
An analytic condition for P ⊂ NP

José Félix Costa ∗ Jerzy Mycka †

March 23, 2006

Abstract

In this paper, we prove that there exists some condition, involving real
functions, which implies P 6= NP .

1 Introduction and motivation

The theory of analog computation, where the internal states of a computer are
continuous rather than discrete, has enjoyed a recent resurgence of interest. In
this historical framework we go back to Claude Shannon’s (see [17]) so-called
General Purpose Analog Computer (GPAC). This was defined as a mathemati-
cal model of an analog device, the Differential Analyser, the fundamental prin-
ciples of which were described by Lord Kelvin in 1876. We have been working
recently towards inductive definitions of generalized GPAC functions over R.

The first presentation of such a theory, analogous to Kleene’s classical theory
of recursive functions over N, was attempted by Cristopher Moore [10]. Real
recursive functions are generated by a fundamental operator, called differential
recursion. (The other fundamental operator is the taking of infinite limits,
introduced in [11].) Let us recall the concept of a real recursive function, and
the corresponding class REC(R), as was introduced in [12]. The class REC(R)
of real recursive vectors is generated from the real recursive scalars 0, 1, and
−1, and the real recursive projections, by the following operators: composition,
differential recursion (the solution of a Cauchy problem or a initial value problem
in mathematical analysis), and infinite limits.

If we consider a wider context for solving differential equations, then it is
possible to justify the concept of generalized solution of a given differential equa-
tion. We present in this paper the concept of (restricted) real recursive function
and the corresponding class RECR(R), which is based on the above definition
of real recursive function, without infinite limits, with a new understanding of
differential recursion.
∗Department of Mathematics, I.S.T., Universidade Técnica de Lisboa, Lisboa, Portugal,

fgc@math.ist.utl.pt
†Institute of Mathematics, University of Maria Curie-Sklodowska, Lublin, Poland,

Jerzy.Mycka@umcs.lublin.pl, corresponding author

1

With these notions and the additional operator of bounded quantification (to
define the concept of non-deterministic computation) we are able to introduce
some important subclasses of real recursive functions. They are obtained by an
imposition of restrictions on the growth of functions from RECR(R). Because
the growth of values of functions is somehow restricted by time of computation
such kind of restriction is connected with the complexity of real functions. But
let us stress the fact that it is not our purpose to build such classes, which
strictly inherit the properties of the classical complexity classes — rather, it is
more important for us to have analog classes with robust analytical definitions.

A real recursive function is said to be of exponential order if in any step
of its construction, its components are bounded by the exponential function.
It is said to be of subexponential order if in any step of its construction, its
components are subexponentially bounded. Let us mention that these properties
can be clearly presented in mathematical analysis: subexponentially bounded
functions can be introduced by the condition that for every such function f , its
Laplace transform L[f](s) is defined along the whole positive real axis < s > 0;
in the exponential case we are interested only in the existence of the Laplace
transform.

By using of weak exponential restrictions (e(logx)k) we obtain the classes
DAnalog and NAnalog. We can also use a notion of admissible restrictions to
transform real functions into natural ones not exceeding barriers of polynomial
complexity.

These classes have many nice properties. For example, DAnalog andNAnalog
can be simply related to linear differential equations. Moreover, many well
known physical systems are in DAnalog (like RC circuits, RLC circuits, har-
monic oscillators). The use of Laplace transforms makes DAnalog really mean-
ingful and natural, since physical measures in physical theories do have the
Laplace transform, having then a controlled growth. In this sense our complex-
ity classes have physical meaning.

Then we can prove that the condition P = NP implies the identity of the
above mentioned restrictions of DAnalog and NAnalog. By contraposition we
obtain an analytical test for the conjecture P 6= NP .

This paper is an attempt to use the above approach for the conjecture P 6=
NP . With respect to [13], Section 2 introduces a more clear formulation of a
(discrete) condition equivalent to P = NP , clarifying aspects that were obscure
in [13], Section 3 is completely new and considers a generalized solution to
the differential recursion scheme, Section 4 indeed intersects [13], but contains
different definitions and modified concepts, capitalizing in some results from the
precedent paper, and the new Section 5 motivates strongly our analog classes,
relates them with linear systems, and with solutions of a feasible physics. In
this Section, the conjecture P ⊂ NP is lifted to the realm of Analysis.

With quantifier elimination (using techniques from the sixties, namely the
concept of Richardson’s map in [16]) in the non-deterministic class NAnalog,
hopefully, we will succeed in the near future to present a quantifier free (full)
analytic condition for the conjecture P ⊂ NP .

2

2 Polynomial time computable functions

The main model of computation, the Turing machine, has an obvious corre-
spondence with the class of recursive functions. We can distinguish within the
set of recursive functions a subset PF corresponding to deterministic Turing
machines working in polynomial time.

Definition 1 A partial function f is said to be computable by a deterministic
Turing machine M if (a) M accepts the domain of f and (b) if 〈x1, . . . , xn〉 ∈
dom(f), then the accepting computation writes in the output tape the value f(x1,
. . . , xn).

Definition 2 PF is the class of partial functions that can be computed in poly-
nomial time by deterministic Turing machines, i.e., by deterministic Turing
machines clocked with polynomials.

We adopted the definition of computable function given in [2]. Note that
for functions in PF the halting problem is decidable. We have an inductive
definition of the total functions in PF , provided by Buss in 1986 (see, e.g., [15],
p. 172):

Proposition 3 The class of recursive functions computable in deterministic
polynomial time is inductively defined from the basic functions Z = λn. 0 and
S = λn. n+ 1, the projections, basic functions λn. 2n, λn. 2n+ 1, λn. bn2 c, the
characteristic function δ of “equality to 0”, by the operations of composition,
definition by cases, and polynomially bounded primitive recursion. �

The intuition behind this characterization of the total functions in PF is
the following: a Turing machine clocked in polynomial time p can write at most
p(|x|) bits in the output tape for the input x (|x| is the length of x). This
number is bounded by 2blog(x+1)ck , for some k.

