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1 Introduction

Boundary value problems where a nonlocal term appears have attracted much attention
recently due to their role in many problems of physics and engineering. In [2], where we
improved some results of [4], we have dealt with some aspects concerning that kind of
problems, namely existence and approximation of radial solutions in a ball of RN .

There, we observed that there are obvious difficulties in using the method of lower
and upper solutions in the presence of nonlocal terms. Nevertheless, we developped a
monotone method for problems of the form

−u′′(t) − n − 1

t
u′(t) = f

(

u(t), ωn

∫ 1

0
sn−1g (u(s)) ds

)

, u′(0) = 0 = u(1), (1)

assuming that f(u2, v) − f(u1, v) ≥ −λ2(u2 − u1) for some λ > 0, f(u, v) is k1-Lipschitz
in v and g is k2-Lipschitz (which are similar conditions to those used in [5]). The method
is based on a “nonlocal maximum principle” asserting that

−u′′(t) − n − 1

t
u′(t) + λ2u(t) + M

∫ 1

0
sn−1 |u(s)| ds ≥ 0, u′(0) ≤ 0, u(1) ≥ 0 (2)
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implies that u ≥ 0 in I = [0, 1]. The fact that we needed the assumption λ2 + M < 1 is a
limitation in the strength of this principle.

The purpose of this paper is basically to extend the nonlocal maximum principle so as
to allow its applicability to a large range of values of λ > 0 and M > 0.

We investigate the admissible range of values in two cases: first we consider a simple
model - for which values of λ > 0 and M > 0 do the inequalities

−u′′(t) + λ2u(t) + M

∫ 1

0
|u(s)| ds ≥ 0, u(0) ≥ 0, u(1) ≥ 0

yield a maximum principle? Then we proceed to the inequality (2), related to the impor-
tant class of radial problems in a ball. It turns out that the two situations may be dealt
in a similar way, although some computations are easier in the first case.

In the course of our approach we find it convenient to consider the linear singular
differential equation

−u′′(t) − k

t
u′(t) + λ2u(t) = h(t), (3)

and find an expression for one of its solutions as

u(t) =

∫ 1

0
Hλ(t, s)h(s)ds,

where Hλ is a Green’s function. The solution we have in mind exists for a certain class
of right-hand sides h, and may satisfy boundary conditions u′(0) = a, u(1) = 0, where a
needs not be zero.

We have organized the paper as follows: In section 2 we collect our remarks concerning
the linear equation (3). In section 3 we study a class of nonlocal linear boundary value
problems that are useful in the sequel. In section 4 we proceed with the consideration of
nonlocal semilinear problems and establish the nonlocal maximum principle. In the final
section, we briefly illustrate the use of the principle to establish a monotone method for
(1).

2 Some remarks about the solutions of a linear problem

Let us consider the differential equation

−u′′(t) − k

t
u′(t) + λ2u(t) = h(t), t ∈ ]0, 1], (4)

where k > 1, λ > 0 and h ∈ L2
k+2(0, 1) ≡

{

h(t) measurable :
∫ 1
0 τk+2h(τ)2 dτ < ∞

}

.

We shall use the Hilbert Spaces

Hk(0, 1) =

{

u ∈ AC ]0, 1] :

∫ 1

0
τku′(τ)2 dτ < ∞, u(1) = 0

}

,

with the norm ‖u‖ =
(

∫ 1
0 τku′(τ)2 dτ

)1/2
.

Following [1], for u ∈ Hk(0, 1), with k > 1, we have
(

∫ 1
0 τk−2u(τ)2 dτ

)1/2
≤ 2

k−1 ‖u‖,
so the functional

J(u) :=

∫ 1

0

1

2

(

tku′(t)2 + λ2tku(t)2
)

+ tkh(t)u(t) dt
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is well defined in Hk(0, 1), since

∫ 1

0
tkh(t)u(t) dt ≤

(
∫ 1

0
tk−2u(t)2 dt

)1/2 (
∫ 1

0
tk+2h(t)2 dt

)1/2

.

It is obvious that J(u) is a coercive strictly convex functional, so that equation (4) has a
unique solution in Hk(0, 1).

Proposition 2.1. If h ∈ L2
1(0, 1) ≡

{

h(t) measurable :
∫ 1
0 τh(τ)2 dτ < ∞

}

, then, the

unique solution u of (4) in Hk(0, 1) is in fact in C1[0, 1] and it satisfies u′(0) = 0 (note
that L2

1(0, 1) ⊂ L2
k+2(0, 1)).

Proof. Equation (4) is obviously equivalent to

−
(

tku′(t)
)′

+ λ2tku(t) = tkh(t).

