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Abstract
We prove the existence of a positive solution to an equation of the form
(®(t)u'(t))" = f(t,u(t)) with mixed Neuman and Dirichlet conditions.
Our method combines variational and topological arguments providing
an Lo estimate of the solution. Our results can be applied to certain
type of elliptic problems in annular domains.
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1 Introduction

Early since its publication in 1973, the Mountain Pass Theorem of Ambrosetti
and Rabinowitz (see [10]) has provided existence and multiplicity results in Dif-
ferential Equations as well as a comprehensive perspective of variational meth-
ods. The characterization of Mountain Pass type solutions became itself a sub-
ject of interest. As examples one may cite works of del Pino and Felmer (see [5]
and references therein) where the shape of the solutions to the Dirichlet problem

EAu—u+ flu)=0 inQ; wu>0inQ andu=0 in Q,

is established as e tends to zero. In the same spirit, Bonheure, Habets and
the author ([3]) have showed that for a superlinear elliptic problem with sign-
changing non-linearity the major contribution of volume of mountain pass type
solutions should concentrate in prescribed regions of the domain as a certain
parameter p — oo. In the above examples the role played by a parameter as
it approaches some limit is crucial. In [6] the author established existence and
L estimates of positive Mountain Pass type solutions to a class of singular
differential equations with an increasing friction term and Dirichlet boundary
conditions. The bound is just the Lo, norm of any regular function where the
Euler-Lagrange functional J attains a negative value. Our method combined
arguments in the Direct Calculus of Variations with phase plane techniques. In
fact, pursuing the nature of the optimal min-max path connecting the origin to
some function where J is negative, we were lead to consider a family of mini-
mizers of truncated functionals containing, as a particular element, a classical
solution to our b.v.p. In this work we approach with similar arguments a more
general class of equations that include some elliptic problems in an annulus.
More precisely we will be interested in positive solutions to

(@(t)u'(t) + f(tu(t) =0 (1)
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u'(0) = u(1) =0 (2)

By positive solution we mean a C? function u verifying the above equalities and
such that w(t) > 0 for all ¢ € [0,1[. Similar problems have been considered in
[2], [8] and [9].

2  Variational setting and results
We begin by listing the assumptions on the terms of equation (1)-(2).

® € C*([0,1]) is strictly positive and we choose m,m > 0 such that, for all
t €]0,1],

0<m<P@E)<m. (3)
We assume that
f(t,u)®(t) is decreasing in ¢ for every u > 0. (4)
Also
f:10,1] x [0,4+00[ — R is locally lipschitz in the variable (5)

and that, for some § > 0, f(¢,u) verifies
f(t,u) =0 V(t,u) € [0,1] x [0,6] and f(¢,u) >0 in [0,1]x]d, +oo[. (6)

The technical assumption (6) will be relaxed subsequently to a sub-linear growth
near zero. Since we are looking for positive solutions we assume throughout the
paper that f is extended by zero in [0,1]x] — 0o, 0]. The reader may easily verify
that any non-trivial solution to (1)-(2) with this extension -which we will still
denote by f- should be positive in |0, 1[ therefore being a solution of the initial
problem. We shall consider the Sobolev space H C H2(]0,1[) consisting in
absolutely continuous functions u such that

1
ul? ::/ Pt < 0o, ul) =0,
0
In the sequence we will also refer

[ulloo == sup{u(t) : t €[0,1]},

the natural norm on the space of continuous functions C([0,1]). Note that
Problem (1)-(2) may be viewed as the Euler-Lagrange equation of the functional
J : H — R defined by:

Ty =1 /0 () (1) dt — /0 Pt u(t))dt

where F(t,u) = fou f(t,s)ds. We will suppose that J satisfies the fundamental

property:
dh € H : J(h) < 0. (7)

Remark 1 Property (7) can be easily verified if, for some ¢ > 0, f(t,u) >
eu® —C for allu >0 andt € [0,1], where « > 1 and C > 0. Note that we make
no assumptions on the growth of f asu — oo or require J to verify Palais-Smale
condition.
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We denote M = ||h||oc. Since
Vw e H | |Jw|loo <§ = J(w) >0,