We define now, for our purpose, a non-deterministic Turing machine in a
way similar to which it is used in the probabilistic computational model (com-
pare with [2]). We impose the following conditions on the non-deterministic
machines: (a) every step of a computation can be made in exactly two possible
ways, which are considered different even if there is no difference in the corre-
sponding actions (this distinction corresponds to two different bit guesses), (b)
the machine is clocked by some time constructible function and the number of
steps in each computation is exactly the number of steps allowed by the clock;
if a final state is reached before this number of steps, then the computation
is continued, doing nothing up to this number of steps, (c) every computation
ends in a final state, which can be either accept or reject, (d) if the machine
computes a function, then all accepting computations write down to the output
tape the value of the function (see [2], Chapters 3 and 6 for a comparison). It
is irrelevant what the machine writes in the output tape if it reaches a rejecting
state.

3

Definition 4 A partial function f is said to be computable by a non-determi-
nistic Turing machine M if (a) M accepts the domain of f and (b) if 〈x1, . . . ,
xn〉 ∈ dom(f), then any accepting computation writes in the output tape the
value f(x1, . . . , xn).

Definition 5 NPF is the class of partial functions that can be computed in
polynomial time by non-deterministic Turing machines, i.e., by non-determinis-
tic Turing machines clocked with polynomials.

Proposition 6 NPF is the class of functions of the following form:
λ〈x1, . . . , xn〉. if 〈x1, . . . , xn〉 ∈ A then F (x1, . . . , xn), where A ∈ NP and F ∈
PF .

Proof. Let f be a function of the above given form. Let M be a non-
deterministic Turing machine that recognizes A in NP and N a determinis-
tic Turing machine that computes F in PF . The following non-deterministic
Turing machine computes f :

procedure:
begin

input 〈x1, . . . , xn〉;
simulate non-deterministically M on 〈x1, . . . , xn〉;
simulate N on 〈x1, . . . , xn〉;
if M and N accept then output the result of N

end

Conversely, let f be a function in NPF and M a non-deterministic Turing
machine that computes f in polynomial time p. Let Guess(M) = {〈x1, . . . , xn,
z〉 : z guides M with input 〈x1, . . . , xn〉 to an accepting state}. The following
procedure first makes a test in NP and then computes a function in PF , with
the format λx. if 〈x1, . . . , xn〉 ∈ A then F (x1, . . . , xn):

procedure:
begin

input 〈x1, . . . , xn〉;
guess |z| ≤ p(|〈x1, . . . , xn〉|);
if 〈x1, . . . , xn, z〉 ∈ Guess(M) then
simulate M on 〈x1, . . . , xn〉 with guess z
and output the result

end

�

Definition 7 We define the class ∃PF as follows: a function f : Nn → N is in
∃PF if there exists a function F : Nn+1 → N in PF and a polynomial p : Nn →
N such that (a) 〈x1, . . . , xn〉 ∈ dom(f) if and only if there exists a number k
such that |k| ≤ p(

∑n
i=1 |xi|) and 〈x1, . . . , xn, k〉 ∈ dom(F) and (b) f(x1, . . . , xn)

4

is defined and f(x1, . . . , xn) = y if and only if for the number k such that
|k| ≤ p(

∑n
i=1 |xi|) and F (x1, . . . , xn, k) is defined we have F (x1, . . . , xn, k) = y,

and, moreover for all such |k| ≤ p(
∑n
i=1 |xi|) that 〈x1, . . . , xn, k〉 ∈ dom(F), we

have F (x1, . . . , xn, k) = y.

With the last definition we can present the following two obvious proposi-
tions.

Proposition 8 The class NPF coincides with ∃PF .

Proposition 9 NP ⊂ P if and only if NPF ⊂ PF .

For the purpose of this paper, we adopt the following convention: if f is
undefined at x, then we take f(x) = 0 (adding 1 to a function allows coding for
zeros without ambiguity). Since the domain of a function in PF is decidable
in polynomial time, functions computable in deterministic polynomial time can
always be considered to be total: let PF be such a class PF redefined.

Definition 10 Let PF = {f̃ : f ∈ PF}, where f̃ , for a n-ary function f , is
given by cases

f̃(x1, . . . , xn) =
{
f(x1, . . . , xn) + 1 if 〈x1, . . . , xn〉 ∈ dom(f)
0 otherwise

Although the domain of a function in NPF may not be decidable in deter-
ministic polynomial time, functions computable in non-deterministic polynomial
time can also be considered to be total: let NPF be the class NPF redefined
in this way, whose functions take the value 0 at x whenever they come from
functions in NPF undefined at x.

Definition 11 Let NPF = {f̃ : f ∈ NPF}, where f̃ , for a n-ary function f ,
is given by cases

f̃(x1, . . . , xn) =
{
f(x1, . . . , xn) + 1 if 〈x1, . . . , xn〉 ∈ dom(f)
0 otherwise

A function from NPF can be presented as λ〈x1, . . . , xn〉. if 〈x1, . . . , xn〉 ∈
A then F (x1, . . . , xn), for some set A ∈ NP and some F ∈ PF and a function
from NPF can be proved to be of the form λ〈x1, . . . , xn〉. if 〈x1, . . . , xn〉 ∈
A then F (x1, . . . , xn) else 0, for some set A ∈ NP and some F ∈ PF . Then we
have the main result:

Proposition 12 NP ⊂ P if and only if NPF ⊂ PF .

Proof. Assume that NP ⊂ P and let f ∈ NPF . Then f is of the form
λ〈x1, . . . , xn〉. if 〈x1, . . . , xn〉 ∈ A then F (x1, . . . , xn) else 0, with A ∈ NP and
F ∈ PF . We conclude that A ∈ P and, consequently, f ∈ PF . Conversely,
assume that NPF ⊂ PF and let A ∈ NP . Then the function f defined by
λx. if x ∈ A then 1 else 0 is in NPF . We conclude that f ∈ PF and, conse-
quently, A ∈ P . �

The following proposition is rather trivial.

5

Proposition 13 Functions in NPF can not grow faster than functions in PF .

This last proposition means that each function in NPF is bounded by a
weak exponential bound (sometimes called a quasi-polynomial) λx.2blog(x+1)ck ,
for some k.