If h ∈ L2
1(0, 1), it is easy to verify that

∣

∣tku′(t)
∣

∣ satisfies Cauchy’s condition at t = 0,
therefore there exists L ∈ R such that limt→0

∣

∣tku′(t)
∣

∣ = L. Necessarily L = 0, because
otherwise we would not have u ∈ Hk(0, 1). Applying Cauchy-Schwarz inequality, it is easy
to see that

∣

∣

∣
tku′(t)

∣

∣

∣
≤

∣

∣

∣

∣

∫ t

0
λ2τku(τ) dτ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ t

0
τkh(τ) dτ

∣

∣

∣

∣

≤c1

(
∫ t

0
τk−2u(τ)2 dτ

)1/2

t
k+3

2 + c2

(
∫ t

0
τh(τ)2 dτ

)1/2

tk,

for some constants c1, c2 > 0.
If k+3

2 ≥ k (k ≤ 3), it is obvious that limt→0 u′(t) = 0. Otherwise, if k > 3, we have

∣

∣

∣
tku′(t)

∣

∣

∣
≤ c t

k+3

2 , (5)

for some constant c > 0.
In general, if we have

∣

∣tku′(t)
∣

∣ ≤ c tα, then |u(t)| ≤ C + Ctα−k+1, for some C > 0,
hence, we can conclude that near t = 0, there exists a constant c3 > 0 such that

(
∫ t

0
τk−2u(τ)2 dτ

)1/2

≤ c3 tmin( k−1

2
, 2α−k+1

2 ).

Consequently, for some c4 > 0, we have

∣

∣

∣
tku′(t)

∣

∣

∣
≤ c4 tmin(k+1, α+2) + c2

(
∫ t

0
τh(τ)2 dτ

)1/2

tk,

and setting α = k+3
2 , it is easy to see that with a finite number of iterations of this process,

we will get
∣

∣

∣
tku′(t)

∣

∣

∣
≤ c∗ tk

∗

+ c2

(
∫ t

0
τh(τ)2 dτ

)1/2

tk,

where k∗ > k, and then the conclusion follows easily.
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It is a standard procedure in the literature to associate solutions of a boundary value
problem to fixed points of some functional operator. In our case, the solutions of the
second order homogeneous differential equation

−u′′(t) − k

t
u′(t) + λ2u(t) = 0, (6)

which is equivalent to
(

tku′(t)
)′

= λ2tku(t), with initial conditions u(0) = 1, u′(0) = 0,
may be viewed as fixed points of the operator

Tu(t) = 1 +

∫ t

0

λ2

τk

∫ τ

0
sku(s) ds dτ,

defined in some functional space. Considering the space Z = {u ∈ C[0, t0] : u(0) = 1}, for
some t0 small enough, T has a unique fixed point since it is a contraction. The singularity of
equation (6) is at the point t = 0, so it is obvious that this solution can be extended to the
interval [0, 1]. Let u1 be this solution, and consider the function v1(t) = u1(t)

∫ 1
t

ds
sku1(s)2

,

which is the solution of (6) obtained by the standard method of reducing the order of an
ordinary differential equation. The solutions u1 and v1 are linearly independent and their
associated Wronskian is W (t) = u1(t)v

′
1(t)−u′

1(t)v1(t) = −t−k. Furthermore, they satisfy
the following properties, which we shall use in the next proposition: u′

1(t) ≥ 0, v1(1) = 0,
v1(t) ∼ t−(k−1), and v′1(t) ∼ t−k as t → 0 (we write f(t) ∼ g(t) as t → 0 if and only if

limt→0
f(t)
g(t) = L 6= 0).

Proposition 2.2. Let h∈X≡
{

h(t) measurable :∃ c ∈ R, h0 ∈ L2
1(0, 1), h(t) = c

t + h0(t)
}

.
Then the boundary value problem

−u′′(t) − k

t
u′(t) + λ2u(t) = h(t), t ∈ ]0, 1], u(1) = 0, (7)

has a unique solution in C2]0, 1] ∩ C1[0, 1], given by the integral expression

u(t) = −u1(t)

∫ 1

t

v1(s)h(s)

W (s)
ds − v1(t)

∫ t

0

u1(s)h(s)

W (s)
ds. (8)

Proof. Let us first note that L2
1(0, 1) ⊂ X ⊂ L2

k+2(0, 1), so that equation (4) has a unique
solution in Hk(0, 1), that satisfies u(1) = 0.

Suppose that h ∈ L2
1(0, 1), that is, c = 0. Applying the method of undetermined

coefficients, we see that the unique solution of

−u′′(t) − k

t
u′(t) + λ2u(t) = h(t), t ∈ ]0, 1], u′(0) = u(1) = 0, (9)

is given by the well defined integral expression

u(t) = −u1(t)

∫ 1

t

v1(s)h(s)

W (s)
ds − v1(t)

∫ t

0

u1(s)h(s)

W (s)
ds. (10)

If we differentiate this expression, we get

u′(t) = −u′
1(t)

∫ 1

t

v1(s)h(s)

W (s)
ds − v′1(t)

∫ t

0

u1(s)h(s)

W (s)
ds

from which, after some computation, we can confirm that u′(0) = 0.
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Suppose now that h(t) /∈ L2
1(0, 1), that is, h(t) = c

t +h0(t) for some c 6= 0, h0 ∈ L2
1(0, 1).

