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Abstract

We prove the existence of a positive solution to an equation of the form
(Φ(t)u′(t))′ = f(t, u(t)) with mixed Neuman and Dirichlet conditions.
Our method combines variational and topological arguments providing
an L∞ estimate of the solution. Our results can be applied to certain
type of elliptic problems in annular domains.
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1 Introduction

Early since its publication in 1973, the Mountain Pass Theorem of Ambrosetti
and Rabinowitz (see [10]) has provided existence and multiplicity results in Dif-
ferential Equations as well as a comprehensive perspective of variational meth-
ods. The characterization of Mountain Pass type solutions became itself a sub-
ject of interest. As examples one may cite works of del Pino and Felmer (see [5]
and references therein) where the shape of the solutions to the Dirichlet problem

ε2∆u− u + f(u) = 0 in Ω ; u > 0 in Ω and u = 0 in Ω ,

is established as ε tends to zero. In the same spirit, Bonheure, Habets and
the author ([3]) have showed that for a superlinear elliptic problem with sign-
changing non-linearity the major contribution of volume of mountain pass type
solutions should concentrate in prescribed regions of the domain as a certain
parameter µ → ∞. In the above examples the role played by a parameter as
it approaches some limit is crucial. In [6] the author established existence and
L∞ estimates of positive Mountain Pass type solutions to a class of singular
differential equations with an increasing friction term and Dirichlet boundary
conditions. The bound is just the L∞ norm of any regular function where the
Euler-Lagrange functional J attains a negative value. Our method combined
arguments in the Direct Calculus of Variations with phase plane techniques. In
fact, pursuing the nature of the optimal min-max path connecting the origin to
some function where J is negative, we were lead to consider a family of mini-
mizers of truncated functionals containing, as a particular element, a classical
solution to our b.v.p. In this work we approach with similar arguments a more
general class of equations that include some elliptic problems in an annulus.
More precisely we will be interested in positive solutions to

(Φ(t)u′(t))′ + f(t, u(t)) = 0 (1)
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u′(0) = u(1) = 0 (2)

By positive solution we mean a C2 function u verifying the above equalities and
such that u(t) > 0 for all t ∈ [0, 1[. Similar problems have been considered in
[2], [8] and [9].

2 Variational setting and results

We begin by listing the assumptions on the terms of equation (1)-(2).
Φ ∈ C1([0, 1]) is strictly positive and we choose m,m > 0 such that, for all

t ∈]0, 1[,
0 < m ≤ Φ(t) ≤ m . (3)

We assume that

f(t, u)Φ(t) is decreasing in t for every u ≥ 0 . (4)

Also

f : [0, 1]× [0,+∞[ 7→ R is locally lipschitz in the variable u , (5)

and that, for some δ > 0, f(t, u) verifies

f(t, u) = 0 ∀(t, u) ∈ [0, 1]× [0, δ] and f(t, u) > 0 in [0, 1]×]δ,+∞[ . (6)

The technical assumption (6) will be relaxed subsequently to a sub-linear growth
near zero. Since we are looking for positive solutions we assume throughout the
paper that f is extended by zero in [0, 1]×]−∞, 0]. The reader may easily verify
that any non-trivial solution to (1)-(2) with this extension -which we will still
denote by f - should be positive in ]0, 1[ therefore being a solution of the initial
problem. We shall consider the Sobolev space H ⊂ H1

0 (]0, 1[) consisting in
absolutely continuous functions u such that

‖u‖2 :=
∫ 1

0

u′
2(t)dt < ∞ , u(1) = 0.

