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1 Introduction

Consider a smooth scalar potential V (x), x ∈ IR, which is positive in ]0, 1[
and such that V (0) = V (1) = 0, a scalar function a(t) which has a positive
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infimum in IR and, finally, let c ≥ 0. In this paper we are concerned with
the existence of solutions to the following boundary value problem on the
interval ]0,∞[:

ẍ+ cẋ = a(t)V ′(x)(2)

x(0) = 0, x(+∞) = 1.(3)

More precise assumptions on the data will be given below. We would
like first to make some comments about the problem.

Our interest in this problem has two motivations, according to whether
c = 0 or c > 0. The first is that, in the case c = 0, if a and V are
even functions, our problem is equivalent to that of finding a heteroclinic
connection between non-consecutive equilibria ±1 of a potential V having
three minima at the same level; such a problem has no solution if a is a
constant because energy is conserved. Hence it is meaningful to investigate
conditions on the time dependence of the coefficient a(t) under which the
mentioned connection appears. Striking differences between autonomous
and non-autonomous systems have been investigated by other authors, as
an example see [3]. It follows from our results that with respect to (1) there
are differences of this kind for c = 0 but not for c > 0. In fact, in the case
c > 0 a solution of our boundary value problem exists in the autonomous
case as well.

Several authors have considered the problem of finding trajectories be-
tween equilibria of non-autonomous equations: we refer the reader to the
recent paper by Malaguti, Marcelli and Partsvania [6] and the references
therein.

We shall present two existence theorems, under distinct sets of condi-
tions on the data. It turns out that the way the (increasing) function a(t)
approaches its limit plays an important role in the sufficient conditions. The
approach is variational in both cases. More precisely, in Theorem 1 problem
(1) will be solved in a situation where weak regularity assumptions on V
and its minima are assumed; while with respect to a(t) it is required that
a(t) tends to its limit l in such a way that, if l <∞, l − a(t) is slower than
1/t. On the other hand, in Theorem 2, dealing with the case c = 0 only,
we prove the existence of solutions for a wider class of functions a(t), while
confining ourselves to the class of C2 potentials V .

The description of our assumptions follows.

(H1) V ∈ C1(IR) is a non negative function, V (0) = V (1) = 0 and V > 0
in ]0, 1[.
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(H2) There exist δ > 0 and A1, A2 > 0 such that A1x
2 ≤ V (x) ≤ A2x

2 for
|x| < δ.

(H3) The function a : [0,+∞[→]0,+∞[ is such that there exists t0 ≥ 0 with
the property that a is increasing in [t0,+∞[.

Theorem 1 Assume that (H1) holds and a : [0,+∞[→]0,+∞[ is a con-
tinuous function. If c = 0 assume that (H2) and (H3) hold as well and in
addition that η := inft≥0 a(t) > 0 and l := limt→+∞ a(t) has the property

lim
t→+∞

t(l − a(t)) = +∞(4)

then the boundary value problem (2)-(3) has at least one solution that takes
values in [0, 1].

Remark 1 If l ∈ IR+ it is easy to check that (4) holds if a(t) is of the form
a(t) = l − γ

(1+t)β , 0 < γ < l, β < 1.

Remark 2 The assumption (4) implies that for any C,D,E > 0 there exists
σ0 > 0 such that if 0 < σ < σ0

a

(
C

σ
+D

)
+ Eσ < l

Theorem 2 Assume c = 0. Let V ∈ C2(IR) satisfy (H1) and V ′′(0) >
0. Let a : IR →]0,+∞[ be a function of bounded variation with η :=
inft≥0 a(t) > 0 satisfying (H3) and the property

lim
t→+∞

(l − a(t))e2µt = +∞,(5)

where l := limt→+∞ a(t) and µ =
√
ηV ′′(0).

Then the boundary value problem (2)-(3) has at least one solution taking
values in [0, 1].

Corollary 1 Let c = 0, a and V be even functions satisfying the assump-
tions of Theorem 1 or Theorem 2. Moreover assume that 1 is an isolated
minimizer of V . Then equation (2) has a heteroclinic solution connecting
the equilibria −1 and 1.