In this case, the integral expression (8) is still well defined, satisfies equation (4), and

u′(0) = − lim
t→0

v′1(t)

∫ t

0

u1(s)h(s)

W (s)
ds = lim

t→0
c v′1(t)

∫ t

0
u1(s)s

k−1 ds = − c

k
.

Remark 2.3. Expression (8) can obviously be written in the form

∫ 1

0
Hλ(t, s)h(s) ds, (11)

which allows us to get the explicit form of the Green’s function associated to (9). From
the expression of Hλ, it is a simple matter to verify that it is continuous in [0, 1] × [0, 1]
and positive in ]0, 1[×]0, 1[.

From the proof of the previous proposition, we infer that formula (11), where the
Green’s function Hλ appears, provides us the unique solution of (4) for all the boundary
conditions u′(0) = a ∈ R, u(1) = 0, whenever h(t) + ka

t ∈ L2
1(0, 1).

The boundary value problem

−u′′(t) − k

t
u′(t) + λ2u(t) = h(t), u(1) = b,

with b 6= 0, has also a unique solution in C2]0, 1]∩C1[0, 1] (if we had two different solutions
w1, w2, then w1 −w2 would be the unique solution of the homogeneous problem, which is
identically zero), given by u0(t) + b

u1(1)u1(t), where u0(t) is the unique solution of

−u′′(t) − k

t
u′(t) + λ2u(t) = h(t),

in Hk(0, 1). Note that for some functions h(t) /∈ X we can still obtain a solution of
equation (4) via the Green’s function, which possibly has infinite derivative at t = 0, or
simply does not have derivative at t = 0, but we will not consider these cases.

Consider now the equation for k = 1

−u′′(t) − 1

t
u′(t) + λ2u(t) = h(t), t ∈ ]0, 1], (12)

where λ > 0 and h ∈ Lq
1(0, 1) ≡

{

h(t) measurable :
∫ 1
0 th(t)q dt < ∞

}

, for some 1 < q < 2.

Consider also the functional

J(u) :=

∫ 1

0

1

2

(

t u′(t)2 + λ2t u2(t)
)

+ t h(t)u(t) dt,

defined in H1(0, 1). We have

∫ 1

0
t h(t)u(t) dt ≤

(
∫ 1

0
tu(t)p dt

)1/p (
∫ 1

0
th(t)q dt

)1/q

.

Following [3], since for any p > 2 we have up ≤ Ce|u|
2−η

, for some C, η > 0, we know that
∫ 1
0 tu(t)p dt < ∞, and therefore the functional J(u) is well defined in H1(0, 1).

We can state exactly the same results obtained above for k > 1 in the case k = 1, just
noticing that in this case v1(t) ∼ ln t, and v′1(t) ∼ t−1. The fact that 1 < q < 2 allows us
to conclude that with a function h(t) ∼ 1

t , J(u) is well defined, and the associated solution
is the one obtained via Green function, with non-zero derivative at t = 0.
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3 Nonlocal Linear Problems

Let us consider the linear boundary value problem in the interval [0, 1]

−u′′(t) + λ2u(t) = h(t), u(0) = u(1) = 0, (13)

where λ > 0 and h ∈ C[0, 1].
This problem has a well known Green’s function

Gλ(t, s) =







sinh(λ) cosh(λt) sinh(λs)−cosh(λ) sinh(λs) sinh(λt)
λ sinh(λ) , t ≥ s

sinh(λ) cosh(λs) sinh(λt)−cosh(λ) sinh(λt) sinh(λs)
λ sinh(λ) , t ≤ s,

and therefore we have

u(t) =

∫ 1

0
Gλ(t, s)h(s) ds.

Proposition 3.1. Let w ∈ C[0, 1] ∩ C2]0, 1[ be such that

−w′′(t) + λ2w(t) + M

∫ 1

0
w(τ) dτ = 0, w(0) = w(1) = 0, (14)

for some λ > 0, M > 0. Then we have w(t) = 0 for all t ∈ [0, 1].

Proof. Assume towards a contradiction that there exists w(t) 6= 0 satisfying (14).
If w(t)  0 (by  we mean ≥ and 6≡), then w reaches a positive maximum for some

t0 ∈ ]0, 1[, where we would have the contradiction

0 < −w′′(t0) + λ2w(t0) + M

∫ 1

0
w(τ) dτ = 0.

If w(t) � 0, we get a contradiction with a similar argument. So w(t) must have a positive
maximum for some t1 ∈ ]0, 1[ and a negative minimum for some t2 ∈ ]0, 1[. With t = t1 in
(14) we get

∫ 1
0 w(τ) dτ < 0, and with t = t2 in (14) we get

∫ 1
0 w(τ) dτ > 0. The conclusion

now follows.