In the sequence we will also refer

‖u‖∞ := sup{u(t) : t ∈ [0, 1]} ,

the natural norm on the space of continuous functions C([0, 1]). Note that
Problem (1)-(2) may be viewed as the Euler-Lagrange equation of the functional
J : H → R defined by:

J(u) =
1
2

∫ 1

0

Φ(t)u′2(t)dt−
∫ 1

0

F (t, u(t))dt

where F (t, u) =
∫ u

0
f(t, s)ds. We will suppose that J satisfies the fundamental

property:
∃h ∈ H : J(h) < 0. (7)

Remark 1 Property (7) can be easily verified if, for some ε > 0, f(t, u) ≥
εuα−C for all u ≥ 0 and t ∈ [0, 1], where α > 1 and C > 0. Note that we make
no assumptions on the growth of f as u →∞ or require J to verify Palais-Smale
condition.
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We denote M = ‖h‖∞. Since

∀w ∈ H , ‖w‖∞ ≤ δ ⇒ J(w) ≥ 0,

(where δ was defined in (6)) we have M > δ. For all M ∈
[
δ,M

]
, we consider

the following subset of H:

CM = {u ∈ H : maxu ≥ M} .

We also consider the truncated functional JM : H → R,

JM (u) =
1
2

∫ 1

0

Φ(t)u′2(t)dt−
∫ 1

0

FM (t, u(t))dt

where

FM (u) =

 F (t, u) if u ≤ M

F (t, M) if u > M
.

Remark 2 From the compact injection of H1
0 (]0, 1[) in C([0, 1]) we conclude

that CM is weakly sequentially closed and that JM is coercive and weakly lower
semi-continuous.

We will be interested in the family of minimizers uM of JM in CM . By
Remark 2 we know that uM exists for every M ∈

[
δ,M

]
. We also know that:

Lemma 1 Let uM be a minimizer of JM in CM . Then

max
[0,1]

u = M and min
[0,1]

u = 0 .

.

Proof. Given w ∈ CM define

w(t) = max{0,min{w(t),M}}.

Of course w ∈ H ∩ CM . If w 6= w then,∫ 1

0

Φ(t)w′2(t) dt <

∫ 1

0

Φ(t)w′2(t) dt

and ∫ 1

0

FM (t, w(t)) dt =
∫ 1

0

FM (t, w(t)) dt .

Then JM (w) < JM (w) which is absurd and the lemma follows.

Given M ∈
[
δ,M

]
, we consider two types of minimizers of JM in CM :

Definition. Let uM be a minimizer of JM in CM .

We say that uM is a minimizer of type A if

u(0) = M , u′+(0) ≤ 0 and u(t) < M for all t > 0.

We say that uM is a minimizer of type B if, for some t̄ ≥ 0, we have

u(t) = M ∀t ∈ [0, t̄ ] , u′(t̄) = 0 and u(t) < M if t > t̄.
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Remark 3 If uM is a minimizer of type A then u satisfies equation (1) in ]0, 1[.
In fact, if v ∈ C1

0 (]0, 1[), then, for sufficiently small s, we have,

uM + sv ∈ CM and uM (t) + sv(t) < M ∀t ∈ supp(v).

Since uM is a minimizer, we conclude

lim
s→0

JM (uM + sv)− JM (uM )
s

=
∫ 1

0

Φ(t)u′Mv′(t)dt−
∫ 1

0

f(t, uM (t))v(t) dt = 0 ,

and the assertion follows. Similarly, if uM is a minimizer of type B, it satisfies
equation (1) in ]t̄, 1[. If uM is simultaneously of type A and B, then uM is a
classical solution to problem (1)-(2).

Lemma 2 Let u be a minimizer of JM in CM . Then u is of type A or B
(possibly both).

Proof. Let us consider

t̄ := sup{t ∈ [0, 1] : u(t) = M} .

Since H ⊂ C([0, 1]), we have u ( t̄ ) = M and we may therefore consider w ∈ H

w :=

 M if t ≤ t̄

u(t) if t > t̄
.