Aknowledgement. The authors are indebted to Alessandro Margheri
for many fruitful discussions on the subject of this paper.
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2 A comparison between autonomous and non au-
tomous problems

First, note that if c = 0 and a(t) is constant, then problem (1), which
corresponds now to an autonomous equation, has no solution. Then as a
next step and still maintaining c = 0, the simplest non autonomous system
one can discuss is one where a(t) is a ’bang-bang’ function with only one
switch. More precisely, if 0 < a < b and T > 0, we define

a(t) :=


a, 0 ≤ t ≤ T

b t > T.
(6)

Then, consider a C1 potential V (x) as above and which is locally bounded
from above by Ax2 and A(x − 1)2, A > 0, respectively around x = 0 and
x = 1.

We note that problem (1) has a solution if and only if there exists a
solution of ẍ = aV ′(x) on [0, T ], with x(0) = 0 such that the corresponding
solution curve (x(t), ẋ(t)) in the phase plane (x, ẋ) intersects at time T the
heteroclinic orbit between (0, 0) and (0, 1) corresponding to the equation
ẍ = bV ′(x).

Set ξ = x(T ) ∈]0, 1[. By the conservation of energy, the heteroclinic
solution of the second equation satisfies ẋ =

√
2bV (x), whereas the solution

of the first equation with x(0) = 0 satisfies ẋ =
√

2aV (x) + C for some
constant C. Then, imposing that the two solution curves intersect at time
T in the phase plane, we get

C = 2(b− a)V (ξ)(7)

and, if our problem admits a solution, then the following representation
holds for T = T (ξ) :

T (ξ) =
∫ ξ

0

dx√
2aV (x) + 2(b− a)V (ξ)

(8)

By the quadratic growth of V (x) in a neighbourhood of x = 0, there
exists a constant c such that

c

∫ ξ

0

dx√
2ax2 + 2(b− a)ξ2

≤ T (ξ)(9)
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for any sufficiently small ξ > 0. Since∫ ξ

0

dx√
2ax2 + 2(b− a)ξ2

=
1√
2a

log

(√
a+

√
b√

b

)

we infer that T (ξ) is bounded away from zero in a right neighbourhood of
ξ = 0. In a similar way it can be shown that T (ξ) → +∞ as ξ → 1−. Then,
since T (ξ) is a continuous function of ξ, we conclude that there exists T0 > 0
such that T (]0, 1[) = [T0,+∞[ or T (]0, 1[) =]T0,+∞[ and therefore problem
(1) has no solution if T < T0 (and admits a solution for any T > T0.)

In the simple example above the switch time T0 for the function a(t)
actually depends on V (x) through c. This suggests that, generally speaking,
despite the fact that the variables x and t are separate in the right-hand
side of our equation, the conditions given on a(t) to solve problem (1) when
c = 0 may naturally involve the potential V. This is unlike the heteroclinic
problem x(−∞) = 0, x(+∞) = 1 associated to the same equation for the
class of potentials considered above. In fact, in this case a general result
guarantees existence of solutions if lim|t|→∞ a(t) → l ∈ IR, and a(t) ≤ l
with strict inequality holding on a set of positive measure. See [1].

We now turn to consider the features of the case c > 0. If we again take a
to be a constant, the problem (1) may be related to a kind of boundary value
problems that arise in the theory of travelling waves for reaction-diffusion
(see [2]). Indeed, if one looks for strictly monotone solutions then (1) is
easily transformed into a first order problem for the new unknown function
ψ = Φ2 where Φ describes the graph of the curve ẋ = Φ(x) in the phase
plane. See [1, 4, 5]. The new formulation may be written as

ψ′ = 2(aV ′(x)− c
√
ψ)

ψ(1) = 0, ψ(x) > 0 ∀x ∈ [0, 1[.
(10)

It is not difficult to conclude, directly from phase-plane analysis or by
studying (10), that for any c > 0 and a > 0 constant, the problem (1) has a
solution. In fact if we consider, for ε > 0, the Cauchy problem

ψ′ = 2(aV ′(x)− c
√
ψ+ + ε)

ψ(1) = 0,
(11)
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it turns out that it has a solution in [0, 1] that stays above 2aV (x). Then,
by taking the limit as ε → 0, our claim follows. From our main results we
shall see that the solution still exists when a depends on t.