Lemma 3.2. Let u ∈ C[0, 1] ∩ C2]0, 1[ be such that

−u′′(t) + λ2u(t) + M

∫ 1

0
u(τ) dτ = f(t) ≥ 0, u(0) = a ≥ 0, u(1) = b ≥ 0, (15)

for some λ > 0, M > 0, and consider the C2[0, 1] functions U, V , where U(t) is the unique
solution of (13) with h(t) = 1 and V (t) is the unique solution of −V ′′(t) + λ2V (t) = 0,
with boundary conditions V (0) = a, V (1) = b (note that U and V depend on λ).

Suppose that

M

1 + M
∫ 1
0 U(τ) dτ

≤ inf
0<t,s<1

Gλ(t, s)

U(t)U(s)
, and

M U(t)

1 + M
∫ 1
0 U(τ) dτ

≤ V (t)
∫ 1
0 V (τ) dτ

. (16)

Then we have u(t) ≥ 0 for all t ∈ [0, 1].

Proof. Let v and w be such that

− v′′(t) + λ2v(t) = f(t), v(0) = a, v(1) = b,

− w′′(t) + λ2w(t) =
M

∫ 1
0 v(τ) dτ

1 + M
∫ 1
0 U(τ) dτ

, w(0) = w(1) = 0.
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As w(t) =
M

R
1

0
v(τ) dτ

1+M
R

1

0
U(τ) dτ

U(t), it can be easily verified that v − w satisfies (15). Proposi-

tion 3.1 allows us to conclude that u = v − w, so we only need to prove that v ≥ w.
Using the Green’s function Gλ defined above and the fact that Gλ(t, s) = Gλ(s, t), we

have

v(t) =

∫ 1

0
Gλ(t, s)f(s) ds + V (t), and

w(t) =
M

1 + M
∫ 1
0 U(τ) dτ

∫ 1

0
Gλ(t, σ) dσ

∫ 1

0

(
∫ 1

0
Gλ(τ, s)f(s) ds + V (τ)

)

dτ

=
M

1 + M
∫ 1
0 U(τ) dτ

(
∫ 1

0
U(t)U(s)f(s) ds + U(t)

∫ 1

0
V (τ) dτ

)

,

and therefore, if the conditions in (16) are verified, we have v ≥ w.

Remark 3.3. The explicit form of U and V is:

U(t) = − e−λt
(

−1 + eλt
) (

−eλ + eλt
)

(1 + eλ) λ2

V (t) =
e−λt

(

−beλ + ae2λ − ae2λt + beλ+2λt
)

−1 + e2λ
.

Let us now consider the linear boundary value problem

−u′′(t) − k

t
u′(t) + λ2u(t) = h(t), u(1) = b, u ∈ C2]0, 1] ∩ C1[0, 1], (17)

where k ≥ 1, λ > 0 and h ∈ X.
As stated before, this problem has a unique solution given by

u(t) =

∫ 1

0
Hλ(t, s)h(s) ds +

b

u1(1)
u1(t),

where, as before, u1(t) is the solution of the homogeneous equation with u1(0) = 1,
u′

1(0) = 0.

Lemma 3.4. The Green’s function Hλ(t, s) satisfies the following symmetry property:

tkHλ(t, s) = skHλ(s, t).

Proof. Let u1, u2 be such that

−u′′
i (t) −

k

t
u′

i(t) + λ2ui(t) = fi(t), u′
i(0) = ui(1) = 0, i = 1, 2

for some continuous functions f1, f2. The equations above are obviously equivalent to

−
(

tku′
i(t)

)′
+ λ2tkui(t) = tkfi(t)

Using this form of the equations, integrating by parts we obtain
∫ 1

0
tkf1(t)u2(t) dt =

∫ 1

0
tkf2(t)u1(t) dt,

and therefore
∫ 1

0

∫ 1

0
tkf1(t)Hλ(t, s)f2(s) ds dt =

∫ 1

0

∫ 1

0
tkf2(t)Hλ(t, s)f1(s) ds dt.

Given the arbitrariness of f1 and f2, the conclusion follows now easily.
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Proposition 3.5. Let w ∈ C2[0, 1] be such that

−w′′(t) − k

t
w′(t) + λ2w(t) + M

∫ 1

0
τkw(τ) ds = 0, w′(0) = w(1) = 0, (18)

for some λ > 0, M > 0. Then we have w(t) = 0 for all t ∈ [0, 1].

Proof. We obtain w(t) = 0 using similar arguments to those used in the proof of Proposi-
tion 3.1.