Moreover, ∫ 1

0

FM (t, w(t)) dt ≥
∫ 1

0

FM (t, u(t)) dt ,

and ∫ 1

0

Φ(t)w′2(t) dt ≤
∫ 1

0

Φ(t)u′2(t) dt ,

the last inequality being strict if w 6= u in [ 0, t̄ ]. Since u is a minimum of JM , we
conclude u ≡ w. Note that by Lemma 1 and Remark 3, u′+( t̄ ) is well defined and
non-positive. If t̄ = 0 then u is of type A. Suppose in view of a contradiction
that t̄ > 0 and u′+( t̄ ) < 0. Choose θ, ε > 0 such that u′(t) ≤ −θ for every
t ∈ ]t̄, t̄ + ε[ and, assuming ε < t̄/2, define the “triangular” perturbation

vε(t) = −(|t− t̄| − ε)− . (8)

We assert that, for a small ε,

lim
s→0

JM (u + svε)− JM (u)
s

< 0. (9)

If (9) holds, then, for sufficiently small s∗ > 0, we have u + s∗vε ∈ CM (since,
by our choice of ε, (u + s∗vε)(0) = M) and JM (u + s∗vε) < JM (u) thereby
contradicting the assumption that u is a minimizer of JM in CM . In fact,
Lemma 1 and (8) imply u + s∗vε ≤ M . Therefore

lim
s→0

JM (u + svε)− JM (u)
s

= lim
s→0

J(u + svε)− J(u)
s

=
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=
∫ 1

0

Φ(t)u′(t)v′ε(t)dt−
∫ 1

0

f(t, u(t))vε(t)dt ≤

−θ

∫ t̄+ε

t̄

Φ(t) dt−
∫ t̄+ε

t̄−ε

f(t, u(t))vε(t)dt.

We observe that, by (3),

−θ

∫ t̄+ε

t̄

Φ(t) dt ≤ −mθε (10)

and for some C > 0 depending only on f ,∫ t̄+ε

t̄−ε

f(t, u(t))vε(t)dt ≤ Cε2. (11)

Therefore, by (10) and (11), we have

lim
s→0

JM (u + svε)− JM (u)
s

≤ −mθε + Cε2 ,

and the assertion follows for sufficiently small ε.

In the next lemma we prove a necessary ordering relation between type A
and type B minimizers of JM in CM .

Lemma 3 Suppose that for a certain M ∈
]
0,M

]
there exist minimizers u and

v of JM in CM such that u is of type A and v is of type B. Then u(t) < v(t) for
all t ∈]0, 1[ or else u ≡ v.

Proof. Assume u 6= v. Necessarily, we will have u(t) < v(t) for all t ∈]0, ε[
provided ε is sufficiently small. Suppose that for some t∗ ∈]0, 1[ we had

u(t∗) = v(t∗) and u′(t∗) > v′(t∗) ,

(the case u′(t∗) = v′(t∗) is excluded by (5) together with Existence and Unique-
ness Theorem). Moreover, suppose that

1
2

∫ 1

t∗
Φu′

2 −
∫ 1

t∗
ΦFM (t, u) ≤ 1

2

∫ 1

t∗
Φv′

2
dt−

∫ 1

t∗
ΦFM (t, v), (12)

and let

v∗(t) =

 v(t) if 0 ≤ t ≤ t∗

u(t) if t∗ < t ≤ 1
.

Then v∗ ∈ H and
JM (v∗) ≤ JM (v),

therefore v∗ is also a minimizer in CM . But this is absurd since v∗ is not
differentiable at t∗ (see remark 3). In case where, instead of (12), we had the
reversed inequality we would get the same contradiction by considering:

u∗(t) =

u(t) if 0 ≤ t ≤ t∗

v(t) if t∗ < t ≤ 1
.
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In the next lemma we establish an important fact concerning the coexistence
of type A and type B minimizers at a same truncating level.

Lemma 4 Assume that conditions (4), (3) and (5) hold. Suppose that for a
certain M ∈

]
0,M

]
there exist minimizers u and v of JM in CM such that u

is of type A and v is of type B. Then the minimizer u is a classical solution to
(1)-(2).