3 Proof of the main results

Proof of theorem 1. We shall minimize the functional

F(x) =
∫ +∞

0
ect
(
ẋ(t)2

2
+ a(t)V (x(t))

)
dt(12)

in the functional space

X := {x ∈ C([0,+∞[) ∩H1
loc([0,+∞[) : x(0) = 0, x(+∞) = 1}.

Let I = infX F and consider xn ∈ X such that F(xn) → I. For t ≥
0 we define x0(t) := min{t, 1} ∈ X, and we have I ≤ K := F(x0) =∫ 1
0 e

ct(1 + a(t))V (t)) dt. It is clear that, for any M > 0, (xn)n is bounded
in H1(0,M) and (ect/2ẋn)n is bounded in L2(0,+∞). Then we can take
a subsequence, still denoted by (xn)n, which converges to some absolutely
continuous function x uniformly on compact sets and in such a way that

ect/2ẋn ⇀ ect/2ẋ in L2(0,+∞).

Moreover we may assume 0 ≤ xn(t) ≤ 1, since otherwise we could replace
xn with min(max(xn, 0), 1), still obtaining a minimizing sequence.

Case 1. c > 0. Let T > 0: from the Cauchy-Schwarz inequality we
obtain, for any t ≥ T ,

|xn(t)−1| ≤
∫ +∞

T
|ẋn(s)| ds ≤ e−cT/2

√
c

(
∫ +∞

T
ecsẋn(s)2 ds)1/2 ≤ e−cT/2

√
c

(2K)1/2.

Hence, for any δ > 0, we can choose T > 0 such that

|xn(t)− 1| ≤ δ ∀t ≥ T, ∀n.

Then the limit function x satisfies the same inequality, and since δ is arbi-
trary, x ∈ X. Moreover, by the weak lower semicontinuity of the L2-norm
and Fatou’s Lemma, we have

F(x) ≤ lim inf
n

F(xn) = I,
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so that x actually minimizes F in X. Then, by standard arguments, x is a
solution of (2)-(3).

Case 2. c = 0. Let us define, for fixed α ∈]0,min(δ, 1/4)[,

t1(n) = max{t ≥ 0|xn(t) ≤ α}, t2(n) = min{t ≥ t1(n)|xn(t) ≥ 1− α},

which will be simply denoted by t1 and t2. Then from the Schwarz inequality
we obtain

1− 2α ≤ (
∫ t2

t1
dt)1/2(

∫ t2

t1
ẋn(t)2 dt)1/2 ≤ (2K)1/2

√
t2 − t1,

so that

t2 − t1 ≥
(1− 2α)2

2K
.

Now we can find t3 and t4 (depending on n) such that xn(t3) = 1/4, xn(t4) =
3/4 t1 < t3 < t4 < t2 and 1/4 ≤ xn(t) ≤ 3/4 for t3 ≤ t ≤ t4. With the
previous computations (with α = 1/4) we get t4 − t3 ≥ 1/8K. Hence, we

can consider the constant ∆ :=
min[1/4,3/4] V

8K
which is independent from α

and has the property that 0 < ∆ ≤
∫ t4
t3
V (xn(s)) ds. More generally, if we

put V (α) := min[α,1−α] V (x), we have∫ t2

t1
a(t)V (x(t)) dt ≥ η(t2 − t1)V (α)

so that,

t2 − t1 ≤
K

ηV (α)
≤ K

ηA1α2
,(13)

where the last inequality follows from (H2).
Moreover, by Remark 2 it follows that there exists T ≥ t0 and α <

min(1/4, δ) for which

a(T ) > a

(
K

ηA1α2
+ t0

)
+

1
∆

(
1

2t0
+
A2M0t0

3

)
α2,(14)

where M0 = sup0≤t≤t0 a(t).
We will show that if t1 > T, then we may replace the function xn of the

minimizing sequence with a function vn for which t1 ≤ T. For consider the
function:

vn(t) :=


αt/t0, 0 ≤ t ≤ t0

xn(t+ t1 − t0) t ≥ t0.
(15)
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We have

F(vn) =
α2

2t0
+
∫ +∞

t0

ẋ(t+ t1 − t0)2

2
dt+

∫ t0

0
a(t)V (αt/t0) dt+

∫ +∞

t0
a(t)V (xn(t+ t1 − t0)) dt

=
α2

2t0
+
∫ +∞

t1

ẋn(t)2

2
dt+

∫ t0

0
a(t)V (αt/t0) dt+

∫ +∞

t1
a(t− t1 + t0)V (xn(t)) dt.