Lemma 3.6. Let u ∈ C2[0, 1] be such that

−u′′(t) − k

t
u′(t) + λ2u(t) + M

∫ 1

0
τku(τ) ds = f(t) ≥ 0, u′(0) = a ≤ 0, u(1) = b ≥ 0,

(19)
for some λ > 0, M > 0. Suppose that

M

1 + M
∫ 1
0 τkU(τ) dτ

≤ inf
0<t,s<1

Hλ(t, s)

U(t)U(s)sk
, and

M U(t)

1 + M
∫ 1
0 τkU(τ) dτ

≤ u1(t)
∫ 1
0 τku1(τ) dτ

(20)
where U(t) is the unique solution of (17) with h(t) = 1, a, b = 0. Then we have u(t) ≥ 0
for all t ∈ [0, 1].

Proof. Note that f ∈ X. Let v and w be such that

− v′′(t) − k

t
v′(t) + λ2v(t) = f(t), v ∈ C2]0, 1] ∩ C1[0, 1], v(1) = b,

− w′′(t) − k

t
w′(t) + λ2w(t) =

M
∫ 1
0 τkv(τ) dτ

1 + M
∫ 1
0 τkU(τ) dτ

, w′(0) = w(1) = 0.

As w(t) =
M

R
1

0
τkv(τ) dτ

1+M
R

1

0
τkU(τ) dτ

U(t), it can be easily verified that v −w satisfies (19). Proposi-

tion 3.5 allows us to conclude that u = v − w, so we only need to prove that v ≥ w.
Using the Green’s function Hλ defined above and the previous lemma, we have

v(t) =

∫ 1

0
Hλ(t, s)f(s) ds +

b

u1(1)
u1(t), and

w(t) =
M

1 + M
∫ 1
0 τkU(τ) dτ

∫ 1

0
Hλ(t, σ) dσ

∫ 1

0
τk

(
∫ 1

0
Hλ(τ, s)f(s) ds +

b

u1(1)
u1(τ)

)

dτ

=
M

1 + M
∫ 1
0 τkU(τ) dτ

(
∫ 1

0
U(t)U(s)skf(s) ds +

bU(t)

u1(1)

∫ 1

0
τku1(τ) dτ

)

,

and therefore, if the conditions in (20) are verified, we have v ≥ w.

Remark 3.7. In the two previous results we do not need to consider C2[0, 1] functions,
the same conclusions are valid in C1[0, 1[∩C2 ]0, 1[.

4 Nonlocal Semi-Linear Problems

Consider the boundary value problem

−u′′(t) + λ2u(t) + M

∫ 1

0
|u(τ)| dτ = f(t), u(0) = a ≥ 0, u(1) = b ≥ 0. (21)
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Proposition 4.1. If

M < min
u ∈ H1

0 (0, 1)
u 6= 0

∫ 1
0 u′2(τ) + λ2u2(τ) dτ

(

∫ 1
0 |u(τ)| dτ

)2 ,

then the problem (21) has a unique solution.

Proof. We shall consider two cases:

(i) If f(t) = 0, and a = b = 0, multiplying the equation in (21) by u and integrating by
parts, we have

∫ 1

0
u′2(τ) + λ2u2(τ) dτ = −M

∫ 1

0
|u(τ)| dτ

∫ 1

0
u(τ) dτ ≤ M

(
∫ 1

0
|u(τ)| dτ

)2

,

and the conclusion follows.

(ii) If f(t) 6= 0, let u1, u2 be such that

−u′′
i (t) + λ2ui(t) + M

∫ 1

0
|ui(τ)| dτ = f(t), ui(0) = a, ui(1) = b, i = 1, 2.

Setting w = u1 − u2, we have

−w′′(t) + λ2w(t) + M

∫ 1

0
θ(τ)w(τ) dτ = 0, w(0) = w(1) = 0,

where θ(τ) = |u1(τ)|−|u2(τ)|
u1(τ)−u2(τ) . Since |θ(τ)| ≤ 1, using an argument similar to the one

in (i), we get w(t) = 0, and therefore there is a unique solution to (21).

Proposition 4.2. We have

min
u ∈ H1

0 (0, 1)
u 6= 0

∫ 1
0 u′2(τ) + λ2u2(τ) dτ

(

∫ 1
0 |u(τ)| dτ

)2 = min
u ∈ H1

0 (0, 1)
u 6= 0

∫ 1
0 u′2(τ) + λ2u2(τ) dτ

(

∫ 1
0 u(τ) dτ

)2 .

Proof. If a function u0 minimizes the left-hand side, then, since |u0| ∈ H1
0 (0, 1), the right-

hand side has the same value.

Let

l1 = min
u ∈ H1

0 (0, 1)
u 6= 0

∫ 1
0 u′2(τ) + λ2u2(τ) dτ

(

∫ 1
0 u(τ) dτ

)2 = min
u ∈ H1

0 (0, 1)
∫ 1
0 u(τ) dτ = 1

∫ 1

0
u′2(τ) + λ2u2(τ) dτ.