We can redefine PF and NPF in such a way that Proposition 12 still holds
and both classes are closed for composition: consider the restrictions of these
two classes to strict functions (like in domain theory, with re-interpretation of
the undefined value), i.e., to functions that give value 0 whenever one of their
arguments is 0. The closure for composition arises from the fact that classes P
and NP are closed for the union and intersection of sets. However, although
this closure can be elegantly formulated, it does not help in the continuation of
this paper.

We also note that we could have substituted NPF by PF (NP), i.e., func-
tions computable in polynomial time with oracles inNP . We also have, P = NP
if and only if PF = PF (NP). In the next sections we will work with the classes
of total functions PF and NPF . We will write NPF = ∃PF for NPF = ∃PF
according with the conventions introduced previously.

3 Recursive functions over R

Let us start with examples and considerations, which help us to introduce the
notion of a real recursive function. We will use the concept of a vector function
to denote a real function from R

k to Rn, of a scalar function to denote a real
function from R

k to R.
Differential recursion is an important operator for the theory of analog com-

putation (and especially for real recursive functions). It is based on the following
scheme of differential equations. If f is a vector function with n k-ary compo-
nents and g is a vector function with n (k + n + 1)-ary components, then we
can define the new vector function h of n (k + 1)-ary components which is the
solution of the Cauchy problem, 1 ≤ i ≤ n,

hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y)).

But there is a question of restrictions and conditions which should be placed
on the solution to obtain a robust and clear theory. Examples that follow along
this Section are adapted from [3].

Example 14 Consider the scheme h(0) = 1, ∂yh(y) = h(y)2−1
y2+2y . Both h(y) = 1

and h(y) = y + 1 are solutions to this equation. The problem is that ∂yh(y)
is not defined at y = 0. Since the solution is not unique we cannot define a
function by differential recursion out of f = 1, g(y, z) = z2−1

y2+2y .

Note that, in differential recursion, it is not imposed that functions fi and
gi, for 1 ≤ i ≤ n, are of class C1. To emphasize this important fact we give an
example.

6

Example 15 A fruitful example is the differential scheme h(0) = 2 −
√

3,
∂yh(y) = y

h(y)−2 , where the functions f and g are the constant 2 −
√

3 and
λyz. y

z−2 , respectively. Although the function g is not C1 in all components, the
solution is h(y) = 2−

√
y2 + 3, defined in all R.

What is a solution of our differential recursion scheme? Books on differential
equations (e.g. [9]) say that a solution... is a function of the independent vari-
able that, when substituted into the equation as the dependent variable, satisfies
the equation for all values of the independent variable. That is, a function h(y)
is a solution if it satisfies ∂yh(y) = g(y, h(y)), for all y in R. But in many cases,
we have that there is a unique function h in C1 that satisfies the equation for
all y where g is defined, although g has a countable number of discontinuities
in, e.g., R. In this case we can adopt h as the desired solution of the differential
recursion scheme. We want to consider types of differential recursion schemata
having these kinds of solutions. It will make our theory more simple. For
that purpose we will allow these solutions for a countable number of possible
discontinuities of g.

Example 16 Consider the scheme h(0) = 0, ∂yh(y) = 1
sec(y) . Classically the

solution is h(y) = sin(y), e.g, for y ∈ (−π2 ,
π
2). But, if we ask for the maxi-

mal generalized solution in C1 or even in C0, the answer is h(y) = sin(y) in
R, despite the fact that our differential relation will only be satisfied outside a
countable number of points.

Example 17 Consider the scheme h(0) = 0, ∂yh(y) = h(y)
y . Classically the

solution is h(y) = y, but either for y ∈ (−∞, 0) or for y ∈ (0,+∞). But, if
we ask for the maximal generalized solution in C1 or even in C0, the answer is
h(y) = y, which means that this solution is the unique continuous continuation
in R.

Now as the results of the above remarks we can propose the following defi-
nition.

Definition 18 A solution to a system of equations (for 1 ≤ i ≤ n) given by the
following differential recursion

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y)),

satisfying the initial conditions hi(x1, . . . , xk, 0) = fi(x1, . . . , xk) is a vector
function ĥ from R

k+1 to Rn such that:

• A unique solution h to the system of differential equations exists in some
open interval I containing 0;

• The vector function ĥ satisfies the equations in a set J ⊇ I, such that J is
an open interval up to a countable number of non-Zeno discontinuities,1 in

1It means that for each finite open interval there exist only a finite number of discontinu-
ities.

7

the sense that, for every y ∈ J , ĥi(x1, . . . , xk, y), gi(x1, . . . , xk, y, ĥ1(x1, . . . , xk, y),
. . . , ĥn(x1, . . . , xk, y)), and ∂yĥi(x1, . . . , xk, y) are defined, for all 1 ≤ i ≤
n, and it holds that

∂yĥi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, ĥ1(x1, . . . , xk, y), . . . , ĥn(x1, . . . , xk, y));

• The vector functions h and ĥ coincide on I;

• The vector function ĥ is the unique C1 extension of h;

• J is the largest such set.

The vector function ĥ is called the generalized solution of the system if it
is the maximal solution according with the previous items. When dealing with
our inductive definitions, we will work with this definition of a solution to the
differential recursion scheme. Some informal aspects of such a definition were
implicitly developed with one of the authors in [5] but never explicitly formal-
ized.

With this operator we can present the concept of (restricted) real recursive
function and the corresponding class RECR(R) (based on the similar definition
from [12]).

Definition 19 The class RECR(R) of real recursive vector functions is gen-
erated from the real recursive scalars 0, 1, −1, the real recursive projections
Iin(x1, . . . , xn) = xi, 1 ≤ i ≤ n, n > 0, and the real recursive functions
θk(x) = xkΘ(x), for k ≥ 0, by the following operators:

Composition: if f is a real recursive vector function with n k-ary components
and g is a real recursive vector function with k m-ary components, then the
vector function with n m-ary components, 1 ≤ i ≤ n,

λx1 . . . λxm. fi(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

is real recursive.
Differential recursion: if f is a real recursive vector function with n k-ary

components and g is a real recursive vector function with n (k + n + 1)-ary
components, then the vector function h of n (k + 1)-ary components which is
the solution of the Cauchy problem, 1 ≤ i ≤ n,

hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y))

is real recursive whenever h is a solution to the differential equation in the sense
of Definition 18.