Proof. We define an inverse function for u(t). By Remark 3, we may write

u′(t) =
1

φ(t)

(
φ(0)u′+(0)−

∫ t

0

f(s, u(s)) ds

)
.

Note that, if u(0) ≤ δ, necessarily u′+(0) < 0. In fact by Lemma 1 we have
u′(0) ≤ 0. In case u′(0) = 0 condition (6) and Remark 3 imply u ≡ δ contra-
dicting the assumption that u ∈ H. If u(0) > δ then our assumptions on f
imply u′(t) < 0 for all t ∈]0, 1]. In both cases we conclude that u is strictly
decreasing in [0, 1] and we may define the inverse function

[0,M ] → [0, 1] ,

u 7→ tA(u) .

Using similar arguments we may define an inverse function for v

[0,M [→]t̄, 1] ,

v 7→ tB(v) .

We consider the continuous extension of this function to [0,M ] (that we still
denote by tB) verifying tB(M) = t̄. By Lemma 3 we have

tA(u) ≤ tB(u) ∀u ∈ [0,M ] .

We consider the functions 1

ZA(u) = Φ(tA(u))u′(tA(u)) ,

and
ZB(v) = Φ(tB(v))v′(tB(v)) .

Since the functions u(t) and v(t) verify (1)-(2) for t ≥ 0 and t ≥ t̄ respectively,
we write, for u, v ∈]0,M [

−d ZA

du

du

dt
= f(tA(u), u) and − d ZB

dv

dv

dt
= f(tB(v), v)

or

d ZA

du
= −Φ(tA(u))

ZA
f(tA(u), u) and

d ZB

dv
= −Φ(tB(v))

ZB
f(tB(v), v) . (13)

Suppose in view of a contradiction that u(t) is not a type B minimizer, i.e.

ZA(M) < 0 = ZB(M) . (14)
1This change of variables was suggested by the reading of [7].
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In fact, this assumption implies that ZA(u) < ZB(u) for all u ∈ [0, M ]. We start
by noting that if ZA(0) = ZB(0), then u′(1) = v′(1). Since

u(1) = v(1) = 0 ,

Existence Uniqueness Theorem implies u(t) = v(t) for all t ∈ [t̄, 1] thereby
contradicting (14). Admit that for some u∗ ∈]0,M [ we had

ZA(u∗) = ZB(u∗) .

We assume that u∗ is the maximum point satisfying the previous equality. Then

d ZA

du
(u∗) ≤ d ZB

du
(u∗) .

If there is equality of the derivatives then Existence Uniqueness Theorem implies
ZA(0) = ZB(0) which, as previously noticed, is absurd. Since ZA(u∗) = ZB(u∗) <

0, (4) implies that the right hand-sides of the equalities in (13) are decreasing
functions of t. Recalling that tB(u∗) ≥ tA(u∗) we conclude

d ZA

du
(u∗) >

d ZB

du
(u∗)

contradicting the maximal property of our choice of u∗. In particular we have
proved that if u is not a type B minimizer then ZA(0) < ZB(0).

Finally we conclude u′(1) < v′(1) < 0 which in turn implies that u(t∗) >
v(t∗) for some t∗ < 1, a contradiction with Lemma 3 and the proof is complete.

We are now in a position to prove

Proposition 5 Assume that conditions (3), (4), (5), (6) and (7) hold. Then
there exists a positive solution u to (1)-(2) such that

‖u‖∞ ≤ ‖h‖∞

where h was defined in (7).

Proof.
Recalling our notation M = ‖h‖∞, let I =

[
δ,M

]
and consider the following

subsets IA and IB :

IA (IB) = {M ∈
[
δ,M

]
: JM has a minimizer in CM of type A (B)}.

By Lemma 2 we have I = IA ∪ IB . We assert that IA and IB are non-empty.
In fact δ ∈ IA since, as previously noticed, if uδ is a minimizer of Jδ in Cδ

and u′δ(0) = 0 the Existence and Uniqueness Theorem implies uδ(t) = δ for all
t ∈ [0, 1], which is absurd.