To find l1, we need to solve a constrained extrema problem, which we can do using La-
grange Multipliers (the proposition above allows us to use a differentiable restriction). Our
minimizer u0 satisfies

−u′′
0(t) + λ2u0(t) = m, u0(0) = u0(1) = 0,

9



where m is the Lagrange Multiplier, so u0(t) = mU(t). Since
∫ 1
0 u0(τ) dτ = 1, we get

m =
(

∫ 1
0 U(τ) dτ

)−1
, and consequently

l1 =

∫ 1

0
u′

0
2
(τ) + λ2u2

0(τ) dτ =
1

∫ 1
0 U(τ) dτ

.

Theorem 4.3 (Maximum Principle 1). Let λ, M be positive constants, Gλ the Green’s
function associated to (13), U(t) =

∫ 1
0 Gλ(t, s) ds, and V (t) the unique solution of −V ′′(t)+

λ2V (t) = 0, with boundary conditions V (0) = a ≥ 0, V (1) = b ≥ 0. Suppose that

M

1 + M
∫ 1
0 U(τ) dτ

≤ inf
0<t,s<1

Gλ(t, s)

U(t)U(s)
,

V (t)
∫ 1
0 V (τ) dτ

≥ M U(t)

1 + M
∫ 1
0 U(τ) dτ

,

and

M <
1

∫ 1
0 U(τ) dτ

.

Then, if u ∈ C[0, 1] ∩ C2]0, 1[ satisfies

−u′′(t) + λ2u(t) + M

∫ 1

0
|u(τ)| dτ ≥ 0, u(0) = a ≥ 0, u(1) = b ≥ 0, (22)

we have u(t) ≥ 0.

Proof. Let f(t) = −u′′(t) + λ2u(t) + M
∫ 1
0 |u(τ)| dτ . By Lemma (3.2), we know that the

linear problem (15) has a nonnegative solution, and therefore, this nonnegative solution
has to be the only solution of (21).

Using Mathematica, we have the following estimates relative to the first pair of condi-
tions:

λ = 0.2 Mmax ≈ 5.98

λ = 0.5 Mmax ≈ 5.92

λ = 1 Mmax ≈ 5.71

λ = 2 Mmax ≈ 4.89

λ = 4 Mmax ≈ 2.74

λ = 7 Mmax ≈ 0.62

λ = 10 Mmax ≈ 0.09

The last condition is less restrictive, as it is shown by the following graph:

2 4 6 8 10
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40

60

80

100

120

Figure 1: l1(λ) = 1R
1

0
U(τ) dτ
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Using the same technique, we can reach similar results for the boundary value problem

−u′′(t)− k

t
u′(t)+λ2u(t)+M

∫ 1

0
τk |u(τ)| dτ = f(t), u′(0) = a ≤ 0, u(1) = b ≥ 0. (23)

Let us consider the Hilbert Space

Hk(0, 1) =

{

u ∈ AC ]0, 1] :

∫ 1

0
τku′2(τ) dτ < ∞, u(1) = 0

}

,

with the norm ‖u‖ =
(

∫ 1
0 τku′2(τ) dτ

)1/2
. Following [1], for any u ∈ Hk(0, 1) with k > 1,

we have
∫ 1
0 τku2 ≤ C ‖u‖2, for some C > 0.

Remark 4.4. Note that if u ∈ Hk(0, 1), then |u| ∈ Hk(0, 1).

Proposition 4.5. If

M < min
u ∈ Hk(0, 1)

u 6= 0

∫ 1
0 τk

(

u′2(τ) + λ2u2(τ)
)

dτ
(

∫ 1
0 τk |u(τ)| dτ

)2 ,

then the problem (23) has a unique solution.

Proof. As stated before we can write equation (23) in the form

−
(

tku′(t)
)′

+ λ2tku(t) + Mtk
∫ 1

0
τk |u(τ)| dτ = tkf(t)

We shall consider two cases:

(i) If f(t) = 0, a, b = 0, multiplying the equation in (23) by u and integrating by parts,
we have

∫ 1

0
τk

(

u′2(τ) + λ2u2(τ)
)

dτ = −M

∫ 1

0
τk |u(τ)| dτ

∫ 1

0
τku(τ) dτ ≤ M

(
∫ 1

0
τk |u(τ)| dτ

)2

,

and the conclusion follows.

(ii) If f(t) 6= 0, let u1, u2 be such that

−u′′
i (t) −

k

t
u′

i(t) + λ2ui(t) + M

∫ 1

0
τk |ui(τ)| dτ = f(t), u′

i(0) = a, ui(1) = b,

Setting w = u1 − u2, we have

−
(

tkw′(t)
)′

+ λ2tkw(t) + Mtk
∫ 1

0
|θ(τ)| τk |w(τ)| dτ = 0, w′(0) = w(1) = 0,

where θ(τ) = |u1(τ)|−|u2(τ)|
u1(τ)−u2(τ) . Since |θ(τ)| ≤ 1, using an argument similar to the one

in (i), we get w(t) = 0, and therefore there is a unique solution to (21).