(where § was defined in (6)) we have M > 6. For all M € [6, M|, we consider
the following subset of H:

€y ={u€ H:maxu>M}.
We also consider the truncated functional Jy; : H — R,

T (u) = %/0 <I>(t)u’2(t)dt—/0 Fay(t, ult))dt

where
F(tyu)ifu< M

Fuy(u) = )
F(t,M)ifu> M

Remark 2 From the compact injection of Hg(]0,1[) in C([0,1]) we conclude
that €y is weakly sequentially closed and that Jy; is coercive and weakly lower
semi-continuous.

We will be interested in the family of minimizers uy; of Jys in €. By
Remark 2 we know that uy; exists for every M € [6,@. We also know that:

Lemma 1 Let up; be a minimizer of Jyr in €. Then
maxu =M and minu =0 .
[0,1] [0,1]
Proof. Given w € €); define
w(t) = max{0, min{w(t), M }}.

Of course w € H N€&yy. If W # w then,

/ a1 dt < / L bty (1) di

and ) )
/ Fag(t,(t)) dt = / Fag(tw(t)) dt .
0 0
Then Jy (W) < Ja(w) which is absurd and the lemma follows. [ |

Given M € [6, M|, we consider two types of minimizers of Jys in €y
Definition. Let uj; be a minimizer of Jy; in €.
We say that wuys is a minimizer of type A if
uw(0) =M, ¢/, (0) <0 and u(t) < M for all ¢ > 0.
We say that ujs is a minimizer of type B if, for some ¢ > 0, we have

u(t) =M vVt € [0,t] ,u/(t) =0 and u(t) < M if t > ¢.
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Remark 3 Ifuys is a minimizer of type A then u satisfies equation (1) in 10, 1[.
In fact, if v € C}(]0,1]), then, for sufficiently small s, we have,

up + sv € €pp and upg(t) + sv(t) < M Vit € supp(v).
Since ups s a minimizer, we conclude

lir% Iy (upr + sv) — Iy (uar)
s— S

1 1
— [ e @i [ 5t unopod =0,
0 0

and the assertion follows. Similarly, if upr is a minimizer of type B, it satisfies
equation (1) in |t,1[. If ups is simultaneously of type A and B, then ups is a
classical solution to problem (1)-(2).

Lemma 2 Let u be a minimizer of Jyr in €y Then u is of type A or B
(possibly both).

Proof. Let us consider
t:=sup{t € [0,1] : u(t) = M}.

Since H C C([0,1]), we have u (¢) = M and we may therefore consider w € H

M ift<t
w = )
u(t) ift >t
Moreover,
1 1
/ FM(t,w(t))dtz/ Fp(t,u(t))dt ,
0 0
and

/1 d(t)w'>(t) dt < /1 ()’ () dt

0

the last inequality being strict if w # w in [0,#]. Since w is a minimum of Jy;, we
conclude © = w. Note that by Lemma 1 and Remark 3, v/, () is well defined and
non-positive. If £ = 0 then u is of type A. Suppose in view of a contradiction
that ¢ > 0 and «/, () < 0. Choose #,¢ > 0 such that «/(t) < —6 for every
t € Jt,t + €[ and, assuming € < t/2, define the “triangular” perturbation

velt) = —(t =1 — ) . (8)
We assert that, for a small €,

lin(l) Jur(u+ sve) — Jar(u)
S— S

< 0. (9)

If (9) holds, then, for sufficiently small s* > 0, we have u + s*v. € €ps (since,
by our choice of €, (u + s*v.)(0) = M) and Jpr(u + s*ve) < Jar(u) thereby
contradicting the assumption that u is a minimizer of Jy; in €y;. In fact,
Lemma 1 and (8) imply v + s*v. < M. Therefore

lin% Jr(u+ sve) — Jpr(u) _ lin% J(u+ sve) — J(u) _
s— S s— S
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:/1<I’(t)( Bt — /ftu Yo (t)dt <

i / " a0 di 7t+6 £t u(t))o () dt.