Claim 1: IB is non-empty.

Suppose that M /∈ IB . In this case uM is a type A minimizer. Let

f̄(t, x) := f(t, min{x, uM (t)}) .
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Define, for u ∈ H

J̄(u) :=
1
2

∫ 1

0

φ(t)u′2(t) dt−
∫ 1

0

F (t, u(t)) dt ,

where F (t, x) =
∫ x

0
f̄(t, s)ds. Trivially, By (7) we have J̄(uM ) < 0. Also J̄ is

coercive and lower semi-continuous in H and therefore attains a minimum at
some function w ∈ H such that J̄(w) < 0. In fact

0 < w(t) < uM (t) ∀t ∈ [0, 1[ ,

(0 and uM are a pair of well ordered lower and upper solutions respectively)
and w is a classical solution to (1)-(2)(see for instance [[4], ch. 4] for details).

Claim 2: IA and IB are closed subsets of I.

Let (Mn) be a sequence in IA such that Mn → M . Let un be a correspond-
ing sequence of type A (B) minimizers of JMn

in CMn
. Since (un) is trivially

bounded we may extract a weakly convergent subsequence (still denoted by un)
such that

un ⇀ u in H and un → u in C([0, 1]) .

We assert that u is a minimizer of JM in CM . In fact, since,

lim
n→∞

∫ 1

0

Φ(t)FMn(t, un(t)) dt =
∫ 1

0

Φ(t)FM (t, u(t)) dt

and ∫ 1

0

Φ(t)u′2(t) dt ≤ lim inf
n→∞

∫ 1

0

Φ(t)un
′2(t) dt ,

we conclude
JM (u) ≤ lim inf JMn

(un).

However, if we set wn = (Mn/M)u, we have wn → u in H and wn ∈ CMn , for
all n ∈ N. Therefore

JM (u) = lim
n→∞

JMn
(wn)

and
JMn(wn) ≥ JMn(un),

for all n ∈ N. We conclude

JM (u) ≥ lim sup
n→∞

JMn
(un) ≥ lim inf

n→∞
JMn

(un) ≥ JM (u),

or,
lim

n→∞
JMn

(un) = JM (u).

If, for some u∗ in CM , we had JM (u∗) < JM (u) then for sufficiently large n, we
would have

JMn
(w∗n) < JMn

(un),

where w∗n = (Mn/M)u∗, which is absurd. Note that so far we have just used
the fact that un is a sequence of minimizers. It remains to prove that the limit
function u is of type A (B). If (un) is a type A sequence, since un → u in L∞
and (1) is verified for all un in ]0, 1[ implies that u satisfies (1) in ]0, 1[. This
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trivially implies that u itself is of type A. In case of a type B sequence, then
the same L∞-convergence insures that u must be constant in some interval [0, t̄]
where t̄ is a limit point of the sequence (tn) where

tn = max{t : un(t) is constant in[0, t]} ,

and satisfies (1) in ]t̄, 1[. Also, since the un’s are of type B and, for small ε > 0,

un −→
C1

u in [t̄ + ε, 1]

we have u′(t̄) = 0 and the claim is proved.

We may therefore conclude, since I is connected, that IA ∩ IB 6= ∅. By
Lemma 4 it implies the existence of a classical solution u such that maxu ∈
IA ∩ IB .

Remark 4 Note that instead of (2) we may conside the more general boundary
conditions

u′(a) = u(b) = 0 (a < b) .

In the next result we relax condition (6) using an approximating standard
technique.

Theorem 6 Suppose that f(t, u) is locally Lipschitz in the variable u, verifies
(4) and

0 ≤ f(t, u) ≤ Cup for (t, u) ∈ [0, 1]× [0, ρ] (15)

for some p > 1 and ρ > 0. Also assume (3) and that condition (7) is fulfilled
by some non-negative h ∈ H. Then there exists a positive solution u to (1)-(2)
such that max u ≤ ‖h‖∞.