Assembling and designating components: (a) arbitrary real recursive vector
functions can be defined by assembling scalar real recursive function components
into a vector function; (b) if f is a real recursive vector function, than each of
its components is a real recursive scalar function.

8

Let us give some examples of functions generated with the above definition.

Proposition 20 The scalar functions +, ×, −, exp, sin, cos, λx. 1
x , /, log,

λxy. xy are real recursive functions.

Proof. See, e.g., [12], where many other examples can be found. �
Particularly interesting real recursive functions given by the iteration oper-

ator. There are, since the work of Branicky (see [4]), many ways to simulate
in continuous-time the iteration of a discrete-time function. Here we state the
result for real recursive functions due to [10, 6, 12].

Proposition 21 If f is a real recursive scalar total function of arity m, then
the iteration of f given by F of arity (m + 1), such that, for all n ∈ N,
F (n, x1, . . . , xm) = fn(x1, . . . , xm) is a real recursive scalar too.

Definition 22 If f : Nk → N is a primitive recursive function, then a real-
valued function F : Rk → R is called a canonical extension of f if

1. F is a real recursive,

2. for all x1, . . . , xk ∈ N, we have F (x1, . . . , xk) = f(x1, . . . , xk),

3. for all xi ∈ [ni, ni + 1], ni ∈ N, 1 ≤ i ≤ k, we have
min(F (n1, . . . , nk), F (n1 + 1, . . . , nk + 1)) ≤ F (x1, . . . , xk) ≤
max(F (n1, . . . , nk), F (n1 + 1, . . . , nk + 1)).

Proposition 23 If f : Nk → N is a primitive recursive function, then f has a
canonical real recursive extension F : Rk → R.

Proof. Any primitive recursive function can be defined from the functions Z,
S, Iin by composition and recurrence. The proof of our proposition is given
by structural induction. The analogues of the basic functions are trivially con-
structible (see, e.g., [8]). Also constructible are the analogues of functions to
code and decode pairs of non-negative numbers.

We use here functions of minimal arity, which do not influence the essence of
the proof. Let we consider composition. If f(x) = h(g(x)), then the functions
g and h have canonical extensions G and H (by induction): H ◦G is chosen to
be the canonical extension of f .

Now we consider the case when f is defined by recurrence from the pair of
functions g and h:

f(x, 0) = g(x), f(x, y + 1) = h(x, y, f(x, y)).

Let us remind that g and h have canonical extensions G and H (by induc-
tion). We use iteration instead of recurrence (see, e.g., [14]). Let t : N3 →
N

3 be such that t(n,m, k) = (n,m + 1, h(n,m, k)). Then tm(n, 0, g(n)) =
(n,m, h(n,m)).

Hence, from the expression w(n, k1, k2, k3) defined as tn(k1, k2, k3), we obtain
f(n,m) = I3

3 (w(m,n, 0, g(n))).

9

Now it is sufficient to prove that w has a canonical extension, where t, as a
vector defined from I1

3 , S ◦ I2
3 , h, has a canonical extension T . We can use the

construction of the iteration from Proposition 21.
Let us define W (s, x, y, z) = u(2s), where s ∈ R and W is the canonical

extension of w. Let us observe that derivatives ∂tu(t) and ∂tv(t), introduced in
proposition 21 (see [12]), have constant sign in the intervals [n, n+ 1]. Hence u
and v are monotonic or constant in these intervals. This fact gives u(2n− 2) ≤
u(x) ≤ u(2n), for all x ∈ [2n−2, 2n]. As a consequence, we have w(n, k1, k2, k3)
= W (n, k1, k2, k3) ≤W (x, k1, k2, k3) ≤W (n+1, k1, k2, k3) = w(n+1, k1, k2, k3).
Because only the variable n as a parameter of the iteration is essential in this
equation the above inequalities end the proof. �

To finish the current section, we recall that classical computational classes
like PF and NPF are all subclasses of the elementary functions, and, conse-
quently, subclasses of the primitive recursive functions.

4 An analytic condition for P ⊂ NP

We know that, in computability theory, the growth of functions is an important
factor of its complexity. We use this approach to define two subclasses of real
recursive functions. A real recursive function is said to be of exponential order if
in any step of its construction, its components are bounded by the exponential
function. It is said to be of subexponential order if in any step of its construction,
its components are subexponentially bounded.

Concepts such as linear growth or sublinear growth, exponential growth or
subexponential growth can also be applied to some arbitrary function disregard-
ing their component functions, i.e., their inductive construction. Thus, in what
follows, we distinguish between order and growth.

The formulas

F (s) =
∫ ∞

0

f(ξ) e−sξ dξ, f(ξ) =
1

2πi

∫ c+i∞

c−i∞
F (s) esξ ds

present the Laplace transform F = L[f] and the inverse Laplace transform
f = L−1[F], respectively. The second integral is generally carried out by
contour integration.

In the rest of this paper we will consider functions of a variable ξ, inter
alia, and of a complex variable s, inter alia. The function f(..., ξ, ...) is called
the original function and F (.., s, ...) is called the image function. If the Laplace
integral converges for a real x = x0, i.e., the integral exists, then it exists for all
s with < s > x0, and the image function is an analytic function of s in the half-
plane < s > x0. The Laplace transform can be generalized to an arbitrary finite
number of variables. E.g., the two dimensional Laplace transform is defined as
follows:

F (u, v) =
∫ ∞

0

∫ ∞
0

f(ξ, ζ) e−uξ−vζ dξ dζ.

10

We can use the Laplace transform in one dimension within many dimensions,
or in more than one dimension at the same time.

With the above notions, we have a precise boundary between the subexpo-
nential order and the exponential order. Subexponentially bounded func-
tions can be introduced by the following condition: for every total function f ,
L[f](s) is defined along the whole positive real axis < s > 0. Exponentially
bounded functions: for every total function f , L[f](s) is defined for values of
the complex variable s such that < s > xf , where xf depends on f .