11



Proposition 4.6. We have

min
u ∈ Hk(0, 1)

u 6= 0

∫ 1
0 τk

(

u′2(τ) + λ2u2(τ)
)

dτ
(

∫ 1
0 τk |u(τ)| dτ

)2 = min
u ∈ Hk(0, 1)

u 6= 0

∫ 1
0 τk

(

u′2(τ) + λ2u2(τ)
)

dτ
(

∫ 1
0 τku(τ) dτ

)2 .

Proof. If a function u0 minimizes the left-hand side, then, since |u0| ∈ Hk(0, 1), the right-
hand side has the same value.

Let

l2 = min
u ∈ Hk(0, 1)

u 6= 0

∫ 1
0 τk

(

u′2(τ) + λ2u2(τ)
)

dτ
(

∫ 1
0 τku(τ) dτ

)2 = min
u ∈ Hk(0, 1)

∫ 1
0 τku(τ) dτ = 1

∫ 1

0
τk

(

u′2(τ) + λ2u2(τ)
)

dτ.

So, to find l2, we need to solve another constrained extrema problem. Our minimizer u0

satisfies

−u′′
0(t) −

k

t
u′

0(t) + λ2u0(t) = m, u′
0(0) = u0(1) = 0,

where m is the Lagrange Multiplier, so u0(t) = mU(t). Since
∫ 1
0 τku0(τ) dτ = 1, we get

m =
(

∫ 1
0 τkU(τ) dτ

)−1
, and consequently

l2 =

∫ 1

0
τk

(

u′
0
2
(τ) + λ2u2

0(τ)
)

dτ =
1

∫ 1
0 τkU(τ) dτ

.

Theorem 4.7 (Maximum Principle 2). Let λ, M be positive constants, Hλ the Green’s
function associated to (17), and U =

∫ 1
0 Hλ(t, s) ds. Suppose that

M

1 + M
∫ 1
0 τkU(τ) dτ

≤ inf
0<t,s<1

Hλ(t, s)

U(t)U(s)sk
,

M U(t)

1 + M
∫ 1
0 U(τ) dτ

≤ u1(t)
∫ 1
0 τku1(τ) dτ

,

and

M <
1

∫ 1
0 τkU(τ) dτ

.

Then, if for 0 < t ≤ 1, u ∈ C2[0, 1] satisfies

−u′′(t) − k

t
u′(t) + λ2u(t) + M

∫ 1

0
τk |u(τ)| ds ≥ 0, u′(0) = a ≤ 0, u(1) = b ≥ 0, (24)

we have u(t) ≥ 0.

Proof. Let f(t) = −u′′(t)− k
t u

′(t)+λ2u(t)+M
∫ 1
0 τk |u(τ)| ds. By Lemma (3.6), we know

that the linear problem (19) has a nonnegative solution, and therefore, this nonnegative
solution has to be the only solution of (23).

We have the following estimates relative to the cases k = 1, 2, 3:

(i) k=1:

λ = 0.25 Mmax ≈ 15.95

λ = 1 Mmax ≈ 15.30

λ = 5 Mmax ≈ 5.71
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(ii) k=2:

λ = 0.25 Mmax ≈ 29.9

λ = 1 Mmax ≈ 28.9

λ = 5 Mmax ≈ 12.2

(iii) k=3:

λ = 0.25 Mmax ≈ 47.9

λ = 0.5 Mmax ≈ 47.5

λ = 1 Mmax ≈ 46.5

λ = 3 Mmax ≈ 36.0

λ = 5 Mmax ≈ 21.5

λ = 10 Mmax ≈ 2.2

The last condition is also less restrictive. We present here the graph of l2(λ) in the
case k = 3:
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Figure 2: l2(λ) = 1R
1

0
τ3U(τ) dτ

5 Lower and Upper solutions and the monotone method

Consider the boundary value problem

−u′′(t) − n − 1

t
u′(t) = f

(

u(t), ωn

∫ 1

0
sn−1g (u(s)) ds

)

for 0 < t ≤ 1, (25)

and
u′(0) = 0 = u(1), (26)

where n ∈ N, f, g are continuous functions, and ωn is the superficial measure of the unit
sphere in Rn. The solutions of this problem are radial solutions of

−∆u = f

(

u,

∫

U
g (u)

)

(27)

u|∂U = 0, (28)

where U = B(0, 1) is the unit sphere in Rn (see [4]).
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We say that α(t) is a lower solution of (25)–(26) if

−α′′(t) − n − 1

t
α′(t) ≤ f

(

α(t), ωn

∫ 1

0
sn−1g (α (s)) ds

)

, for 0 < t ≤ 1,

α′(0) ≥ 0 and α(1) ≤ 0.

