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Abstract

We study a countable class of real-valued functions inductively defined from a basic set of trivial functions by

composition, solving first-order differential equations and the taking of infinite limits. This class is the analytical

counterpart of Kleene’s partial recursive functions. By counting the number of nested limits required to define a

function, this class can be stratified by a potentially infinite hierarchy — a hierarchy of infinite limits. In the first

meaningful level of the hierarchy we have the extensions of classical primitive recursive functions. In the next level

we find partial recursive functions, and in the following level we find the solution to the halting problem.

We use methods from numerical analysis to show that the hierarchy does not collapse, concluding that the taking

of infinite limits can always produce new functions from functions in the previous levels of the hierarchy.
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1. Introduction

For most of its existence computer science was seen as a rogue branch of mathematics. Nonetheless several
of its results had a profound effect on the way people think about mathematics, and on what people have
come to expect of mathematics. Yet there is often a psychological distinction between doing computer science
and doing real or pure mathematics, as if computer science was really about computing machines and so
it is not actually mathematics, which is about numbers, sets, integrals and so on. This fictitious gap is
constantly being bridged by the discovered connections between areas such as mathematical logic and set
theory, recursive functions and arithmetics, computability and Diophantine equations and code analysis and
statistics. An area that seems to have remained largely unconnected with computer science is mathematical
analysis. Since its early days both computer science and computer engineering made a right turn towards the
discrete. During the first half of the century there was a big argument on whether to adopt a discrete or a
continuous model of computation. Strong support over the discrete model, by people such as von Neumann,
as well as the invention of the transistor and the construction of a powerful and solid theory of computability
over natural numbers all contributed to the favoring of binary computers over their analog counterparts.
Until the late fifties this was not an obvious choice, given the success that analog computers such as Vannevar
Bush’s differential analyzer had during the war. Connections between computer science and mathematical
analysis appear only recently, as there is a resurgent interest in the study of analog computation theory.

The differential analyzer [1] was formalized by Claude Shannon in [2], and since then plenty of work has
been done. In the late eighties Blum, Shub and Smale constructed a model to study computation over the
reals [3]. Throughout the nineties Hava Sieglemann and Eduardo Sontag have studied the computational
power of analog recurrent neural networks [4]. In 1996 Cris Moore published a seminal paper, Recursive
theory on the reals and continuous-time computation [5], where he defines an inductive class of vector valued
functions over R. He shows several interesting results: many well-known functions of analysis are in this
enumerable class, and several uncomputable functions are there also. Some work was done since then, using
this definition [6, 7, 8, 9], but unfortunately some of Moore’s assumptions were not very consensual among
people interested in the field. Most of these controversial assumptions were consequences of Moore’s attempt
to bring the minimalization operator — used in the classical recursive functions — into a continuous context.
So in 2002 two of us gave a similar definition of Moore’s inductive class of functions, replacing minimalization
with the taking of infinite limits. This solved the issues brought about by minimalization, and strengthened
the bond between this model of real computation and analysis, since infinite limits are a classical subject
of the later. We strengthen the bond further in this paper, by showing relevant results for both computer
science — more specifically real computation — and mathematical analysis, using methods from both fields.

The class of real recursive functions is defined inductively in a similar manner to Kleene’s recursive
functions. The basic functions are 1, −1, 0 and the projections, and the class is the closure of these basic
functions for composition, solving of first order differential equations and taking of infinite limits. One
defines a hierarchy, called the η-hierarchy, based on the minimum number of nested infinite limits required
to describe some real recursive function. From a computational perspective, the η-hierarchy measures how
many computational steps are required to compute some function or number. If one has access to some
machine that can perform ω computational steps, 1 then one can solve the halting problem for Turing
machines, and if the machine can compute ω steps ω times, or simply ω2 steps, then one can decide the
totality of Turing-computable functions. Very similarly one can solve the halting problem using one infinite
limit and decide the totality of Turing-computable functions using two nested infinite limits. In this sense
the number of infinite limits required to define some function gives a very natural way of ascertaining its
noncomputability. The η-hierarchy may also be relevant to physics. Should there be, in the physical world,
certain processes that generate an infinite amount of events in a finite amount of time (see [12, 13]), they
may be elegantly modeled using real recursive functions. From a mathematical perspective the η-hierarchy
can tell us how complex a function is. It is interesting to notice that most, if not all, of the functions
studied in analysis are in the first two or three levels of the hierarchy. Basic functions of analysis, like +,

1 Computation over an infinite number of steps has been studied; see [10] for an example, and [11] for an overview.
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exp and sin are all in the first level of the hierarchy, but only in the next level can we find the Gauss
Γ function and Riemann’s ζ function. In the third level we find the everywhere continuous and nowhere
differentiable Weierstraß function, and several other pathological functions. We can only speculate about
interesting properties of functions that lie in even higher levels.

Real recursive functions were introduced as a tool for studying analog computation. Their original purpose
is to provide a theoretical equivalent to Kleene’s recursive functions, which are used to study classical
computability. Nevertheless, of the variety of functions studied in mathematical analysis one is still to be
found by the authors that is not real recursive. It is thus reasonable to expect that some results derived
from studying this class are of interest to mathematical analysis. We believe we present one such result in
this paper.

The class of real recursive functions we will soon describe is closed under operations of finding solu-
tions to first order differential equations and the taking of infinite limits. Thinking briefly about the rela-
tionship between these two operations one may observe that they seem to be related. For instance, ex =

limy→∞

(

1 + x
y

)y

, and also ex = y(x) where y(0) = 1 and dy

dx
= y. The number π can be expressed by a differ-

ential equation that gives arctan, since π = 4 arctan(1), and we also know, e.g., that π = limy→∞
24y+1y!4

(2y+1)(2y)!2 .

The field of topology gives us another example of this phenomenon, now regarding distributions: if t is a
function of arity 2 such that t(x, h) results, for each h, in the plot of a triangle with area 1 and height h,
then Dirac’s delta function, which will be denoted by d, can be given by d(x) = limh→∞ t(x, h); we also
know that

∫ x

0
d(x)dx = Θ(x), where Θ is the Heaviside function. These and other examples may lead us to

wonder if this is a universal phenomenon. We will use the toolbox of computer science to show that while
we can always express the solution of a first order differential equation through infinite limits, we cannot
always do the opposite.

The paper hereby presented continues the work of [14] and [15]: in this paper we show that the η-hierarchy
does not collapse, an open problem since the beginning of real recursive function theory. Every result is
new unless specifically stated. We start by defining our inductive class of functions and discussing some
fundamentals of real recursion theory in section 2. In section 3 we define the η-hierarchy, which is based
on the number of nesting limits required to describe a function in our class. We proceed in section 4 by
studying integration and differentiation in the context of this class of functions. We show that any number of
differential equations, relating functions in our inductive class, can be solved by exploring the asymptotical
behavior of a numerical approximation. We then show that there is no universal real recursive function Ψ,
in section 5. But in section 6 we show that if we restrict the η-hierarchy to any arbitrary level n, a universal
function for that level of the hierarchy, Ψn, exists. We conclude by showing that the η-hierarchy does not
collapse, which is the main result of this paper.