Proof.
We may suppose that f is bounded above by ‖h‖∞. Consider the following

translation of the nonlinearity:

fδ(t, u) = f(t, (u− δ)+) .

Observe that, since (u − δ)+ is an increasing function of u, assumption (4) is
verified by fδ for all δ > 0 as well as (15) for the same constant C. Also (7) is
fulfilled by the same function h for all the functionals

Jδ(u) :=
1
2

∫ 1

0

Φu′
2 −

∫ 1

0

Fδ(t, u) dt,

where Fδ(t, u) =
∫ u

0
fδ(t, s)ds, provided δ is small . We may therefore apply

Proposition 5 and conclude the existence of a solution uδ to the problem

(Φ(t)uδ
′)′ = fδ(t, uδ) , u′δ(0) = uδ(1) = 0 . (16)

Since uδ is a critical point of J , H is continuously injected in Lp+1(0, 1) with
p > 1, we have, by (15) and classical estimates, for some K1,K independent of
δ,
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m‖uδ‖2 ≤
∫ 1

0

Φ(t)u′δ(t)
2
dt =

∫ 1

0

fδ(t, uδ(t))uδ(t) dt ≤ K1

∫ 1

0

|u|p+1 ≤ K‖uδ‖p+1 .

We conclude, for k∗ = (m/K)
1

p−1 ,

‖uδ‖ ≥ k∗ > 0 ,

for all sufficiently small δ. Consider a sequence δn → 0 and the corresponding
sequence un of solutions to (16). Noting that the sequence (‖un‖) is trivially
bounded by the variational characterization of the un’s, we may consider u ∈ H
and a subsequence (still denoted by (un)) such that

un ⇀ u in H and un → u in C([0, 1]) .

We may conclude∫ 1

0

f(t, u)u dt = lim
δn→0

∫ 1

0

fδ(t, un)un dt = lim
δn→0

∫ 1

0

Φ(t)u′n(t)2 dt ≥ mk∗ ,

i.e. u is non-trivial. Standard arguments now insure that u is a classical solution
to (1)-(2) with ‖u‖∞ ≤ ‖h‖∞ .

Remark 5 Some type of sublinear condition like (15) is necessary, as one may
deduce from the following example. Consider the existence of a positive solution
to the boundary value problem:

u′′ + λu = 0 u′(
π

2
) = u(π) = 0 .

As the reader may easily verify, all conditions of Proposition 6 are fulfilled except
(15), provided λ is sufficiently large. If λ ∈ N there is an infinity of solutions
all multiples of sin((2λ + 1)t) functions. If λ /∈ N the previous B.V.P. has no
solution.

Finally we apply our results to an elliptic problem in an annullus.

Corollary 7 Consider the annular domain Ω := BR\Br ⊂ RN (where BL is
the N -dimensional euclidean ball of center 0 and radius L) and the B.V.P.

−∆u = f(‖x‖, u) for all x ∈ Ω , (17)

u = 0 in ∂BR and
∂u

∂n
= 0 in ∂Br . (18)

Suppose that f(t, u) satisfies (4)-(7) for Φ(t) = tN−1 and (15). Then there exists
a radial symmetric positive solution u to (17)-(18) with L∞ norm bounded from
above by ‖h‖∞, where h is defined by (7).

Proof. Just observe that a positive radial symmetric solution to (17)-(18) can
be obtained as a solution to

(tN−1u′(t))′ + tN−1f(t, u(t)) = 0 , u′(r) = u(R) = 0 ,

and consider Remark 4.



Existence and L∞ estimates of Mountain Pass solutions 11

Remark 6 We may apply our results to the existence of a positive radial solu-
tion to:

−∆u = exp(−L‖x‖)uα for all x ∈ Ω ,

u = 0 in ∂BR and
∂u

∂n
= 0 in ∂Br ,

provided L is large.
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