Then, if t1 > T, taking into account that a(t) is increasing in [t0,+∞[ and
(14), it follows that

F(vn)−F(xn) ≤ α2

2t0
+
∫ t0

0
a(t)V (αt/t0) dt+

∫ +∞

t1
(a(t− t1 + t0)− a(t))V (xn(t)) dt

≤ α2

2t0
+
M0A2α

2t0
3

−
∫ t2

t1
(a(t)− a(t− t1 + t0))V (xn(t)) dt

≤
(

1
2t0

+
M0A2t0

3

)
α2 −∆ (a(t1)− a(t2 − t1 + t0))

≤
(

1
2t0

+
M0A2t0

3

)
α2 −∆

(
a(T )− a(

K

ηA1α2
+ t0)

)
≤ 0.

Then, for any xn we may assume t1 ≤ T : hence xn(t) ≥ α for any n
and any t ≥ T , and by pointwise convergence we get also x(t) ≥ α for any
t ≥ T . Now, as in case 1), by the weak lower semicontinuity we obtain

F(x) ≤ lim inf
n

F(xn) = I.

Since F(x) < +∞ and V > 0 in ]0, 1[, it is not difficult to see, using the
arguments of Rabinowitz [7], Prop. 3.11, in this simpler situation, that
limt→+∞ x(t) exists and is equal to 1. Then x ∈ X, so that it minimizes F
in X. The fact that x takes values in [0, 1] is a straightforward consequence
of the construction of the minimizing sequence.

Proof of theorem 2. For I ⊂ [0,+∞[ let

F(x, I) :=
∫

I

(
ẋ(t)2

2
+ a(t)V (x(t))

)
dt.

Consider the equation
ẍ = a(t)V ′(x)(16)

with the boundary condition (3).
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We put:

X(ξ) = {x ∈ X|x(0) = ξ, x(+∞) = 1}, ξ ∈ IR.(17)

X will be endowed with the norm x 7→ (|x(0)|2 + ‖ẋ‖2
2)

1/2.

We shall make use of the following three Lemmas.

Lemma 1 (l−a(t))γ(t)2 → +∞ as t→ +∞, where γ is the solution of the
Cauchy problem {

γ′′(t) = a(t)V ′′(0)γ(t)
γ(t0) = 0, γ′(t0) = 1

(18)

Proof From (5) we obviously get, as t→ +∞,

(l − a(t))ρ(t)2 → +∞,(19)

where ρ(t) = (eµ(t−t0) − e−µ(t−t0))/4µ. On the other hand, since ρ′′(t) =
µ2ρ(t), ρ(t0) = 0, ρ′(t0) = 1/2, it is easy to see that γ(t) > ρ(t) for t >
t0. Indeed, from the initial conditions we obtain the assertion in a right
neighbourhood of t = t0. By contradiction, let τ the first point after t0
at which γ(τ) = ρ(τ). Then we must have γ′′(σ) < r′′(σ) at some point
σ ∈]t0, τ [, while, on this interval,

γ′′(t) ≥ ηV ′′(0)γ(t) = µ2γ(t) ≥ µ2ρ(t) = ρ′′(t)

Then γ > ρ > 0 on ]t0,+∞[, so that γ2 > ρ2, and our claim follows from
(19).

Lemma 2 For any ξ ∈]0, 1] F attains its minimum on the class X(ξ).