Following [18], consider a real recursive function f on the positive real axis
such that: (i) f is continuous on [0,∞) except possibly for a finite number of
jump discontinuities in every finite sub-interval; (ii) there is a positive number
M such that |f(ξ)| ≤ Mekξ, for all ξ ≥ 0. Then we say that f belongs to the
class Lk. Additionally let L =

⋃
k>0 Lk.

Proposition 24 If f ∈ Lk is a real recursive function, then the Laplace trans-
form L[f](x+ iy) exists for x > k.

Proof. From the condition (ii) we have |f(ξ)| e−kξ ≤ M . Now we can proceed
in the following way:

|
∫ τ

0

f(ξ) e−xξ dξ | ≤
∫ τ

0

|f(ξ)| e−xξ dξ ≤
∫ τ

0

M e−xξ ekξ dξ ≤ M

∫ τ

0

e−(x−k)ξ dξ.

Now to check the existence of the Laplace transform it is sufficient to take
|L[f](x+ iy)| ≤ limτ→∞ M

∫ τ
0
e−(x−k)ξ dξ = M

x−k , only defined for x > k. �
If the Laplace transform of f exists, L[f](s), then f is said to be of expo-

nential order: it exists for x = < s greater than some real number xf . If the
Laplace transform of f exists, and L[f](s) is defined for the all positive real axis,
then f has subexponential growth. It does not mean that f is dominated by a
polynomial since the function λx. xlog(x) is subexponential but not dominated
by a polynomial.

Proposition 25 Subexponential functions are preserved by integrals.

Proof. We will prove that if f is a total function of x, such that its Laplace
transform is defined for all positive real axis, then the function f̄ defined by

f̄(x) =
∫ x

0

f(ξ) dξ

is subexponential too. Let f be a real valued function of ξ. We have

L[
∫ x

0

f(ξ) dξ](s) =
F (s)
s

whenever L[f] = F . This fact completes our proof, since F̄ (s) = F (s)
s is

defined for all the positive real axis, whenever F is defined too in the same open
interval. �

11

Proposition 26 Subexponential functions are preserved by differentiation, in
the sense that, if a subexponential function is differentiable, then its derivative
is also subexponential.

Proof. We will prove that if f is a total function of x, such that its Laplace
transform is defined for the all positive real axis, then the function f̄ defined by
f̄(x) = ∂xf(x) is subexponential too. We have L[λx. ∂xf(x)](s) = s F (s)−f(0)
whenever L[f] = F . This fact completes our proof, since λs. s F (s) is defined
for all the positive real axis, whenever F is defined too in the same open interval.
�

Now we turn the direction of our consideration. We start from real functions
and then we restrict them to the set of non negative integers.

Definition 27 An indexed ordered set of real numbers φ = {φi}i∈N is said
to be admissible for a function F : R → R if φ is a real recursive function in
DAnalog and F (φi) ∈ N, for all i ∈ N. A function f : N → N is said to be
an admissible restriction of F if there exists an admissible set {φi}i∈N such that
f(i) = F (φi), for all i ∈ N.

We can consider functions with many variables.

Definition 28 A tuple of indexed ordered sets of real numbers {φ1
i }i∈N, . . . ,

{φki }i∈N is said to be admissible for a function F : Rk → R, of arity k, if
F (φ1

i1
, . . . , φkik) ∈ N, for all i1, . . . , ik ∈ N, and every sequence {φij}j∈N, for

i = 1, . . . , k, is an admissible set. Mutatis mutandis we get the definition of an
admissible restriction of F .

Not all functions have admissible restrictions, like λx. e−x, or just like a
constant 1

2 . Real recursive functions that extend functions over the integers
have an infinite number of admissible restrictions.

We proposed in [13] the definition of the classes DAnalog and NAnalog,
which can be interpreted as classes of real recursive functions computed with
weak exponential (or quasi-polynomial) restrictions on their values.

Definition 29 The class DAnalog of real recursive vector functions is induc-
tively defined as follows:

Primitives: Constants 0, 1, and −1, the projections Iin(x1, . . . , xn) = xi,
1 ≤ i ≤ n, and the functions θk(x) = xkΘ(x), k ≥ 0, are in DAnalog:

Composition: if f is a real recursive vector function with n k-ary compo-
nents and g is a real recursive vector function with k m-ary components, all in
DAnalog, then the vector function with n m-ary components, 1 ≤ i ≤ n,

λx1 . . . λxm. fi(g1(x1, . . . , xm), . . . , gk(x1, . . . , xm))

is in DAnalog only if all its components grow less than a weak exponential.2

2This condition in this clause is not needed, since weak exponential bounded functions are
closed for composition.

12

Differential recursion: if f is a real recursive vector function with n k-ary
components and g is a real recursive vector function with n (k+n+1)-ary compo-
nents, both in DAnalog, then the vector function h of n (k+1)-ary components
which is the solution of the Cauchy problem, 1 ≤ i ≤ n,

hi(x1, . . . , xk, 0) = fi(x1, . . . , xk),

∂yhi(x1, . . . , xk, y) = gi(x1, . . . , xk, y, h1(x1, . . . , xk, y), . . . , hn(x1, . . . , xk, y))

is in DAnalog only if all its components grow less than a weak exponential.
Assembling and designating components: (a) arbitrary real recursive vector

functions in DAnalog can be defined by assembling scalar real recursive function
components in DAnalog into a vector function; (b) if f is a real recursive vector
function in DAnalog, than each of its components is a real recursive scalar
function in DAnalog.

Functions in DAnalog are said to be deterministic weak exponential.

In the second clause we could omit the limit of growth, since weak exponen-
tially bounded functions are closed for composition. But, we prefer to stress
this fact because of Definitions 30 and 36.