2. Basic definitions and fundamental results

Definition 2.1 The class of real recursive vector functions, REC(R), is the smallest class of real-valued
vector functions containing, for all n, the scalar atoms 1̄n ≡ λx1 . . . xn. − 1, 1n ≡ λx1 . . . xn.1, 0n ≡
λx1 . . . xn.0,

2 and, for 1 6 i 6 n, In
i ≡ λx1 . . . xn.xi, and closed under the operations of:

Composition If f is a real recursive vector function with n k-ary components and g is a real recursive
vector function with k m-ary components, then the vector function h, with n m-ary components, given by:

hi(x1, . . . , xm) = fi(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm)),

for 1 ≤ i ≤ n, is real recursive.
Differential Recursion If f is a real recursive vector function with n k-ary components and g is a real

recursive vector function with n (k + 1 + n)-ary components, then consider the vector function h of n
(k + 1)-ary components which is the solution of the initial value problem:

2 Note that we could obtain the n-ary 1n, 1̄n and 0n from their zero-ary equivalents, but we use the n-ary functions for
simplicity and convenience.
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hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y)),

for 1 ≤ i ≤ n. h is real recursive whenever for every tuple x1, . . . , xk:
3

(i) The function given by λy.h(x1, . . . , xk, y) is continuous and defined on the largest open interval in
which a unique continuous solution exists almost everywhere.

(ii) The function given by λy.g(x1, . . . , xk, y, h(x1, . . . , xk, y)) is defined in this interval.
Infinite Limits If f is a real recursive vector function with n (k + 1)-ary components, then the vector

functions h, h†, h†† with n k-ary components, given by:

hi(x1, . . . , xk) = lim
y→∞

fi(x1, . . . , xk, y),

h†i (x1, . . . , xk) = lim inf
y→∞

fi(x1, . . . , xk, y),

h††i (x1, . . . , xk) = lim sup
y→∞

fi(x1, . . . , xk, y),

for 1 ≤ i ≤ n, are real recursive. 4

Aggregation Arbitrary real recursive vector functions can be defined by assembling scalar real recursive
functions.
This class is as in [14] except for differential recursion. Here we only require that the function obtained by

differential recursion is continuous, rather than having to be in C1. The equation must be satisfied almost
everywhere on the mentioned interval, and g has no required behaviour on the remaining points. The class
of real recursive vector functions is enumerable and contains, according to our experimentation so far, all
functions and numbers which were not specifically designed not to be in it, including several extensions of
Turing-uncomputable functions and numbers. It is, in this sense, a very natural class of functions to do
analysis in and as we shall soon see an equally natural measure of non-computability will arise from it.

No study of computability could proceed reasonably without a mechanism of self-reference, so we create
one now.
Definition 2.2 The set of descriptions of real recursive functions is inductively defined as follows:
– 〈In

j 〉 is an n-ary description of In
j .

– 〈1n〉 is an n-ary description of 1n.
– 〈1̄n〉 is an n-ary description of 1̄n.
– 〈0n〉 is an n-ary description of 0n.
– If 〈h〉 is a k-ary description of the real recursive vector function h and 〈g〉 is a description of the real

recursive vector function g with k components, then 〈c(h, g)〉 is a n-ary description of the real recursive
vector function obtained by composition of h and g.

– If 〈f〉 is a k-ary description of the real recursive vector function f and 〈g〉 is a (k+1+n)-ary description
of the real recursive vector function g, then 〈dr(f, g)〉 is a (k + 1)-ary description of the real recursive
vector function defined by differential recursion of f and g.

– If 〈h〉 is a (n + 1)-ary description of the real recursive function h, then 〈l(h)〉, 〈li(h)〉, 〈ls(h)〉 are n-ary
descriptions of the real recursive vector functions obtained by the appropriate infinite limit — respectively
lim, lim inf and lim sup — of h.

– If 〈f1〉, . . . , 〈fm〉 are descriptions of real recursive n-ary scalar functions f1, . . . , fm, then 〈v(f1, . . . , fm)〉
is an n-ary description of the real recursive vector function f = (f1, . . . , fm).
As in the previous definition we use angles — 〈 and 〉 — when referring to descriptions. We assume that

there is an effective enumeration of the set of descriptions. This way, 〈φm,n
e 〉 is the description coded by e,

or the eth description, with m n-ary components. φm,n
e is the function described by 〈φm,n

e 〉 and Wm,n
e and

Em,n
e are, respectively, the domain and range of φm,n

e . When omited m and n are assumed to be 1. Having

3 Some conditions of existence and uniqueness for this type of differential equation are given in [16, 17]. These restrictions on
h and g mean that differential recursion is a partial operation.
4 We could obtain the same class using only lim sup (see [9]), but we use all three limits for convenience.
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established clearly that the functions in this class are vector-valued, we will refer to them simply as real
recursive functions.
Definition 2.3 A real recursive operator Ω, is a (possibly partial) mapping from REC(R)n to REC(R). Ω
is said to be an effective real recursive operator when there is an effective procedure to obtain the description
of the function Ω(f1, . . . , fn) from the descriptions of f1, . . . , fn.

Notice that one should not confuse the operator that transforms functions with the effective process which
transforms the syntactic descriptions of functions. Nevertheless, we will only deal with effective real recursive
operators, and we will thus avoid using the word effective every time we refer to a real recursive operator.

We now begin to study REC(R). To provide insight to the reader unfamiliarised with this class we will
prove a few propositions, important to the work below. Those who have already gained some knowledge and
intuition with real recursive functions may simply read the propositions and skip the proofs. The following
proposition is not new.
Proposition 2.4 In REC(R) we can find:
(a) The functions λx. 1

x
, log and exp of arity 1 and the functions +, ×, / and λxy.xy of arity 2.

(b) Kronecker’s δ and Heaviside’s Θ, given by

δ(x) =

{

1 if x = 0

0 otherwise
and Θ(x) =

{

1 if x > 0

0 otherwise.

(c) The sawtooth wave function r and the square wave function s.
(d) The floor and absolute value functions.
(e) Characteristics eq of equality, le of inequality and lt of proper inequality.
Proof. We proceed as in [14]. One can express + and × using simple recursion schemes: +(x, 0) = x+ 0 =
I1
1 (x) = x, ∂y + (x, y) = ∂y(x + y) = 13(x, y, x + y) = 1, ×(x, 0) = x × 0 = 01(x) = 0 and ∂y × (x, y) =
∂y(x × y) = I3

1 (x, y, x × y) = x. These show that the functions + and × are both real recursive. The
inverse as well as the logarithm functions are obtained by first defining shifted functions, and then undoing

the shift by means of composition: first 1
0+1 = 10 = 1, ∂x

1
x+1 = −

(

1
x+1

)2

, and then 1
x

= 1
(x−1)+1 . We

set: log(0 + 1) = 0, ∂x log(x + 1) = 1
x+1 , δ(x) = lim

y→∞

(

1

x2 + 1

)y

and Θ(x) =

(

lim
y→∞

1

1 + 2−xy

)

+
1

2
δ(x).

The square function is easily real recursive by s(x) = Θ(sin(πx)) and the example below. We can build
the sawtooth using the recursion scheme r†(0) = 0 and ∂yr

†(y) = 4 sin(πx)2s(x) − 1. Now we get r(y) =
s(x)r†(−x)+(1−s(x))r†(−x−1). As for the remaining functions, we set: ⌊x⌋ = x−r(x), |x| = (2Θ(x)−1)x,
eq(x, y) = δ(y − x), le(x, y) = Θ(y − x) and lt(x, y) = le(x, y) − eq(x, y). 2

Besides a historical motive there are reasons to define a class of vector-valued functions, instead of using
scalar functions. Some functions we would like to see in this class are obtainable only through higher-order
differential equations. In these cases we try to separate the higher order derivatives into the several different
components of the vector.
Example 2.5 We can show that sin and cos are real recursive functions. In the differential recursion schema

f̄(0) =





f1

f2



 (0) =





0

1



 , ∂xf̄(x) = ∂x





f1

f2



 (x) =





f2

−f1



 (x),

the solution can be recognised as sin(x) = I2
1 (f̄(x)) and cos(x) = I2

2 (f̄(x)).
Definition 2.6 The floored iteration operator I is defined by the expression

(If) (x̄, y) = f ◦ f ◦ f ◦ . . . ◦ f(x̄) (⌊|y|⌋ times).