We observe that, by (3)

t+e
—9/ ®(t) dt < —mbe (10)
t
and for some C' > 0 depending only on f,
t+e
ftu(®))ve(t)dt < Ce2. (11)
t—e

Therefore, by (10) and (11), we have
I (u+ sve) — Jar(w)

lim < —mbe + Ce?,
s—0 S
and the assertion follows for sufficiently small e. [ |

In the next lemma we prove a necessary ordering relation between type A
and type B minimizers of Jy; in €.

Lemma 3 Suppose that for a certain M € ]O,m there exist minimizers u and
v of Jyr in €pp such that w is of type A and v is of type B. Then u(t) < v(t) for
all t €]0,1[ or else u = v.

Proof. Assume u # v. Necessarily, we will have u(t) < v(t) for all ¢ €]0, ¢[
provided e is sufficiently small. Suppose that for some ¢t* €]0, 1[ we had

w(t*) = v(t*) and o' (t*) >V (t*),

(the case v/ (t*) = v'(t*) is excluded by (5) together with Existence and Unique-
ness Theorem). Moreover, suppose that

1 1t 9 1 1 [t 2 !
7/ ou/ 7/ OFy(t,u) < 7/ v’ dtf/ D Fwn(t,v), (12)
2 * £+ 2 t* t*

o(t)if 0<t<t*

and let

v*(t) = .
w(t)if t* <t <1
Then v* € H and
Ju(v7) < T (v),
therefore v* is also a minimizer in €p;. But this is absurd since v* is not

differentiable at t* (see remark 3). In case where, instead of (12), we had the
reversed inequality we would get the same contradiction by considering:

ut)if 0<t<t*
u*(t) = .
o(t)if ¢ <t<1



Existence and L, estimates of Mountain Pass solutions 6

In the next lemma we establish an important fact concerning the coexistence
of type A and type B minimizers at a same truncating level.

Lemma 4 Assume that conditions (4), (3) and (5) hold. Suppose that for a
certain M € ]O,m there exist minimizers u and v of Jyr in €y such that u
is of type A and v is of type B. Then the minimizer u is a classical solution to

(1)-(2).

Proof. We define an inverse function for u(t). By Remark 3, we may write

o1 (6000~ [ st as)

Note that, if u(0) < §, necessarily v/, (0) < 0. In fact by Lemma 1 we have
u'(0) < 0. In case v/(0) = 0 condition (6) and Remark 3 imply u = ¢ contra-
dicting the assumption that w € H. If u(0) > ¢ then our assumptions on f
imply «/(t) < 0 for all ¢ €]0,1]. In both cases we conclude that w is strictly
decreasing in [0, 1] and we may define the inverse function

[0, M] —[0,1],

ur—tau) .

Using similar arguments we may define an inverse function for v
[0, M[=]E,1]

vi—tp(v) .

We consider the continuous extension of this function to [0, M] (that we still
denote by tg) verifying t5(M) = t. By Lemma 3 we have

ta(u) <tp(u) Yue[0,M].

We consider the functions !

Za(u) = @(ta(w)t (ta(w)) ,

and
Zp(v) = @(tp(v))v'(ts(v)) .

Since the functions u(t) and v(¢) verify (1)-(2) for ¢ > 0 and ¢ > ¢ respectively,
we write, for u,v €]0, M|

—%d—u:f(t,q(u),u) and —

dZpd
A 2o = 1(ts(v),0)

dv dt

or

W 2D ) ana 22 = W) )0y

Suppose in view of a contradiction that «(t) is not a type B minimizer, i.e.

Za(M) < 0= Zg(M). (14)

IThis change of variables was suggested by the reading of [7].
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In fact, this assumption implies that Za(u) < Zg(u) for all w € [0, M]. We start
by noting that if Z4(0) = Zp(0), then u/(1) = v’(1). Since

Existence Uniqueness Theorem implies u(t) = v(t) for all ¢ € [¢,1] thereby
contradicting (14). Admit that for some u* €]0, M| we had

Za(u") = Zp(u").
We assume that v* is the maximum point satisfying the previous equality. Then

dZy

< dZp
du

(u*) < W(U*)-

If there is equality of the derivatives then Existence Uniqueness Theorem implies
Z4(0) = Zp(0) which, as previously noticed, is absurd. Since Z4(u*) = Zp(u*) <
0, (4) implies that the right hand-sides of the equalities in (13) are decreasing
functions of t. Recalling that tp(u*) > t4(u*) we conclude

dZs, . _dZg, ,
D C el ClY

contradicting the maximal property of our choice of v*. In particular we have
proved that if u is not a type B minimizer then Z4(0) < Z5(0).

