf0MkU dT/ Hy(t,o da/ (/ Ha(r, ) ds+u1lzl) u1(7')> dr

M ! k bU(t) k
1+Mf1 U(r) dr (/0 Ut)U(s)s f(s)ds+u1(1) /0 Tul(T)dT>,

and therefore, if the conditions in (20) are verified, we have v > w. O

Remark 3.7. In the two previous results we do not need to consider C2[0, 1] functions,
the same conclusions are valid in C*[0,1[NC?]0, 1[.

4 Nonlocal Semi-Linear Problems

Consider the boundary value problem

() + Nt + M/O ()| dr = (), w(0)=a>0, u(l)=b>0.  (21)



Proposition 4.1. If

M o< i fol u’2(7‘) + AN2u2(7) dr

u € Hy(0,1) (jg\u@o\dT)Q

)

then the problem (21) has a unique solution.
Proof. We shall consider two cases:

(i) If f(t) =0, and a = b = 0, multiplying the equation in (21) by v and integrating by
parts, we have

/01 u'Q(T) + A2 (1) dr = M/O1 |u(T)] d7'/01 u(r)dr <M (/01 lu(T)| d7—>2’

and the conclusion follows.
(ii) If f(t) # 0, let uy, ug be such that
1
—ul(t) + /\2ui(t) + M/ lui(T)| dr = f(t), u;i(0)=a, u;(1)=0b, i=1,2.
0
Setting w = u; — us, we have

—w(t) + Nw(t) + M/1 O(t)w(r)dr =0, w(0)=w(l)=0,
0

where (1) = b =lua (] - gy e |0(7)|] < 1, using an argument similar to the one
w1 (7)—u2(T)

(
in (i), we get w(t) = 0, and therefore there is a unique solution to (21).
O

Proposition 4.2. We have

- 01 ’U,IQ(T) + )\2U2(7') dr _ - fol UIQ(T) + )\2u2(7_> dr
u € Hy(0,1) U |u(r)| dr ’ u e Hy(0,1) Lu(r) dr ’ .
s (S u(r)] dr) e (Jo u(r)ar)

Proof. If a function ug minimizes the left-hand side, then, since |ug| € HE(0,1), the right-

hand side has the same value. O
Let
1 42 2 9 1
A d
1= min fo w(r) + Xu (;-) T min / u’2('r) + /\2u2(7) dr.
we H§(0,1) <f01 u(r) dr) we H§(0,1)/0
u#0 folu(T)del

To find /1, we need to solve a constrained extrema problem, which we can do using La-
grange Multipliers (the proposition above allows us to use a differentiable restriction). Our
minimizer u satisfies

—ug(t) + Nuo(t) =m, uo(0) = ug(1) =0,



where m is the Lagrange Multiplier, so ug(t) = mU(t). Since fol uo(T)dr = 1, we get

m = ( fol U(T) dT) , and consequently

1

1
L = / uh? (1) + Nud(r)dr = —————.
0 0 0 fol U(r)dr

Theorem 4.3 (Maximum Principle 1). Let A\, M be positive constants, G the Green’s
function associated to (13), U(t) = fol Ga(t, s) ds, and V (t) the unique solution of —V" (t)+
A2V (t) = 0, with boundary conditions V(0) =a >0, V(1) = b > 0. Suppose that

)

)
V) . MU@

M ) Gi(t,s
i < inf ; T = T ;
L+ M [y U(r)dr ~ 0<ts<tU(t)U(s) fyV(r)dr — 1+ M [, U(r)dr
and )
M

<
fo U(r)dr
Then, if u € C[0,1] N C?)0, 1] satisfies

—u" () + Nu(t) + M/1 lu(T)] dr >0, u(0)=a>0, u(l)=>b2>0, (22)
0

we have u(t) > 0.

Proof. Let f(t) = —u"(t) + Nu(t) + Mf01 |u(7)| dr. By Lemma (3.2), we know that the
linear problem (15) has a nonnegative solution, and therefore, this nonnegative solution
has to be the only solution of (21). O

Using Mathematica, we have the following estimates relative to the first pair of condi-
tions:

A=0.2 Mpae =~ 5.98
A=0.5 Mg =~ 5.92
A=1 Mpee =~ 5.71
A=2 Mipae =~ 4.89
A=4 Moz ~ 2.74
A=T Mipae = 0.62
A=10 Mipae = 0.09

The last condition is less restrictive, as it is shown by the following graph:

120
100
80
60
40

20

2 4 6 8 10

Figure 1: [1(\) = m
0
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Using the same technique, we can reach similar results for the boundary value problem
k 1
—u"(t) — ;u’(t) + N2u(t) —|—M/ ™ lu(r)| dr = f(t), «/(0)=a <0, u(l)=b>0. (23)
0

Let us consider the Hilbert Space
1
Hi(0,1) = {u € AC0,1]: / Tku/2(7') dr < oo, u(l) = 0} 7
0

1/2
with the norm |jul| = ( 01 k' (r )dT) . Following [1], for any u € Hy(0,1) with & > 1,
we have fol 2 < C'||ul|?, for some C > 0.