We abbreviate f ⌊y⌋(x̄) ≡ (If) (x̄, y), and use the convention f0(x̄) = x̄. 5 It is important to notice that
the function f is iterated a positive integer number of times. While it has been shown before that REC(R)
is closed under iteration, we provide a new proof of the same fact, now with a completely smooth iteration
scheme.

5 If f(x̄) is undefined, on the other hand, we conventionalise that f0(x̄) is also undefined.
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Proposition 2.7 The floored iteration operator is real recursive.
Proof. Consider an arbitrary real recursive n-ary function f with n components. Let g and h be two real
recursive (n+ 1)-ary functions with n components, such that

g(x̄, 0) = h(x̄, 0) = x̄,

∂yh(x̄, y) = (f(s(y)g(x̄, y) + (1 − s(y))x̄) − g(x̄, y))
π

2
sin(πy)s(y),

∂yg(x̄, y) =
(h(x̄, y) − g(x̄, y))π sin(πy)

cos(πy) − 1 + δ(cos(πy) − 1)
s(−y),

We can set

f ⌊y⌋(x̄) = g(x̄, 2⌊|y|⌋).

These functions can be explained the following way: as y changes from 0 to 1, g is constant and h goes
through the distance from x̄ to f(x̄). For y ∈ [1, 2], h is constant and g catches up, hence g(x̄, 2) = h(x̄, 2) =
f(x̄). If y > 2, then the same cycle begins again, and thus, for every natural number n, fn(x̄) = h(2n) =
g(2n). 2

Example 2.8 We show in Figure 1 the plot of g and h for five iterations of the logistic function λx.αx(1−x)
with α = 3.9 and initial value 0.22.

2 4 6 8 10

0.2

0.4

0.6

0.8

h

g

Fig. 1. Iteration of the logistic function.

Very pathological functions of analysis are real recursive too. Take, for instance, the everywhere continuous
and nowhere differentiable Weierstraß function, w, given by

w(x) =

∞
∑

n=0

ancos(bnπx), 0 < a < 1, ab > 1 +
1

3
π.

Proposition 2.9 The Weierstraß function is real recursive for all real recursive numbers a and b.
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Proof. The
∑

operator is easily real recursive, by means of an iteration, 6 and w(x) = lim
y→∞

⌊y⌋
∑

n=0

ancos(bnπx).

2

We conventionalise that a function f : Nm → N is in REC(R) whenever there is a real recursive extension
to it, i.e., a real recursive function f † : Rm → R such that, for all n ∈ N, f †(n) = f(n) if f(n) ↓ and f †(n) ↑
whenever f(n) ↑. We use an identical convention for functions with mixed signatures, e.g., f : N2×R×N →
N × R. For primitive recursive functions we can use a canonical extension, as explained in [18].
Definition 2.10 The natural tuple coding functions pn : Nn → N and pn,i : N → N are such that, for all
1 6 i 6 n, pn,i(pn(m1,m2, . . . ,mn)) = mi and pn(pn,1(m), . . . ,pn,n(m)) = m.
Proposition 2.11 Natural tuple coding functions are real recursive.
Proof. pn is real recursive, as we can see by the expression pn(m1, . . . ,mn) = 2m1 × 3m2 × . . .× (pn)mn ,
where pn is the nth prime. We also have a real recursive characteristic of divisibility, h, such that h(d, n) = 1

if d|n and h(d, n) = 0 otherwise. h can be given by the following expression 7 h(d, n) =
(

sin(nπ)
d sin( nπ

d
)

)2

. Now

take

p†
n,i(c, x) =







(c+ 1,
x

pi

) if pi|x,

(c, x) otherwise.

We can obtain this definition by cases setting

p†
n,i(c, x) =

(

c+ h(pi, x), h(pi, x)
x

pi

+ (1 − h(pi, x))x

)

,

and we do this for every 1 6 i 6 n. We then set pn,i(x) = I2
1

(

p
† ⌊x⌋
n,i (0, x)

)

. 2

It is important to understand that these functions can only code natural numbers. The property given in
Definition 2.10 does not hold when m or mk are not natural numbers.

We now study the relationship between the Diophantine and real recursive functions. Remember that the
set of Diophantine functions is the same as the set of partial recursive functions — this result comes from the
work of Yuri Matijasevic, Julia Robinson, Martin Davis and Hilary Putnam (see, e.g., [19]). We show that
all Diophantine functions are real recursive, providing a new proof of the known result that every classical
recursive function has a real recursive extension.
Definition 2.12 An n-ary function f is Diophantine if there is a (n+ 1 +m)-ary polynomial P such that:

〈z, x̄〉 ∈ Gf if and only if ∃y1 . . .∃ymP (x̄, z, y1, . . . , ym) = 0

where Gf is f ’s graph, 8 all variables are in N+.
Proposition 2.13 All Diophantine functions are real recursive. 9

Proof. Clearly a polynomial is real recursive, because the functions sum and product and the operator
composition are enough to define any polynomial. Now to find a number z such that the tuple 〈z, x̄〉 is in
Gf , we can search for the zeros of the polynomial using a zero search operator. Let Z[p] be an (n + 1)-ary
function of (n+ 1) components, where p is an (n+ 1 +m)-ary scalar function:

(Zp)(x̄, zY ) =

{

(x̄, zY ) if p(x̄,pm+1,1(zY ), . . . ,pm+1,m+1(zY )) = 0,

(x̄, zY + 1) otherwise.

See that this function is real recursive because the function Z(x) = sin(π2x−1), is real recursive and such
that Z(0) = 1 and Z(n) = 0 for all n > 0. This allows us to use products and sums to express Z, as long as

6 See [14] for the
∏

operator, for instance. Notice that although the 2-ary sum is real recursive, and we can compose it to

show that the n-ary sum is also real recursive, the
∑

operator sums an arbitrary and non fixed number of terms, and cannot
be shown real recursive by this method.
7 Although the function h is undefined whenever d|n, it is only shown to replace the more complex expression:

1
d

∑⌊ d
2
⌋

i=1 (−1)i+1
(

d−i−1
i

)

(2 cos(nπ
d

))d−2i = sin nπ
d cos nπ

d

, which is also real recursive and defined everywhere.
8 A function’s graph is the set of tuples {〈z, x̄〉|f(x̄) ↓ and z = f(x̄)}. Notice that the graph can be partial, i.e., if a function
f is not defined for some point x̄, then there is no tuple (z, x̄) in Gf .
9 The discussion in page 7 gives the precise meaning of this.
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the numbers involved are natural numbers, in a similar manner as in the proof of proposition 2.11. Suppose
that f is an arbitrary Diophantine function as in Definition 2.12. Then there is some z such that 〈z, x̄〉 ∈ Gf

if and only if the iteration of (ZP )(x̄, 1) converges. So f is real recursive because it can be given by

f(x̄) = pm+1,1

(

In+1
n+1

(

lim
y→∞

[

(ZP )⌊y⌋(x̄, 1)
]

))

.