Definition 30 The class NAnalog of real recursive vector functions is obtained
from real recursive vector functions in DAnalog:

Admissible bounded quantification: if F : Rn+1 → R is a scalar function
in DAnalog, φ : Nn → N is a polynomial, and f : Rn → R is a function,
such that (a) f(x1, . . . , xn) 6= 0 if and only if there exists a positive inte-
ger k such that |k| ≤ φ(|bx1c|, . . . , |bxnc|) and F (x1, . . . , xn, k) 6= 0 and (b)
f(x1, . . . , xn) = y 6= 0 if and only if there exists a positive integer k such
that |k| ≤ φ(|bx1c|, . . . , |bxnc|), F (x1, . . . , xn, k) = y, and, for all such posi-
tive integer |k| ≤ φ(|bx1c|, . . . , |bx1c|) such that F (x1, . . . , xn, k) 6= 0, we have
F (x1, . . . , xn, k) = y, then f is a scalar function in NAnalog.

We write NAnalog = ∃DAnalog. Functions in NAnalog are said to be
non-deterministic weak exponential.

We get the immediate result:

Proposition 31 DAnalog ⊆ NAnalog.

Example 32 The functions x+ y, xy, x− y, 1
x+ε , for all ε ∈ R+, and x

y+ε , for

all ε ∈ R+, belong to DAnalog. The weak exponential elog(x+1)k , for all k ∈ N,
is also in DAnalog. Also sin and cos are in DAnalog.

Example 33 The function exp is not in the class DAnalog. The Laplace trans-
form of λx. ex is λs. 1

s−1 , defined for < s > 1. In order to belong to the class
DAnalog, the transform has to be defined for < s > 0. The same reasoning
allows the reader to verify that the function λx. eεx does not belong to DAnalog
no matter how small ε > 0 is: its Laplace transform is λs. 1

s−ε , defined for
< s > ε.

13

Remember that functions in DAnalog are, strictly speaking, functions of
the form Θ(x)f(. . . , x, . . .), according to Laplace transform conventions and
notation, defined everywhere.

To consider some functions as subexponential, sometimes we have to make a
small shift on the real variable to avoid a discontinuity at the origin. For exam-
ple, the function λx. 1

x+ε is subexponential and its transform is λs. eεsE1(εs),
where E1 is the exponential integral of degree one, for positive ε as small as we
want.

Using the same techniques we used in [12] to represent by means of real
recursive functions the entire arithmetical and analytical hierarchies, we can
define the class NAnalog by analytical means, without quantifiers.

Notice that, if the function of expression f(x, y) is obtained inDAnalog, then
it cannot grow faster than a weak exponential in one or in both variables. Now,
if we take a univariate polynomial ψ and values of y such that |byc| ≤ ψ(|bxc|),
then y grows less than a weak exponential of x and the combination of both
growths, of f and y (now seen as function of x) can not grow faster than a weak
exponential too. This simple explanation allows us to conclude that:

Proposition 34 Functions in NAnalog grow as fast as functions in DAnalog.

In [13] we proved that every function f ∈ PF has a canonical extension f̂ is
in DAnalog.

Proposition 35 The classes DAnalog and NAnalog are closed for integration.
Moreover, DAnalog is closed for differentiation, in the sense that if a function
in DAnalog is differentiable, then its derivative is in DAnalog.

Proof. Consider first DAnalog. That this class is closed for integration derives
from the facts: (a) integration is the solution of differential recursion for par-
ticular functions f and g (see Definition 19) and (b) the integral of a function
that grows strictly less than a weak exponential, grows also strictly less than a
weak exponential. Let us see what happens with differentiation. The proof is
done by induction in the structure of a function f ∈ DAnalog. If f is one of
the basic functions, then its derivative is a basic function. If f of arity n arises
from composition of functions g of arity k and h1, ...,hn of arity n, then, by
induction hypothesis, the derivatives of g, h1, ..., hn are in DAnalog (which is
closed under composition). We have then

∂xf(. . . , x, . . .) =
k∑
i=1

∂yig(y1, . . . , yk)|yi=hi(... ,x,...)∂xhi(. . . , x, . . .).

We conclude that the derivative of f is in DAnalog, since it can not grow above
some weak exponential.

Finally, if f is solution of the differential recursion scheme

f(. . . , x, . . . , 0) = h(. . . , x, . . .),

14

∂yf(. . . , x, . . . , y) = g(. . . , x, . . . , y, f(. . . , x, . . . , y)),

then it follows that, by induction hypothesis, ∂xh(. . . , x, . . .) and ∂xg(. . . , x, . . . ,
y, z) are in DAnalog. We write the following differential scheme

∂xf(. . . , x, . . . , 0) = ∂xh(. . . , x, . . .),

∂y∂xf(. . . , x, . . . , y) = ∂xg(. . . , x, . . . , y, f(. . . , x, . . . , y))

= (∂xg(. . . , x, y, z))|z=f(... ,x,... ,y)+(∂zg(. . . , x, y, z)))|z=f(... ,x,... ,y)∂xf(. . . , x, . . . , y),

that together with the previous differential scheme for f provide the solutions
of both f and and its derivative.

That NAnalog is closed for integration follows exactly as for DAnalog. �
Now we propose the definition of the classe fAP (the f stands for feasi-

ble), which can be interpreted a the class of real recursive functions computed
with quasi-polynomial restrictions on their values and times of computation. Of
course fAP — analog quasi-polynomial time in this context is just rhetoric, but
as we will see these subclasses of real recursive functions arise in such natural
way that they are not superseded by their classical counterparts.

Definition 36 The class of real recursive functions designated by fAP is de-
fined as DAnalog, but substituting the weak exponential order by subexponential
order.

Functions in fAP are said to be deterministic subexponential.

We see that our fAP indeed captures the meaning of Odifreddi words from
Section VIII of [15] including all stepwise subexponential functions, providing a
quite meaningful computational class. In classical terms, this class is not easy to
capture or characterize, since there exists not a operational method to define it.
We can only characterize the subexponential functions in the classical framework
by means of quantifiers: for every total function f , f is subexponential if, for
all ε > 0, there exists a positive integer M , such that f(x) < Meεx.