Remark 4.4. Note that if u € Hy(0,1), then |u| € Hg(0,1).

Proposition 4.5. If

fol Tk (u’2(7') + A2 (T ) dr
M < min

u € Hy(0,1) Lk lu(r dT2
Bl (o 7 u(r)) ar)

then the problem (23) has a unique solution.

Proof. As stated before we can write equation (23) in the form

, 1
— (u0) Nl + Mt / R lu(r)] dr = £ F (1)
0
We shall consider two cases:

(i) If f(t) = 0, a, b = 0, multiplying the equation in (23) by u and integrating by parts,
we have

/Olrk (u'Q(T) + )\2u2(7)) dr = - M OlTk u(r)| dr /OlTku(T) dr < M (/OlTk (7| dT>2,

and the conclusion follows.

(ii) If f(t) # 0, let uy, ua be such that
k 1
—ui (t) = Su(t) + Nu(t) + M/ ™ ui(7)] dr = f(8), 4} (0) = a, wi(1) = b,
0
Setting w = u; — us, we have
/ 1
— (tkw’(t)> + NtRw(t) + Mtk/ 0(7)| 7% |w(T)| dr =0, w'(0) =w(1) =0,
0

where 6(7) = % Since |0(7)| < 1, using an argument similar to the one
in (i), we get w(t) = 0, and therefore there is a unique solution to (21).

O]

11



Proposition 4.6. We have

fol Tk (u’2(7') + )\2u2(7)> dr fol Tk (u’Q(T) + )\2u2(7')) dr
min 5 = min 3 .
u € Hy(0,1) ( Sk ()| dT) u € Hi(0,1) ( i rhu(r) dT)
u#0 u#0
Proof. If a function up minimizes the left-hand side, then, since |ug| € Hy(0,1), the right-
hand side has the same value. O
Let
01 Tk (u’2(7') + A2u2(7)> dr 1 )
lp = min 5 = min / ™ (u/ (r)+ )\2u2(7)> dr.
u € Hy(0,1) <f01 Thu(T) dT) u € Hi(0,1) Jo
u#0 fol hu(r)dr =1

So, to find l2, we need to solve another constrained extrema problem. Our minimizer ug
satisfies

k
—ug(t) — ;ug(t) + Nug(t) =m, up(0) = up(1) =0,
where m is the Lagrange Multiplier, so ug(t) = mU(t). Since fol o uo(T) dr = 1, we get

-1
m = (fol U (1) dT) , and consequently

Iy = /01 * (u62(7') + )\2u3(7)> dr = —fl Tk;(T) .
0

Theorem 4.7 (Maximum Principle 2). Let X\, M be positive constants, Hy the Green’s
function associated to (17), and U = fol Hy(t,s)ds. Suppose that

M < in Hi(t, 5) MU(t) < uy(t)
L+ M [ U (rydr ~ o<ts<t UR)U(s)sF 14 M [TU(r)dr — f) thuy(r)dr’

and
1

<—T 0
fo ThU(7)dr
Then, if for 0 <t <1, u € C?[0,1] satisfies

we have u(t) > 0.

Proof. Let f(t) = —u"(t) — 2/ (t) + N2u(t) + M fol 7% |u(7)| ds. By Lemma (3.6), we know
that the linear problem (19) has a nonnegative solution, and therefore, this nonnegative
solution has to be the only solution of (23). O

We have the following estimates relative to the cases k = 1,2, 3:

(i) k=1:
A=0.25 Mppaz =~ 15.95
A= Mpaz =~ 15.30
A= Mpoe = 5.71
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(i) k=2:

A=0.25 Miaz =~ 29.9

A= Moz ~ 28.9
A= Moz ~ 12.2
(ifi) k=3
A =025 Mo ~ 47.9
A=0.5 Moz ~ 475
A=1 Moz ~ 46.5
A=3 Mipaz =~ 36.0
A=5 Moz ~ 21.5
A =10 Mpaz = 2.2

The last condition is also less restrictive. We present here the graph of lo(\) in the
case k = 3:

75
70
65
60

55

2u 8 10

Figure 2: Io(\) = m
0

5 Lower and Upper solutions and the monotone method

Consider the boundary value problem

n—1
t

1
—u"(t) — u(t)=f <u(t),wn/0 s Lg (u(s)) ds) for 0 <t <1, (25)

and
u'(0) =0 = u(1), (26)

where n € N, f, g are continuous functions, and w, is the superficial measure of the unit
sphere in R"™. The solutions of this problem are radial solutions of

Au=f (u Lo (u)) (27)

uloy =0, (28)
where U = B(0,1) is the unit sphere in R™ (see [4]).
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We say that a(t) is a lower solution of (25)—(26) if

—1
—a(t) — n

o)< f (a(t),wn /01 s" g (a(s)) ds) , for 0 <t <1,

o’(0) > 0 and a(1) <0.

A function 3 satisfying the reversed inequalities is called an upper solution.
For a given function u(t) € C]0, 1], consider the boundary value problem

-1 1
—"(t) — nTv'(t) + 2\(t) = f (u(t),wn/ s g (v(s)) ds) + Au(t),
0
with v/(0) = 0 = v(1). Using the operator Lu = —u” — 221/ + A%y, in the space
Cc* = {ueC?0,1]: v'(0) =u(1) = 0} this equation is equlvalent to the fixed point

equation .
v=L"1 <f (u,wn/ "Ly (v (s)) d3> + )\2u> = Py 0. (29)
0

It turns out that it is advantageous to look at ®, as an operator from L2 ,(0,1)
into itself. Noticing that L' is a compact self-adjoint operator in this space with norm
L7 = (€2 + A%)~! where &, is the first positive zero of the Bessel function Jn s, it is
easy to see that if f(u,v) is ki-Lipschitz in v, ¢ is ko-Lipschitz, then ®,, is Lipschiztz with

constant % In particular, when the condition

wnk‘lkg <
(& +A*)n
is satisfied, ®,, is a contraction mapping, and therefore has a unique fixed point.

Using maximum principle 4.7, we get the following improved version of Theorem 4.10
in [2]:

(30)

Theorem 5.1. Suppose that f(u,v) is ki-Lipschitz in v, g is ko-Lipschitz. Suppose that
M = kikow,, and X are in the conditions of the Maximum Principle 4.7, (30) holds and

flug,v) = f(ur,v) > =X*(up — uy),

for allv € R, and uy < ug. Let ag and By be a lower and an upper solution of (25)—(26)
respectively, with ag < By in [0,1]. If we take (o), ey, and (Bn),ey, such that,

ont1 = Po,ant1 and By = ®g, Bnt1, for all n € Ny,
we obtain
apg<ap < <ap << B < < By < .
The monotone bounded sequences (on),cn,, (Bn)nen, defined above are convergent in

C10,1] to solutions of (25)—(26).

The main step of the proof consists in verifying that indeed a monotone sequence is
obtained. This is a consequence of the following fact: Let wui(r) < wa(r) be two given
functions defined in [0, 1] and vi(r), va(r) the two respective solutions of (29). Then

v1(r) < va(r).
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Let us recall the argument (see [2]):

n—1
— (v2—v)" = (v —v1) 4+ N (v —v1) =

T
1 1
= M (ug —ug) + f (Uzawn/ s""1g (va) dS) —f (ul,wn/ s""1g (va) dS) +
0 0

1 (wn | g (u) is) =1 (wn | Ly () i) >

1
> —klkgwn/ sl |vg — v1]| ds.
0

It sufices then to invoke the maximum principle 4.7 to obtain the conclusion.

Example 5.2. Let us consider the non-local differential equation

() — %u/(t) _f <u,47r/01 52 <“(5);+1> ds> (31)

Fluv) = (Vu+1)(sinv+1)+4, u<l
’ )smv—l— H+4, u>1,

where

C+

(

with boundary conditions u/(0) = u(1) = 0.
Consider ag = 1 —t? and fy = % 1-— t2). After some computation, we can verify that
ap, Bp are respectively a lower and an upper solution of (31), both satisfying the considered
boundary conditions. Since 0 < ag(t) < fo(t) < 3, for all ¢ € [0, 1], we can consider ky = 2,
ko = , and A = 1. Moreover &3 = 7. Setting M = 64—” the conditions of theorem 5.1
are satlsﬁed, and therefore, using the described 1terat1ve method, we can aproximate a

solution u(t) of (31) satisfying u/(0) = u(1) =0 and 1 —t* < u(t) < 5 (1 —#2).

—
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