2

So all Turing-computable (or N-recursive, or Diophantine, or λ-definable) functions are real recursive. The
converse is not true, though: as will soon become evident, there is a real recursive function which solves the
halting problem for Turing machines. In fact there is a real recursive function which decides all predicates
in the arithmetical hierarchy (see [14]).
Definition 2.14 The operators sup and inf, of supremum and infimum over an interval, are defined by the
expressions

(supf)(x̄, a, b) = sup
y∈[a,b)

f(x̄, y), (inff)(x̄, a, b) = inf
y∈[a,b)

f(x̄, y),

where f is an (n+ 1)-ary real recursive function defined in [a, b).
The following proposition is known since [9]. We provide a simpler proof.

Proposition 2.15 sup and inf are both real recursive.
Proof. It is sufficient to transform a given function f from the interval [a, b) to a periodic function on [0,∞).
We define the new periodic function

F (x̄, y, a, b) = f(x̄, a+ (y mod (b− a)))

where (y mod z) is the number in [0, z) such that y = nz+(y mod z) for some natural number n, which can
be obtained by iteration. Now we have that

(supf)(x̄, a, b) = lim sup
y→∞

F (x̄, y, a, b), and

(inff)(x̄, a, b) = lim inf
y→∞

F (x̄, y, a, b).

All functions used in the above construction are real recursive, and so both sup and inf are real recursive. 2

Previous work on real recursive functions characterised from an analytical viewpoint several hierarchies
and classes of functions, such as the elementary functions and the Grzegorczyk hierarchy in [7], the Ritchie
hierarchy in [20], P and NP in [21, 18]. It was shown in [6, 22] that the GPAC is not closed under iteration
and that a subclass of real recursive functions coincides with the class of GPAC-computable functions.
Olivier Bournez and Emmanuel Hainry proved in [23, 24] that a restricted infinite limit operator makes the
class of real recursive functions an exact extension to the real numbers — in the sense of computable analysis
— of the classical recursive functions.

3. The η-hierarchy

We now define and study the η-hierarchy, which is the main subject of this text. It is based on the
minimum number of nested limits needed to describe a given real recursive function. The shown definition
for the η-hierarchy is different than the previous definitions, such as the one in [14], but gives the same
hierarchy. This result comes from some algebraic manipulation and from the realization that the η-number
for composition, as defined here, can be achieved by an iteration scheme, using the previous definition.
Definition 3.1 The η-number of a description 〈f〉, E(〈f〉), is inductively defined as follows:

(i) E(〈0n〉) = E(〈1̄n〉) = E(〈1n〉) = E(〈In
j 〉) = 0,

(ii) E(〈c(f, g)〉) = max(E(〈f〉), E(〈g〉)),
(iii) E(〈dr(f, g)〉) = max(E(〈f〉), E(〈g〉)),
(iv) E(〈l(h)〉) = E(〈li(h)〉) = E(〈ls(h)〉) = E(〈h〉) + 1, and
(v) E(〈v(f1, . . . , fn)〉) = max(E(〈f1〉), . . . , E(〈fn〉)).
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The η-number of a real recursive vector function f , E(f), is the minimum η-number for all descriptions
of f . The η-hierarchy is an N-indexed family of real recursive vector functions, where the nth level of the
η-hierarchy, Hn, is:

Hn = {f ∈ REC(R)|E(f) 6 n}

The scalar functions λx. 1
x
, log, exp, sin and cos of arity 1, as well as +, ×, / and λxy.xy of arity 2, are

in H0. Kronecker’s δ and Heaviside’s Θ are in H1, and Weierstraß’ function is in H2 for every a, b ∈ H1. The
iteration operator takes Hi’s functions to Hmax(i,1). The supremum and the infimum operators take Hi’s
functions to Hmax(i+1,2).

Now we study the η operators, which should not be mistaken with the η-hierarchy.
Definition 3.2 For a real recursive (n+1)-ary function f , the η operator gives an n-ary function, ηf , such
that:

(ηf)(x̄) =

{

1 if lim
y→∞

f(x̄, y)exists,

0 otherwise.

The ηi and ηs operators are defined in the same way, but with respect to lim inf and lim sup.
It was previously known that the η operators are real recursive. We provide new, tighter bounds for the

place of ηf , ηsf and ηif in the η-hierarchy.
Proposition 3.3 If f is a total function in Hi, then ηf , ηsf and ηif are in Hi+1.
Proof. Take for ηsf the following expression:

(ηsf)(x̄) = 1 − δ

(

lim inf
y→∞

1

(f(x̄, y))2 + 1

)

.

A similar expression gives us ηif . Let f † be given by f †(x̄, y) = 1
1+exp(f(x̄,y)) . One has that limy→∞ f(x̄, y)

converges if and only if the supremum and infimum limits of f converge and are equal. The supremum and
infimum limits of f are equal if and only if the supremum and infimum limits of f † are equal. For this reason
ηf can be set as

(ηf)(x̄) = (ηsf)(x̄) × (ηif)(x̄) × eq

(

lim inf
y→∞

f †(x̄, y), lim sup
y→∞

f †(x̄, y)

)

.

2

These powerful operators where originally used to show that the halting problem of classic computability
theory has a real recursive characteristic, as done in [14]. Yet, clearly, not all real valued vector functions
are real recursive, since the cardinality of REC(R) is 0ℵ = 0i, while the cardinality of the set of real valued
vector functions is 2i. In [25] it is shown that many predicates undecidable in classical computability have
no real recursive characteristics, e.g., the predicates about real recursive functions given by the expressions
φn(n) ↓ and φn = φm. 10 A result of the present text is that many of these predicates do have real recursive
characteristics when restricted to some level in the η-hierarchy, by means of a function in a higher level.

4. Integration and differentiation in REC(R)

The class of functions we have been studying aims to provide a framework to study continuous phenomena
from a computational perspective. The differential recursion operator, introduced by Cristopher Moore in
[5], is an abstraction of the integration unit available in Shannon’s GPAC [2]. It was proven in [22] that the
class of GPAC-computable functions almost coincides with H0. It is legitimate to ask if differential recursion
is really necessary, and the answer is no: we can remove the differential recursion operator from our inductive
definition of REC(R), replacing it with an iteration operator. In the classical case this is also true (see [26]),
but unlike Kleene’s recursive functions, where one can replace recursion with iteration simply by adding
functions to the base, in order to obtain differential recursion by means of iteration we will also need infinite
limits.
Proposition 4.1 Let f be a real recursive total (n+ 1)-ary k-component function.

10 In [25] the related problems are called, respectively, the problem of domain and the problem of identity.
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(i) The Riemann integral operator int such that:

(intf)(x̄, a, b) =

∫ b

a

f(x̄, y)dy

defined only in points where the Riemann integral is defined, 11 is real recursive.
(ii) The derivative operator dif, given by:

(diff)(x̄, y) = (∂yf)(x̄, y)

defined only in points where the derivative of f is defined, is real recursive.
Proof. We begin with the int operator. Remember that by Proposition 2.15 we have that if f is real recursive,
then the function supf , such that (supf)(x̄, a, b) = supy∈[a,b) f(x̄, y), is also real recursive. The infimum of
the superior Darboux sums for all partitions between a and b can be given by:

∫ b

a

f(x̄, y)dy = lim
z→∞

⌊z⌋
∑

i=1

(supf)

(

x̄, a+ (i− 1)
(b− a)

⌊z⌋
, a+ i

(b− a)

⌊z⌋

)

×
(b − a)

⌊z⌋
.