Proof Let (yk)k be a minimizing sequence for F on X(ξ), and let
t1 > t0 be fixed. For any k ∈ Z+ the following properties may be assumed
to hold:

(a) 0 ≤ yk(t) ≤ 1,
(b) yk solves (16) on J := [0, t1]

Indeed, if these conditions are not satisfied it is enough to replace yk, re-
spectively:

(a) by min(max(yk, 0), 1)
(b) on J by a function which minimizes F(·, J) on yk +H1

0 (J);
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It is easy to check that F does not increase after these procedures. Further-
more, (yk)k is bounded in H1(J): then we can suppose, up to a subsequence,
that (yk)k converges uniformly on J to some absolutely continuous function
y and that ẏk → ẏ weakly in L2(J). Then, on the interval J where yk solves
(16), ÿk is uniformly bounded: since the sequence (ẏk)k is bounded in L2, we
conclude that it is actually bounded in H1(J) and, even more so, in L∞(J).
Then we may suppose that (ẏk(0))k converges, so that the continuous de-
pendence on initial data of the solutions of a differential equation ensures
that the limit function y solves (16) on J (and also the C1- convergence on
that interval). Furthermore, 0 ≤ y(t) ≤ 1. On the other hand, if y vanishes
at t0, we should also get ẏ(t0) = 0, since t0 is in the interior of J and y
cannot take negative values. But the conditions y(t0) = ẏ(t0) = 0, together
with (16), would imply y(t) ≡ 0 on J , in contrast with y(0) = ξ > 0. Hence
y(t0) > 0, and we can find δ > 0 such that yk(t0) ≥ δ for large k’s. We then
redefine yk by replacing its restriction to S := [t0,+∞[ by the shifted func-
tion t 7→ yk(t+ τk), where τk ≥ t0 is the last point such that yk(τ) = yk(t0).
Since a is increasing in S, this operation does not increase the value of F . If
we still denote by yk the modified functions, we can actually suppose that
yk(t) ≥ yk(t0) for any t ∈ S := [t0,+∞[. Now we can apply the arguments
of theorem 1 and take a subsequence, still denoted by (yk)k, which converges
to some absolutely continuous function x uniformly on compact sets and in
such a way that ẏk ⇀ ẋ in L2(0,+∞). Of course, x ≡ y in J . By pointwise
convergence,

x(t) ≥ δ for all t ∈ S.(20)

Furthermore, F(x) < +∞: again by the arguments at the end of the
proof of Theorem 1, this entails that x(+∞) ∈ {0, 1}. But (20) excludes
the case x(+∞) = 0, and actually x ∈ X(ξ). Now, thanks again to the
weak lower semicontinuity of F , x minimizes F on X(ξ). Of course, x takes
values in [0, 1].

Now, let ξi → 0+ as i → +∞, and apply the previous Lemma on the
class X(ξi) for any i ∈ Z+, so as to get functions xi such that

F(xi) ≤ F(y) for any y ∈ X(ξi)

As before we can suppose, up to a subsequence, that (xi)i converges uni-
formly on compact sets to some function x ∈ X. Furthermore, the same
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arguments as in the proof of the previous Lemma allow to suppose that

ẋi(t0) → ẋ(t0).(21)

Then x solves (16), like xi, and the following properties hold: 0 ≤ x(t) ≤ 1,
x(t) ≥ x(t0) on S, x(0) = 0, x(+∞) ∈ {0, 1}.

Lemma 3 x(t0) > 0

Proof Let us suppose, by contradiction, x(t0) = 0: since x ≥ 0, we have
ẋ(t0) = 0 as well, and from (16) we actually get x(t) ≡ 0. In particular,
xi(t0) < r for large i′s, where r > 0 is such that V ′′ > 0 in [0, r]. Furthermore
ti → +∞ as i→ +∞, where ti is the first time at which xi reaches the value
r. We put ρi = xi(t0), ηi = ẋi(t0) and recall that each xi solves (16). Then,
for any τ ≥ t0:

1
2
ẋi(τ)2 −

1
2
ẋi(t0)2 =

∫ τ
t0
ẋi(s)ẍi(s) ds =

∫ τ
t0
a(s)V (xi(s))ẋi(s) ds =

= [a(s)V (xi(s))]τt0 −
∫ τ
t0
V (xi(s)) da(s).