Finally we conclude /(1) < v’(1) < 0 which in turn implies that u(¢t*) >
v(t*) for some t* < 1, a contradiction with Lemma 3 and the proof is complete.l

We are now in a position to prove

Proposition 5 Assume that conditions (3), (4), (5), (6) and (7) hold. Then
there exists a positive solution u to (1)-(2) such that

l[ulloo < IAlo
where h was defined in (7).

Proof. o o
Recalling our notation M = ||h||s, let I = [§, M| and consider the following
subsets I4 and Ig:

Ia(Ip) ={M € [6,M] : Jas has a minimizer in €y of type A (B)}.

By Lemma 2 we have I = I4 U Ig. We assert that 4 and I are non-empty.
In fact § € I4 since, as previously noticed, if us is a minimizer of Js in €5
and uj(0) = 0 the Existence and Uniqueness Theorem implies us(t) = ¢ for all
t € [0,1], which is absurd.

Claim 1: Ip is non-empty.

Suppose that M ¢ Ip. In this case ugz is a type A minimizer. Let

f(t ) = f(t, min{x, uz;(t)}) .
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Define, for u € H

T(w) :% /0 SO (t) dt — /0 F(t, ult)) dt,

where F(t,z) = [ f(t,s)ds. Trivially, By (7) we have J(uz;) < 0. Also J is
coercive and lower semi-continuous in H and therefore attains a minimum at
some function w € H such that J(w) < 0. In fact

0<w(t) <um(t) Vtelo,1],

(0 and ups are a pair of well ordered lower and upper solutions respectively)
and w is a classical solution to (1)-(2)(see for instance [[4], ch. 4] for details).

Claim 2: 14 and Ip are closed subsets of I.

Let (M,,) be a sequence in I4 such that M,, — M. Let u,, be a correspond-
ing sequence of type A (B) minimizers of Jys, in €y, . Since (u,) is trivially
bounded we may extract a weakly convergent subsequence (still denoted by u,,)
such that

up, ~uwin H and wu, — uin C([0,1]) .

We assert that u is a minimizer of Jy; in €5;. In fact, since,

fim [ ) Far (£, un(t)) dt = / () Far (1, u(t)) dt
0

n—oo 0

and L )
/ d(t)u'*(t)dt < liminf [ ®(t)u,’>(t)dt,
0

n—oo O
we conclude
Jyr(w) < liminf Jpy, (u).

However, if we set w,, = (M,,/M)u, we have w, — v in H and w, € €y , for
all n € N. Therefore
Iy (u) = lm Jyy, (wy)

n—0o0

and

for all n € N. We conclude

Jar(w) > limsup Jay, (uy) > liminf Jaz, (uy) > Jar(u),
or,

lim Jas, (un) = Jar(u).

n—oo

If, for some u* in €y, we had Jys (u*) < Jpr(u) then for sufficiently large n, we
would have

Iar, (wr) < g, (un),

where w} = (M, /M)u*, which is absurd. Note that so far we have just used
the fact that u,, is a sequence of minimizers. It remains to prove that the limit
function w is of type A (B). If (u,,) is a type A sequence, since u,, — u in Ly,
and (1) is verified for all u, in ]0,1[ implies that u satisfies (1) in ]0,1[. This
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trivially implies that u itself is of type A. In case of a type B sequence, then
the same Lo.-convergence insures that u must be constant in some interval [0, ]
where ¢ is a limit point of the sequence (t,,) where

tn, = max{t : u,(t) is constant in[0, ¢]},
and satisfies (1) in ]¢, 1[. Also, since the u,,’s are of type B and, for small € > 0,

Up, — u in [t +¢,1]
Cc1
we have v/() = 0 and the claim is proved.