A very similar definition can be given for the supremum of the inferior Darboux sums, and we can then
conclude that

(intf)(x̄, a, b) =

∫ b

a

f(x̄, y)dy =

∫ b

a

f(x̄, y)dy × eq↑

(

∫ b

a

f(x̄, y)dy,

∫ b

a

f(x̄, y)dy

)

,

where eq↑(x, y) = 1 +
∑∞

z=1(x− y) is 1 if x = y and undefined otherwise. The dif operator is similar. If we
define two operators dif+ and dif− such that:

(dif±f)(x̄, y) = lim
ε→∞

ε

(

f

(

x̄, y ±
1

ε

)

− f (x̄, y)

)

Then the dif operator becomes:

(diff)(x̄, y) = (dif+f)(x̄, y) × eq↑
(

(dif+f)(x̄, y), (dif−f)(x̄, y)
)

2

Definition 4.2 The second class of real recursive functions, REC(R)†, is the inductive class containing the
atoms 1̄n, 1n, 0n (for all n), the atoms In

i (for all n, 1 6 i 6 n), and the 2-ary functions +, × and /, closed
under the operators of composition, infinite limits and aggregation — as in Definition 2.1 — and for the
floored iteration operator — given in Definition 2.6.
Proposition 4.3 REC(R)† = REC(R)

Because REC(R) contains all basic functions in REC(R)† and, by Proposition 2.7, is closed for all operators
which define REC(R)†, we trivially have that REC(R)† ⊆ REC(R). We will prove below that REC(R) ⊆
REC(R)†, sufficing to show that REC(R)† is closed for differential recursion, which we will do by studying
the asymptotical behaviour of the Euler approximation.
Definition 4.4 The Euler approximation operator, written Λ, takes a real recursive n-ary function f and
a real recursive (n + 1 + k)-ary function g, both with k components, and gives a real recursive (n + 2)-ary
function with k components, Λf, g. The ith component of Λf, g is given by

(Λf, g)i(x̄, y, z) =

(

(λg)
⌊z⌋

(

x̄, 0, f(x̄),
y

|z| + 1

))

n+1+i

,

where λg is defined by the expression:

(λg)(x̄, y, v̄, δ) = (x̄, y + δ, v̄ + δ × g(x̄, y, v̄), δ) .

11That is, in points where the superior and inferior integrals are defined and equal.

10



Proposition 4.5 Let h be an (n + 1)-ary function given by the differential recursion of f, g ∈ REC(R)†.
For every x̄ such that h(x̄, y) is defined for y ∈ (a, b), we have that

h(x̄, y) = lim
z→∞

(Λf, g)(x̄, y, z)

for every y ∈ (a, b).
Proof. Since h is continuous for y ∈ (a, b), the mean-value theorem tells us that, for all y ∈ (a, b), δ > 0
such that (y + δ) ∈ (a, b),

h(x̄, y + δ) = h(x̄, y) + δ × ∂yh(x̄, d) = h(x̄, y) + δ × g(x̄, d, h(x̄, d)),

for some d ∈ (y, y+ δ). As z goes to ∞, δ = y

|z|+1 goes to zero, and so, since Λ sets d = y in the iteration of

λg, and since as δ goes to zero d goes to y, we have that the shown limit converges to h. 2

Figure 2 illustrates the functioning of the Λ operator, where f = (0, 1) and g(x, z1, z2) = (z2,−z1).
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Fig. 2. Euler approximation of sin and cos.

From Proposition 4.5 the following corollary becomes evident.
Proposition 4.6 If h is in REC(R), then there is a function h† in REC(R)† which coincides with h in its
domain.

It is not necessarily the case that outside (a, b) the Euler approximation remains undefined. If the function
h — obtained by differential recursion from f and g — is undefined outside (a, b) because g is undefined
in these points, then the Euler approximation will also be undefined outside (a, b). The issue is when h is
undefined because it diverges for some y inside the interval where g is defined. Take, for instance, f = 1 and
g(y, z) = z2. While g is a total function we get h(y) = 1

y+1 for every y > −1 and undefined everywhere else

— since h must be continuous; on the other hand, the Euler approximation of this function converges to h†,
given by h†(y) = 1

y+1 for all y. We eliminate this difference by restricting the domain.
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Proposition 4.7 Let h be an (n+ 1)-ary real recursive function which is in Hk and for every x̄ there is an
open interval (a, b) where the function h(x̄, ·) is continuous. Then there is a real recursive function H ∈ Hk+1

such that
(i) H(x̄, y) = 1 for all y ∈ (a, b),
(ii) if limy→a+ h(x̄, y) is undefined, then H(x̄, a) = 0, and
(iii) if limy→b− h(x̄, y) is undefined, then H(x̄, b) = 0.

Proof. We can simply take H(x̄, y) = ηzh(x̄, y −
y

z
). 2

Proposition 4.8 12 For every real recursive function f ∈ Hk, there are two real recursive functions χf

and τf in Hk+6, such that

χf (x̄) =

{

1 if x̄ ∈ Dom(f),

0 otherwise;
and τf (x̄) =

{

f(x̄) if x̄ ∈ Dom(f),

0 otherwise.

Proof. The proof is done by induction on REC(R). The case for the basic functions and aggregation being
trivial, we proceed to the remaining operators.

Composition. Let h be given by h(x̄) = f ◦ g(x̄). Then we can set χh(x̄) = χg(x̄) × χf (τg(x̄)), and
τh(x̄) = χg(x̄) × τf (τg(x̄)).

Differential recursion. Suppose h is given by differential recursion on f and g. By definition there is
for every x̄ some open interval (a, b) such that Dom(h(x̄, ·)) = (a, b). We must consider two cases:
(1) b = b(1) (or a = a(1)) is the smallest positive y (resp. the largest negative y) for which (x̄, y, h(x̄, y)) 6∈

Dom(g).
(2) b = b(2) (or a = a(2)) is the positive (resp. negative) point for which h diverges. 13

Take H to be the function explained in the previous proposition. From the results regarding minimalization
— particularly Theorem 4.1 in [9] —, we conclude that there exists a real recursive function hb

1 such that

hb
1(x̄, y

†) = µy

[

y = y† ∨H(x̄, y) = 0
]

This function is in Hk+1+5, and the minimalization is always defined. If h diverges on b(2) 6 y†, then
hb(x̄, y†) = b(2). If not, then hb(x̄, y†) = y†. Now we construct a function, hb

2, which is valued 1 for y ∈
(−∞, b(2)], equal to 0 for y ∈ (b(2), b(1)) and undefined everywhere else:

hb
2(x̄, y) = le(y, hb

1(x̄, y)).

We claim that similar functions can now trivially be constructed for a. To deal with case (1) we establish a
recursion scheme very similar to the recursion scheme of h:

s(x̄, 0) = χf (x̄), ∂ys(x̄, y) = −eq(χg(x̄, y, t(x̄, y)), 0),

t(x̄, 0) = τf (x̄), ∂yt(x̄, y) = eq(s(x̄, y), 1)τg(x̄, y, t(x̄, y)).