Since ẋi(τ) → 0 and V (xi(τ)) → V (1) = 0 as τ → +∞, we get

1
2
η2

i = a(t0)V (xi(t0)) +
∫ +∞

t0
V (xi(s)) da(s) ≥

∫ ti

t
V (xi(s)) da(s),

for any t ∈ [t0, ti]. Now, let us denote by t 7→ φ(t; ξ, η) the solution of (16)
which fulfils the conditions x(t0) = ξ, ẋ(t0) = η, so as to write xi(t) =
φ(t; ρi, ηi). For t ≥ t0, and as long as φ(t; ξ, η) ≤ r, it is easy to check that
the function V (φ(t; ξ, η)) is increasing with respect to all its arguments, so
that V (xi(s)) = V (φ(s; ρi, ηi)) ≥ W (t, ηi) for any s ∈ [t, ti], where we put
W (s, η) = V (φ(s; 0, η)). Then

1
2
≥ W (t, ηi)

η2
i

(a(ti)− a(t)),(22)

and we can let i → +∞. Since, by virtue of (21), ηi → ẋ(t0) = 0, we look
for the behaviour of W (t, η)/η2 as η → 0+, which depends on the partial
derivatives of W (hence of φ) with respect to η. To this end we apply well-
known results on differentiability with respect to initial data of the solution
of a differential equation, which hold because the differential of the map
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(x, y) 7→ f(t, x, y) = (y, a(t)V ′(x)) is bounded uniformly with respect to t.
Since φ(t; 0, 0) ≡ 0, the evolution of γ(t) = φ′η(t; 0, 0) is ruled by (18). Hence

∂W

∂η
(t, 0) = V ′(0)γ(t) = 0,

∂2W

∂η2
(t, 0) = V ′′(0)γ(t)2,

so that
lim

η→0+

W (t, η)
η2

=
1
2
V ′′(0)γ(t)2

Now (22) entails 1 ≥ V ′′(0)γ(t)2(l− a(t)), in contrast with Lemma 1. Then
x(t0) > 0, as claimed.

Conclusion of the proof of Theorem 2. Since x(t) ≥ x(t0) > 0
for t ≥ t0, the previous arguments show that x(+∞) = 1, so that x ∈ X.
Now, let y ∈ X, i ∈ Z+: we can modify y by putting yi = y + ui, where
ui(0) = ξi, u ≡ 0 in [1,+∞[, u̇ ≡ −ξi in [0, 1] , so that yi ∈ X(ξi) and
εi := |F(yi)−F(y)| → 0 as i→ +∞. Then F(xi) ≤ F(yi) ≤ F(y) + εi, and
the lower limit as i → +∞ yields F(x) ≤ F(y). Hence x minimizes F on
X. Of course, x takes values in [0, 1].

Proof of Corollary 1. Under the assumptions of Corollary 1, (2)-(3)
with c = 0 has a solution x(t) taking values in [0, 1]. Then the function

w(t) =


x(t) t ≥ 0

−x(−t) t < 0.

is a solution of (2) such that

lim
t→±∞

w(t) = ±1.

This is indeed a heteroclinic solution because limt→±∞ ẇ(t) = 0. In fact,
integrating (2) between 0 and t > 0 we have

ẋ(t)− ẋ(0) =
∫ t

0
a(s)V ′(x(s)) ds.

Since there exists a sequence tn → +∞ such that ẋ(tn) → 0 and the inte-
grand in the right-hand side does not change sign in a neighbourhood of +∞,
we conclude that

∫+∞
0 a(s)V ′(x(s)) ds converges. Therefore limt→+∞ ẋ(t) =

0.
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Final Remarks. 1) As is shown by example (6), condition (5) is not
necessary for the existence of solutions to problem (2)-(3). We can also
generalize this example, by simply requiring that a(t) ≡ b for t ≥ T . Then
suitable computations show that F attains its minimum on X, provided
that the solution of the linear Cauchy problem{

γ′′(t) = a(t)V ′′(0)γ(t)
γ(0) = 0, γ′(0) = 1

satisfies the inequality γ̇(T ) <
√
bV ′′(0)γ(T ).

2) Suppose that V has only one critical point in ]0, 1[. Then we as-
sert that the solution of (2)-(3) found in Theorem 1 or in Theorem 2 is
monotone increasing. In order to see this, we argue by contradiction. If
x(t) is not monotone, we can find 0 ≤ s1 < s2 < s3 < s4 such that
x(s2) = max[s1,s4] x > min[s1,s4] x = x(s3), x(s4) = x(s2) and x(s1) = x(s3).
Then, replacing x|[s1,s3] or x|[s2,s4] respectively with the constants x(s3) or
x(s2) we would obtain a smaller value of the functional F .
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