Let us conclude with the definition of the two following classes:

Definition 37 Let DAnalogr and NAnalogr be the restrictions of the classes
DAnalog and NAnalog to functions that in any step of their construction have
admissible restrictions in PF and NPF , respectively.

We know from [13], that all functions in PF or in NPF have extensions
in DAnalogr and NAnalogr, respectively. In [13] we proved that (let us recall
here that NPF ⊆ PF iff NP ⊆ P):

Proposition 38 If a function has an admissible restriction in any step of its
construction, then it belongs to DAnalog.

Proof.3 Suppose that a function f of arity one in these conditions is not in
DAnalog. Then we can find, in some step of the construction a component g

3This proof can be given by structural induction. Herein we provide this rather different
proof.

15

such that, for all k ∈ N, g(x) ≥ 2log(x)k . The function g has an admissible re-
striction which is not quasi-polynomially bounded, contrarily to our hypothesis.
Thus f is in DAnalog. �

The following statement although similar with final result in our previous
paper [13], is more strongly based in a clear mathematical formulation (avoiding
Proposition 31 of [13] that, it seems, it is not well-founded 4).

Proposition 39 If NPF ⊆ PF , then NAnalogr ⊆ DAnalogr.

Proof.5 If f is a function in NAnalog, then all their admissible restrictions
along its construction are nondeterministic quasi-polynomially bounded (i.e.,
they are in NPF), and then, by hypothesis, they are deterministic quasi-
polynomially bounded (i.e., they are in PF). We end the proof applying Propo-
sition 38. �

Since all functions in DAnalogr are built from components f satisfying (a)
a differential equation that can be seen as linear and (b) a growing condition,
then the differential equation itself can be solved by Laplace transforms. The
above considerations justify the following interpretation of Proposition 39.

The problem whether P is a proper subclass of NP can be trans-
formed into the problem of a proof DAnalogr 6= NAnalogr, which will
be based on some sets of real functions with Laplace transforms.

5 Why is fAP elegant?

In this section we want to strongly motivate our concept of feasible functions,
computable over the real numbers, i.e. the functions of fAP . To do such an
exercise we will be helped by a book on analog computation from the sixties (see
[1]). Taking the examples throughout the book we can discuss the borderline
between feasible and non feasible analog computation.

We define first a proper subclass LIN(R) of REC(R), by restricting differ-
ential recursion to linear differential recursion (see [7]).

Definition 40 LIN(R) The class LIN(R) of real recursive vectors is generated
from the real recursive scalars 0, 1, −1, π, primitive functions θk(x) = xkΘ(x),
for k ≥ 0, and projections Iin(x1, . . . , xn) = xi, 1 ≤ i ≤ n, n > 0, by the
following operators: assembling and designating components, composition, and

Linear differential recursion: if f is a real recursive vector with n m-ary
components and g is a real recursive matrix with m×m (n+1)-ary components,
then the vector h of n m-ary components which is the solution of the Cauchy
problem, 1 ≤ i ≤ n, hi(x1, . . . , xm, 0) = fi(x1, . . . , xm), ∂yhi(x1, . . . , xm, y) =∑m
j=1 gij(x1, . . . , xm, y) hj(x1, . . . , xm, y) is real recursive.
4Although it is not obvious, and more work has to be done with regard to cleaner and

simpler formulation of such an analytic conditon — indeed, intended to shed new light on
P ⊂ NP conjecture.

5idem, like in the last proof.

16

Note that linear integration can only solve differential equations of the form
∂h = gh, where the right-hand side is linear in h, rather than the arbitrary
dependence ∂h = g(h) of which REC(R) is capable. Secondly, we can expand
our set of variables, and so solve non-homogeneous linear differential equations of
the form ∂h = gh+b. In [7] the following results can be found: LIN(R) contains,
e.g., sin, cos, λx. ex, the rational numbers, and real recursive extensions of
successor, addition, and cut-off subtraction; moreover all functions in LIN(R)
are continuous and total.

It is proved in [7] that there exist bounds on the growth of functions in
LIN(R), namely:

Proposition 41 Let h : Rm → R be a function in LIN(R). Then there is a
constant d such that, up to multiplicative constants, for all (x1, . . . , xm) ∈ Rm,

‖h(x1, . . . , xm)‖ ≤ e[d](‖(x1, . . . , xm)‖),

‖∂xih(x1, . . . , xm)‖ ≤ e[d](‖(x1, . . . , xm)‖),
where by e[n] we mean the iterated exponential: e[0] is just the identity function
and e[n+1](x) = ee

[n](x).

Proposition 41 establish the same kind of bounds as for Kalmar’s elementary
functions. But the relation between these two classes can be shown to be much
tighter: namely, all functions in LIN(R) can be approximated (in the sense of
Grzegorczyk, e.g., like in [19]) by elementary functions, and all real recursive
extensions of elementary functions are contained in LIN(R). Proofs of these
statements can be found in [7].

When the matrix g, in the definition of linear differential recursion, is made of
constant real recursive entries, then the last proposition takes a very particular
and interesting form. Namely, if f is such a function from LIN(R), that in any
step of application of linear differential recursion the matrix g is constant, then
up to multiplicative constants, we have for all (x1, . . . , xm) ∈ Rm,

‖h(x1, . . . , xm)‖ ≤ e‖(x1,... ,xm)‖, ‖∂xih(x1, . . . , xm)‖ ≤ e‖(x1,... ,xm)‖.

It is not known, up to our knowledge, if such constraints on the matrix are
enough to describe the full space of functions that have stepwisely a Laplace
transform.

The fact about LIN(R) is that it contains extensions of PF and NPF . Also
important for us is the connection between linear differential equations and the
Laplace transform. Using in this context the Laplace transform, operations of
differentiation and integration can be replaced with algebra.

Now, consider the linear differential recursion scheme ∂h = gh + b. In the
case we have the null matrix g, the scheme reduces to

∂yh(x1, . . . , xm, y) = b(x1, . . . , xm, y),

and we can conclude, by virtue of the fact that subexponential functions are
closed under integration, that if b is subexponential, then h is subexponential

17

too. This constitute the subclass of LIN(R) which is built up just by simple
integration. We consider in what follows the integral form of linear differential
recursion:

h(x1, . . . , xm, y) = h(x1, . . . , xm, 0) +∫ y

0

g(x1, . . . , xm, t) h(x1, . . . , xm, t) dt+
∫ y

0

b(x1, . . . , xm, t) dt.