For case (2) this recursion scheme gives exactly t = h, but for case (1) the behaviour is different: for y ∈ [0, b)
we have s(x̄, y) = 1 and t(x̄, y) = h(x̄, y); for y ∈ [b,+∞) we have s(x̄, y) < 1 and t(x̄, y) = h(x̄, b). To decide
if y is such that (x̄, y, h(x̄, y)) ∈ Dom(g), we use the function:

χ†
h(x̄, y) = le(1, s(x̄, y)).

In order to cover both cases, we consider the differential recursion scheme

u(x̄, 0) = χf (x̄), ∂yu(x̄, y) = −eq(H(x̄, v(x̄, y)), 0) − eq
(

χ†
h(x̄, H(x̄, v(x̄, y)) × v(x̄, y)), 0

)

,

v(x̄, 0) = 0, ∂yv(x̄, y) = eq(u(x̄, y), 1),

and set χh(x̄, y) = le(u(x̄, y), 1), τh(x̄, y) = h(x̄, χh(x̄, y) × y) × χh(x̄, y).
Infinite limits. Should some function h be given by h(x̄) = limy→∞ f(x̄, y), then we must consider

several cases. The limit limy→∞ τf (x̄, y) can be undefined, equal to some z 6= 0 or equal to 0. In the first

12 It was shown in [25] that there was no real recursive function which would, given a code n of φn and a point x, decide if
x ∈ Wn. This does not contradict Proposition 4.8.
13Say, with an asymptote, as in 1

x−1
, or with an infinite oscillation, as with sin

(

1
x−1

)

: in both cases b(2) = 1.
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two cases, the former limit has the same behaviour as the later, but in the case of convergence to 0 one
needs to distinguish a convergence of both f and τf from a convergence of τf but not of f . Observing
that τS◦f (x̄, y) = (τf (x̄, y) + 1)χf (x̄, y), where S is the successor function, all these cases are dealt by the
definition

χh = (ητf ) × (ητS◦f ) × eq

(

lim
y→∞

[(ητf )τf ] + 1, lim
y→∞

[(ητS◦f )τS◦f ]

)

,

the parameters being omitted for convenience. We use similar definitions for the supremum and infimum
limits, and set τh(x̄) = limy→∞(ητf )(x̄)τf (x̄, y). 2

Proof of Proposition 4.3. Take a function h in REC(R), and let h† be a function in REC(R)† equal to
h in its domain. Since χh is real recursive and total, then by Proposition 4.6 we have χh ∈ REC(R)†. It

becomes evident that h is also in REC(R)†, setting h(x̄) =
h†(x̄)

χh(x̄)
. 2

We can now conclude that if h is a real recursive function in Hk, then one can define it with iteration
using no more than k + d + 6 nested limits, where d is the number of nested differential recursions. This
means that by increasing d one could arbitrarily increase the number of nested limits required to define h
in REC(R)†. Now we show that this is not the case, since all these d limits, which are required to take the
number of approximation steps to the infinite, can be replaced by a single limit.
Proposition 4.9 If h is in Hk, then one can show that h is in REC(R)† using k + 7 nested limits.
Proof. Take the expression which testifies that h is in REC(R)†, as constructed in the proof of Proposition
4.3. Consider every sub-expression of the form (Λf, g). This expression gives, for some n, an (n + 2)-ary
function which converges uniformly — on the last argument and for every closed interval — to the corre-
sponding function given by differential recursion. Since this is the case, one says that limz→∞(Λf, g)(x̄, y, z)
converges uniformly to the function obtained by differential recursion on f and g. Because of this uniform
convergence the infinite limit can be exchanged with other infinite limits, e.g.,

lim
y→∞

lim
z→∞

(Λf, g)(x̄, y, z) = lim
z→∞

lim
y→∞

(Λf, g)(x̄, y, z).

One can thus easily prove by induction on REC(R)† that every such uniformly convergent infinite limit
limz1→∞, . . . , limzj→∞ can be moved into a chain of limits at the beginning of the description which testifies
that h is in REC(R)†. Again because of uniform convergence all of these limits can be replaced by a single

limit. Observing that h(x̄) = h†(x̄)
χh(x̄) , one concludes that h can be defined with k + 7 nested limits. 2

5. The universal Ψ function

In this section we use classical methods of computability to show that there is no universal real recursive
function. We proceed to give the notion of low-rank code, and state that there is no real recursive restriction
of the universal function to low-rank codes.
Proposition 5.1 There is no real recursive function I such that for all m,n ∈ N, x ∈ R:

I(m,n, x) =

{

1 if φm(x) = φn(x),

0 if φm(x) 6= φn(x).
.

We consider above that if φm(x) ↑ and φn(x) ↑, then φm(x) = φn(x).
Proof. The proof is similar to the one in [25]. Let us suppose that the mentioned function I is real recursive.
Let f ≡ φm be a total real recursive function with codem. The function g, given by g(x) = f(x)+I(m, ⌊x⌋, x),
is total and real recursive. Let n be the code for g. If g(n) = f(n), then I(m,n, n) = 1 and so g(n) = f(n)+1.
If g(n) 6= f(n), then I(m,n, n) = 0 and g(n) = f(n). By contradiction we conclude that I is not real recursive.
2

While there is currently no conceptual machine to give an operational meaning to the class of real recursive
functions, we can still define what we mean by a universal real recursive function, and conclude the following.
Theorem 5.2 There is no universal real recursive function, i.e., there is no real recursive scalar function
Ψ of arity 2 such that, for all n ∈ N, x ∈ R, Ψ(n, x) = φn(x).
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Proof. Let us suppose that Ψ was real recursive. Let S be the real recursive successor function. By propo-
sition 4.8 there are two real recursive functions τΨ and τS◦Ψ which are total equivalents of Ψ and S ◦ Ψ.
Let a = τΨ(m,x), b = τΨ(n, x), A = τS◦Ψ(m,x) and B = τS◦Ψ(n, x). See that if φm(x) and φn(x) are both
defined and equal or both undefined then a = b and A = B. If φm(x) and φn(x) are both defined and
different, then a 6= b and A 6= B. Finally, if φm(x) is undefined and φn(x) is defined, we will necessarily have
a 6= b if φn(x) 6= 0 or A 6= B otherwise. We can conclude that I is real recursive, since

I(m,n, x) = eq(τΨ(m,x), τΨ(n, x)) × eq(τS◦Ψ(m,x), τS◦Ψ(n, x)).

By contradiction we see that Ψ cannot be real recursive. 2

One should note that although the results above are for 1-ary functions, they easily extend to n-ary
functions by Proposition 6.4 below.
Definition 5.3 We say that n is a low-rank code, and write L(n), if the nth description, 〈φn〉, has the
smallest η-number needed to define φn, i.e., if E(〈φn〉) = E(φn).
Proposition 5.4 There is no real recursive restriction of Ψ for low-rank codes, i.e., there is no real recursive
scalar function ψ of arity 2 such that if L(n), then ψ(n, x) = φn(x).

The proof can be done using the same method, by showing that there is no restriction of I for low-rank
codes. We will need this result in order to prove that the η-hierarchy does not collapse in theorem 6.2.

6. The universal Ψn functions

In this section we will make use of Proposition 5.4 and of the alternative inductive structure for REC(R),
explained in Definition 4.2 and supported by Propositions 4.3 and 4.9, to show that the η-hierarchy does
not collapse. Specifically, we will prove that:
Proposition 6.1 There is a universal real recursive function for every level of the η-hierarchy, i.e., for
every level Hn of the η-hierarchy, there is a function Ψn of arity 2 such that whenever E(〈φe〉) 6 n, we have
Ψn(e, x) = φe(x).