A function β satisfying the reversed inequalities is called an upper solution.
For a given function u(t) ∈ C[0, 1], consider the boundary value problem

−v′′(t) − n − 1

t
v′(t) + λ2v(t) = f

(

u(t), ωn

∫ 1

0
sn−1g (v(s)) ds

)

+ λ2u(t),

with v′(0) = 0 = v(1). Using the operator Lu = −u′′ − n−1
t u′ + λ2u, in the space

C∗ =
{

u ∈ C2[0, 1] : u′(0) = u(1) = 0
}

this equation is equivalent to the fixed point
equation

v = L−1

(

f

(

u, ωn

∫ 1

0
sn−1g (v (s)) ds

)

+ λ2u

)

≡ Φuv. (29)

It turns out that it is advantageous to look at Φu as an operator from L2
n−1(0, 1)

into itself. Noticing that L−1 is a compact self-adjoint operator in this space with norm
‖L−1‖ = (ξ2

n + λ2)−1 where ξn is the first positive zero of the Bessel function Jn−2

2

, it is

easy to see that if f(u, v) is k1-Lipschitz in v, g is k2-Lipschitz, then Φu is Lipschitz with
constant ωnk1k2

(ξ2
n+λ2)n

. In particular, when the condition

ωnk1k2

(ξ2
n + λ2)n

< 1 (30)

is satisfied, Φu is a contraction mapping, and therefore has a unique fixed point.
Using maximum principle 4.7, we get the following improved version of Theorem 4.10

in [2]:

Theorem 5.1. Suppose that f(u, v) is k1-Lipschitz in v, g is k2-Lipschitz. Suppose that
M ≡ k1k2ωn and λ are in the conditions of the Maximum Principle 4.7, (30) holds and

f(u2, v) − f(u1, v) ≥ −λ2(u2 − u1),

for all v ∈ R, and u1 ≤ u2. Let α0 and β0 be a lower and an upper solution of (25)–(26)
respectively, with α0 ≤ β0 in [0, 1]. If we take (αn)n∈N0

and (βn)n∈N0
such that,

αn+1 = Φαnαn+1 and βn+1 = Φβn
βn+1, for all n ∈ N0,

we obtain
α0 ≤ α1 ≤ · · · ≤ αn ≤ · · · ≤ βn ≤ · · · ≤ β1 ≤ β0.

The monotone bounded sequences (αn)n∈N0
, (βn)n∈N0

defined above are convergent in
C[0, 1] to solutions of (25)–(26).

The main step of the proof consists in verifying that indeed a monotone sequence is
obtained. This is a consequence of the following fact: Let u1(r) ≤ u2(r) be two given
functions defined in [0, 1] and v1(r), v2(r) the two respective solutions of (29). Then
v1(r) ≤ v2(r).
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Let us recall the argument (see [2]):

− (v2 − v1)
′′ − n − 1

r
(v2 − v1)

′ + λ2(v2 − v1) =

= λ2(u2 − u1) + f

(

u2, ωn

∫ 1

0
sn−1g (v2) ds

)

− f

(

u1, ωn

∫ 1

0
sn−1g (v2) ds

)

+

+ f

(

u1, ωn

∫ 1

0
sn−1g (v2) ds

)

− f

(

u1, ωn

∫ 1

0
sn−1g (v1) ds

)

≥

≥ −k1k2ωn

∫ 1

0
sn−1 |v2 − v1| ds.

It sufices then to invoke the maximum principle 4.7 to obtain the conclusion.

Example 5.2. Let us consider the non-local differential equation

−u′′(t) − 2

t
u′(t) = f

(

u, 4π

∫ 1

0
s2

(

u(s)2 + 1

3

)

ds

)

(31)

where

f(u, v) =

{

(
√

u + 1) (sin v + 1) + 4, u ≤ 1
(

1
u + 1

)

(sin v + 1) + 4, u ≥ 1,

with boundary conditions u′(0) = u(1) = 0.
Consider α0 = 1− t2 and β0 = 4

3

(

1 − t2
)

. After some computation, we can verify that
α0, β0 are respectively a lower and an upper solution of (31), both satisfying the considered
boundary conditions. Since 0 ≤ α0(t) ≤ β0(t) ≤ 4

3 , for all t ∈ [0, 1], we can consider k1 = 2,
k2 = 8

9 , and λ = 1. Moreover ξ3 = π. Setting M = 64π
9 , the conditions of theorem 5.1

are satisfied, and therefore, using the described iterative method, we can aproximate a
solution u(t) of (31) satisfying u′(0) = u(1) = 0 and 1 − t2 ≤ u(t) ≤ 4

3

(

1 − t2
)

.
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[3] J.M. Esteban, Existence d’une infinité d’ondes solitaires pour des equations de champs
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