We may therefore conclude, since I is connected, that I4 NI # @. By
Lemma 4 it implies the existence of a classical solution u such that maxwu €
IaNlIg. | |

Remark 4 Note that instead of (2) we may conside the more general boundary
conditions
w(a) =ud) =0 (a<b).

In the next result we relax condition (6) using an approximating standard
technique.

Theorem 6 Suppose that f(t,u) is locally Lipschitz in the variable u, verifies

(4) and
0< f(t,u) <CuP for (t,u) €[0,1] x [0, p] (15)

for some p > 1 and p > 0. Also assume (3) and that condition (7) is fulfilled
by some non-negative h € H. Then there exists a positive solution u to (1)-(2)
such that maxu < ||h -

Proof.
We may suppose that f is bounded above by ||h]|s. Consider the following
translation of the nonlinearity:

fS(ta 'LL) = f(tv (’LL - 5)+) :

Observe that, since (u — §)4 is an increasing function of w, assumption (4) is
verified by fs for all 6 > 0 as well as (15) for the same constant C. Also (7) is
fulfilled by the same function A for all the functionals

1 1 1
Js(u) = 5 /0 ou'? — /0 Fy(tu) dt,

where Fs(t,u) = fou f5(t,s)ds, provided 0 is small . We may therefore apply
Proposition 5 and conclude the existence of a solution ug to the problem

((I)(t)ug/)l = f(;(t,’LLg) R US(O) = U5(1) =0. (16)

Since us is a critical point of J, H is continuously injected in LP™'(0,1) with
p > 1, we have, by (15) and classical estimates, for some K7, K independent of
9,
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1 1 1
m|us|]® < / CID(t)u:;(t)2 dt = / Fo(t,us(t))us(t) dt < Kl/ lulPT < K |us||PT .
0 0 0

We conclude, for k* = (m/K)plfl,
[us|l = k* >0,

for all sufficiently small §. Consider a sequence J,, — 0 and the corresponding
sequence u,, of solutions to (16). Noting that the sequence (||uy,]) is trivially
bounded by the variational characterization of the w,’s, we may consider u € H
and a subsequence (still denoted by (u,)) such that

Up, = uin H and wu, — uin C([0,1]) .

We may conclude

1 1 1
/ ft,w)udt = lim / fs(t, un)u, dt = lim / (), () dt > mk*
0 6n,—0 0 6n—0 0

i.e. u is non-trivial. Standard arguments now insure that u is a classical solution
to (1)-(2) with ||u)lee < [|A]loo - ]

Remark 5 Some type of sublinear condition like (15) is necessary, as one may
deduce from the following example. Consider the existence of a positive solution
to the boundary value problem:

u + =0 u’(g) =u(r)=0.
As the reader may easily verify, all conditions of Proposition 6 are fulfilled except
(15), provided X is sufficiently large. If X\ € N there is an infinity of solutions
all multiples of sin((2A + 1)t) functions. If X ¢ N the previous B.V.P. has no
solution.

Finally we apply our results to an elliptic problem in an annullus.

Corollary 7 Consider the annular domain Q := Bg\B, C RY (where By, is
the N-dimensional euclidean ball of center 0 and radius L) and the B.V.P.

—Au = f(||z|l,u) for allx € Q, (17)
u=0 in OBr and @:0 in OB, . (18)
on

Suppose that f(t,u) satisfies (4)-(7) for ®(t) =tV =1 and (15). Then there exists
a radial symmetric positive solution u to (17)-(18) with Lo, norm bounded from
above by |||, where h is defined by (7).

Proof. Just observe that a positive radial symmetric solution to (17)-(18) can
be obtained as a solution to

AN @) AT (tu(t) =0, W(r) =u(R) =0,

and consider Remark 4. [ |
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Remark 6 We may apply our results to the existence of a positive radial solu-
tion to:
—Au = exp(—L|z|)u® for allx € Q,

u=0 i OBr and @:0 mn 0B,
on

provided L is large.
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