The function Ψn is probably not in Hn, but it suffices to show that it exists in a higher level of the
η-hierarchy. To do this, we will construct real recursive functions to manipulate an analogue of an execution
stack, working with a set of alternative descriptions.
Theorem 6.2 The η-hierarchy does not collapse, i.e., there is no number n such that REC(R) ⊆ Hn.
Proof. Let us suppose that there is a number n such that REC(R) ⊆ Hn. We know by Proposition 6.1 that a
universal function for Hn, namely Ψn, exists. Since, by hypothesis, all real recursive functions need at most n
nested limits, then there is a restriction to low-rank codes of the universal function: ψ = Ψn. By Proposition
5.4 we see that this function cannot exist, so we have shown by contradiction that the η-hierarchy does not
collapse. 2

Definition 6.3 The set of alternative descriptions of real recursive functions is inductively defined as fol-
lows:
– Alternative descriptions 〈〈1̄n〉〉, 〈〈1n〉〉, 〈〈0n〉〉, 〈〈In

j 〉〉, 〈〈c(h, g)〉〉, 〈〈l(h)〉〉, 〈〈li(h)〉〉, 〈〈ls(h)〉〉 and 〈〈v(f1, . . . , fm)〉〉m
are as in Definition 2.2.

– 〈〈+〉〉, 〈〈×〉〉 and 〈〈/〉〉 are alternative descriptions of the 2-ary functions +, × and /, respectively.
– If 〈〈h〉〉 is an n-ary alternative description of the real recursive vector function h, then 〈〈I(h)〉〉 is an

(n+ 1)-ary alternative description of the real recursive vector function Ih — as in Definition 2.6.
We use two angles when referring to alternative descriptions. We consider an effective enumeration of the
set of alternative descriptions, such that 〈〈σm,n

e 〉〉 is the alternative n-ary description with m components
coded by e and σm,n

e is the function described by 〈〈σm,n
e 〉〉. This enumeration will have the expected nice

properties, e.g., one can effectively obtain the code of 〈〈f1〉〉 from the code of 〈〈v(f1, . . . , fm)〉〉. Additionally,
we demand some tokens are enumerated as well, which we will use as an auxiliary tool: for each n there
should be a code for 〈〈swt, n〉〉 and 〈〈dup, n〉〉. The meaning of these tokens will soon become clear.

We have shown in Proposition 2.11 that we can code tuples of natural numbers. The proposition below,
which appears as Lemma 2.9 in [9], tells us that we can also code tuples of real numbers, and we use these
functions to manipulate stacks of real numbers.
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Proposition 6.4 There are three real recursive functions γ, γ1 and γ2 in H3, such that for all x, y ∈ R:

γ(γ1(x), γ2(x)) = x, γ1(γ(x, y)) = x, γ2(γ(x, y)) = y,

and γ1(0) = γ2(0) = 0.
We will represent an empty stack by the number 0 and the stack #xn . . . x1 of n real numbers, where

# marks the top of the stack, with the number γ(xn + Θ(xn), . . . γ(x1 + Θ(x1), 0) . . .). The Θ function is
used to distinguish the empty stack from the stack with the number 0. We can then build four basic stack
manipulation functions. The psh function, which pushes a value on top of the stack, is given by psh(S, x) =
γ(x + Θ(x), S). The pop function removes the top of the stack: pop(S) = γ2(S). The top function gives
the value on the top of the stack, and 0 if the stack is empty: top(S) = γ1(S) − Θ(γ1(S)) + δ(γ1(S)). The
emp function gives 1 if the stack is empty and 0 otherwise: emp(S) = δ(S). These basic functions are in
H3. We abbreviate top(pop⌊n−1⌋(S)) ≡ tp(S, n). More complex stack manipulation functions can be defined
using the four basic functions. The function swt, for instance, pushes the top of the stack into the (n+ 1)th
position: swt(S, n) = I4

1 (swt†⌊2n+2⌋(S, 0, n, 0)), where

swt†(S1, S2, n, r) =



















(pop(S1), 0, n, top(S1)) if r = 0 and n > 0,

(pop(S1), psh(S2, top(S1)), n− 1, r) if r 6= 0, and n > 0,

(psh(S1, r), S2, 0, 0) if r 6= 0 and n = 0,

(psh(S1, top(S2)), pop(S2), 0, 0) if r = 0 and n = 0.

The function dup duplicates the top n elements of the stack: dup(S, n) = I4
1 (dup†⌊3n+1⌋(S, 0, 0, n)), where

dup†(S1, S2, S3, n) =



















(pop(S1), psh(S2, top(S1)), 0, n− 1) if n > 0,

(S1, S2, S2, 0) if n = 0, and emp(S3),

(psh(S1, top(S2)), pop(S2), S3, 0) if n = 0 and not emp(S2),

(psh(S1, top(S3)), S2, pop(S3), 0) if n = 0 and not emp(S3),

We conclude that these functions are also in H3. We can now understand the meaning of the tokens 〈〈swt, n〉〉
and 〈〈dup, n〉〉 mentioned above: their codes will represent the instructions apply swt or dup to the stack,
with n as the second argument.
Proof of Proposition 6.1. To simulate a real recursive function step-by-step, given its code, we maintain
two stacks. On the first stack we keep real values and on the second stack we maintain codes of descriptions
of real recursive functions or of stack manipulation instructions. If the function in the top of the second
stack is n-ary, it is expected that n real values are in the first stack, each corresponding to one argument,
with the last argument on top. To implement the aggregation operator, it will be necessary to duplicate and
switch the contents of the stack. Let m†

0 be given by:

m†
0(S1, S2) =











































































































(psh(pop⌊n⌋(S1), 1), pop(S2)) if top(S2) is 〈〈1n〉〉,

(psh(pop⌊n⌋(S1),−1), pop(S2)) if top(S2) is 〈〈1̄n〉〉,

(psh(pop⌊n⌋(S1), 0), pop(S2)) if top(S2) is 〈〈0n〉〉,

(psh(pop⌊n⌋(S1), tp(S1, n− i+ 1)), pop(S2)) if top(S2) is 〈〈In
i 〉〉,

(psh(pop⌊2⌋(S1), tp(S1, 2) + top(S1)), pop(S2)) if top(S2) is 〈〈+〉〉,

(psh(pop⌊2⌋(S1), tp(S1, 2) × top(S1)), pop(S2)) if top(S2) is 〈〈×〉〉,

(psh(pop⌊2⌋(S1), tp(S1, 2)/top(S1)), pop(S2)) if top(S2) is 〈〈/〉〉,

(S1, psh(psh(pop(S2), 〈〈h〉〉), 〈〈g〉〉)) if top(S2) is 〈〈c(h, g)〉〉,

(pop(S1), psh⌊|top(S1)|⌋(pop(S2), 〈〈h〉〉)) if top(S2) is 〈〈I(h)〉〉,

(S1, I
3
1 (aggr⌊n⌋(S2, 〈〈v(f1, . . . , fn)〉〉, n))) if top(S2) is 〈〈v(f1, . . . , fn)〉〉,

(swt(S1, n), pop(S2)) if top(S2) is 〈〈swt, n〉〉,

(dup(S1, n), pop(S2)) if top(S2) is 〈〈dup, n〉〉,

(S1, S2) if emp(S2).
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where for every m-ary description e = 〈〈v(f1, . . . , fn)〉〉, aggr is such that for k = n,

aggr(S, e, k) = (psh(S, 〈〈fn〉〉), e, k − 1),

and for k 6= n,

aggr(S, e, k) = (psh(psh(psh(S, 〈〈swt,m〉〉), 〈〈fk〉〉), 〈〈dup,m〉〉), e, k − 1).

By induction on the set of alternative descriptions we conclude that if S1 is a stack with the real numbers
xn, . . . , x1, yj, . . . , y1, and S2 is a stack with the numbers e, e1, . . . ek, where e codes the alternative description

〈〈σm,n
e 〉〉 with no infinite limits, then, by iterating m†

0, S2 will eventually contain only e1, . . . , ek and then
we will have m real numbers in the top of S1, given by each component of σm,n

e (x1, . . . , xn), followed by
yj , . . . , y1. This is illustrated by Figure 3, where # marks the top of the stacks.

S1 S2 S1 S2

# # # #

xn e (σm,n
e (x1, . . . , xn))m e1

... e1
...

...

x1

...
m

†

0−→ . . .
m

†

0−→ (σm,n
e (x1, . . . , xn))1 ek

yj ek yj

...
...

y1 y1

Fig. 3. Stack manipulation by m
†
0

Now we set:
m0(〈〈σe〉〉, x) = lim

z→∞
top(I2

1 (m
†⌊z⌋
1 (psh(0, x), psh(0, 〈〈σe〉〉)))).

m0 ∈ H4 is a universal function for alternative descriptions without infinite limits.
Now, for every k > 1, we define m†

k as

m†
k(S1, S2) =



















(stlimk(S1, 〈〈h〉〉), pop(S2)) if top(S2) is 〈〈l(h)〉〉,

(stliminfk(S1, 〈〈h〉〉), pop(S2)) if top(S2) is 〈〈li(h)〉〉,

(stlimsupk(S1, 〈〈h〉〉), pop(S2)) if top(S2) is 〈〈ls(h)〉〉,

m0(S1, S2) otherwise;

and
mk(〈〈σe〉〉, x) = lim

z→∞
top(I2

1 (m
†⌊z⌋
k (psh(0, x), psh(0, 〈〈σe〉〉)))).

Let us explain the meaning of stlimk, stliminfk and stlimsupk. Given a stack S and an alternative descrip-
tion 〈〈h〉〉 of an n-ary function with m components, stlimk works on the stack in the following way: for each
component i of 〈〈h〉〉, stlimk stores on another stack the value

lim
y→∞

lim
z→∞

top(I2
1 (m

†⌊z⌋
k−1(psh(S, y), psh(0, 〈〈c(Im

i , h)〉〉)))).

This is similar to taking the limit of mk−1 as y goes to ∞, but starting with the stack S. After doing this
for all components of h, stlimk manipulates the top n elements of S and replaces them with the resulting m
elements of the other stack. stlimsupk and stliminfk proceed in the same way, but for lim sup and lim inf.

We conclude that stlimk is in H
E(m†

k−1
)+2, and so m†

k is also in H
E(m†

k−1
)+2, which results in mk ∈

H
E(m†

k
)+1 = H

E(m†

k−1
)+3 = HE(mk−1)+2 = H2k+5.

Given a description 〈φe〉 with n nested limits we can, by Proposition 4.9, find an alternative description
〈〈σe†〉〉, which describes the same function through the inductive structure of REC(R) shown in Definition
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4.2, with n + 7 nested limits. We assume by the Church–Turing thesis that some Diophantine function ∆
does this, and so, by Proposition 2.13, there is a real recursive extension to ∆. We can finally define Ψn as

Ψn(〈φe〉, x) = mn+7(∆(〈φe〉), x),

and conclude that Ψn is in H2(n+7)+5 = H2n+19. 2

7. Conclusions

We conclude that if we have a first order differential equation that gives us some real recursive function,
we can always find an infinite limit that describes the same function, using a numerical approximation which
asymptotically behaves in the intended manner. Nonetheless, given a function expressed by an infinite limit,
we cannot always find a first order differential equation that results in the same function, because if we
could, the η-hierarchy would collapse. We have also seen that REC(R) is closed for Riemann integration and
function derivation.

Another result is that there is no universal real recursive Ψ function, but that there are universal real
recursive Ψn functions for every level of the η-hierarchy. This last result assures that while we cannot have
real recursive characteristics for the problems of domain and identity for every real recursive function, we
can still have them for every real recursive function up to any level of the η-hierarchy.

One of the authors, Bruno Loff, will shortly submit a paper exposing the close relationship between real
recursive functions and the analytical hierarchy. A new proof of the non-collapse of the analytical hierarchy
will be shown, not done in the classical manner (see [27] for a classical proof), but as a corollary of the
non-collapsing character of the η-hierarchy. The paper thus provides a clue on how analytical methods can
be used to prove classical results of computability and complexity theories, even possibly addressing open
problems.

However, the main result of this paper — namely the non-collapse of the η-hierarchy — could be of
much interest to the analyst. It shows, using a somewhat constructible mathematics, that the taking of
infinite limits, as an analytical operation, can always produce new functions which are not solutions of any
differential equation of feasible real-valued functions.

It may be an interesting research work to do a systematical analysis of the first three or four levels of
the η-hierarchy, with the aim of finding functions with new and interesting properties from the analytical
point of view. Although probably not very relevant for our computability-oriented study, a recursive class
of distributions (also known as generalised functions) could also be constructed using similar operators.

8. Conventions and notational preferences

The following conventions and notational preferences were used throughout this text.
– We treat infinity as undefinedness, i.e., +∞ = −∞ = ⊥.
– Functions are partial, according to the conventions of recursion theory. Furthermore, if a function is

given an undefined parameter, or results in an undefined component, it is completely undefined, i.e.,
undefinedness is strict (e.g., ⊥× 0 = ⊥).

– Infinite limits, supremums, and other standard operators of analysis are given in the standard way. E.g.,
in symbols,

z = (supf)(x̄, a, b) ⇐⇒ ∀(y ∈ [a, b))z > f(x̄, y) ∧ ∀(t < z)∃u t < f(x̄, u)

So if f(x̄, y) is undefined for some y in [a, b), then the supremum is undefined. Similarly, if f(x̄, y) is
undefined for arbitrarily large y, then the limit of f(x̄, y) as y → ∞ is also undefined.

– Real recursive operators can be partial.
– Functions of any arity in N are considered, where zero-ary functions are also called “numbers” or sometimes

“values”.
– All operations vectors are considered component-wise. For instance, if h is a vector-valued function with
n components, then:

∂xh(x) ≡ (∂xh1(x), ∂xh2(x), . . . , ∂xhn(x))
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– Variables with bar accents, like x̄, are vector-valued.
– Vector-valued arguments of functions and components of vectors are always expanded, in the sense that

if v(x̄) = (v1(x̄), v2(x̄), . . . , vm(x̄)) defines a vector-valued function, then one has, for instance, that

f(x̄, v(x̄)) ≡ f(x1, . . . , xn, v1(x1, . . . , xn), v2(x1, . . . , xn), . . . , vm(x1, . . . , xn)),

and

v(x̄) ≡ (v1(x1, . . . , xn), v2(x1, . . . , xn), . . . , vm(x1, . . . , xn)).

– The down-arrow and up-arrow signs, ↓ and ↑, have the usual converges / diverges or defined / undefined
meaning.
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