Let γ be such that γ(x1, . . . , xm, t − y) = g(x1, . . . , xm, y). Such function
is in LIN(R) because it can be obtained by composition γ(x1, . . . , xm, y) =
g(x1, . . . , xm, t− y).

The integral form becomes now

h(x1, . . . , xm, y) = h(x1, . . . , xm, 0) +

+
∫ y

0

γ(x1, . . . , xm, y − t) h(x1, . . . , xm, t) dt+
∫ y

0

b(x1, . . . , xm, t) dt.

We can prove the following theorem:

Proposition 42 fAP (
⋂
LIN(R)) consists of the functions which in any step

of construction satisfy L[γ] ≤ 1 in the whole positive real axis.

Proof. Applying the Laplace transform to the integral form, we get

H(x1, . . . , xm, s) =

=
h(x1, . . . , xm, 0)

s
+H(x1, . . . , xm, s) L[γ(x1, . . . , xm, y)](s)+

B(x1, . . . , xm, s)
s

,

from where it follows that

H(x1, . . . , xm, s) =
h(x1, . . . , xm, 0) + B(x1,... ,xm,s)

s

s(1− L[γ(x1, . . . , xm, y)](s))
.

We conclude that the solution is in fAP if and only if L[γ(x1, . . . , xm, y)](s) ≤
1, for all < s > 0, since from the inductive point a view, functions γ and b are
already subexponential. �

Example 43 Considering the scalar case h(0) = 1, γ(y) = 1, and b(y) = 0, we
obtain L[γ(y)] = 1

s that do not satisfy the condition of our statement (e.g., in
the open interval (0, 1)). In fact, in this case, we have H(s) = 1

s(1− 1
s)

= 1
s−1 .

Applying the Bromwich contour we find h(x) = ex, as we expected.

The integral version of the linear differential recursion scheme is a generalized
form of the Volterra integral equation that can be written in the standard form

y(t) = f(t) +
∫ t

0

y(τ) K(t− τ) dτ,

18

for t > 0. The function K is called the kernel of the equation (cf. [9]). This result
is quite interesting because an ordinary differential equation may be transformed
into an integral equation. For example, if y(x) satisfies the n-th order ordinary
differential equation y(n)(x) = f(x)+

∑n
j=1 Cj(x) y(j−1)(x) and u(x) = y(n)(x),

then u(x) satisfies the integral equation u(x) = φ(x) +
∫ x
a
k(x, t) u(t) dt, with

k(x, t) =
∑n
j=1 Cj(x) (t−x)j−1

(j−1)! , where φ(x) is f(x) plus a polynomial in (x− a)
generated by the initial conditions.

By linear differential equation (see, e.g., [20]) we mean a differential equation
where the dependent variable appears only with exponent 0 or 1. All differential
equations in the sense of this definition are in LIN(R). (As a counterexample,
the equation y ∂xy = 1 is not linear.) Then we can state the following:

Proposition 44 A linear differential equation has a solution in fAP (
⋂
LIN(R))

whenever φ is subexponential and the kernel k satisfy the Laplacian conditioning
of Proposition 42.

Proof. Proposition 42 offers all ingredients of the proof, applying the Laplace
transform to the Volterra integral equation

u(x) = φ(x) +
∫ x

a

k(x, t) u(t) dt.

Since u(x) = y(n)(x), to obtain the Laplace transform of y we have to solve the
algebraic equation U(s) = sn Y (s)− sn−1 f(0)− sn−2 y′(0)− ...− y(n−1)(0). �

One good idea seems to be defining the matrix of the linear differential
recursion scheme in order to, with the help of the Laplace transform, characterize
the subexponential world, and, within it, different classes, possibly including P ,
NP , and lower complexity classes. From the physical point a view, the last
example is an example of a dissipative system, with a dumping term. A class
of Hamiltonian systems and a class of dissipative systems is captured by our
subexponential world containing extensions of DAnalog and fAP .

Let us stress that many physical systems are in fAP .
RC circuits are in fAP , satisfying the differential equation

RC ∂tυ + υ = V (t),

where the voltage source is V (t) and the initial condition is υ(0) = υ0. Solving
by Laplace transform we find L[υ] = υ0

s+ 1
RC

+ 1
RC(s+ 1

RC)
L[V (t)]. Thus, if V is

subexponential, then υ is subexponential.
RLC circuits are in fAP , satisfying the system of differential equations

R i+ υC + υL = V (t),

C ∂tυC = i,

L ∂ti = υL,

where the voltage source is V (t), the voltage across the capacitor is υC , the
voltage across the inductor is υL, and the initial conditions are υC(0) = υC,0

19

and υL(0) = υL,0. Also we let R denote the resistance, C the capacitance,
and L the inductance of the associated components of the circuit. Solving by
Laplace transform we find that, if V is subexponential, then υC and υL are
subexponential.

Harmonic oscillators are in fAP , satisfying differential equations of the form

∂t∂tυ + p ∂tυ + q υ = f(t),

where f is a forcing function. E.g., taken from [3] the harmonic oscillator
described by ∂t∂tυ + 4 ∂tυ = 3 cos(t), has transform L[υ] = 3s

(s2+4)(s2+1) , and
Bromwich contour υ(t) = − cos(2t) + cos(t). Of course these physical systems
are in fAP , whenever the forcing function f is.

6 Final Remark

If this paper had been written just to have a focus on the P 6= NP , then we
would not need at all the concept of generalized solution introduced in Section
3. It would be enough to work with linear integration, concept introduced in
Section 5, because the class of elementary functions discussed in that section
contains both PF and NPF . Linear integration has a unique solution. How-
ever, defining RECR(R) exactly as we do in Section 3 makes our framework
mathematically more interesting. But the reader should be aware that a sim-
pler framework, that of linear integration, is suitable for the purpose of this
paper.

7 Acknowledgement

We thank to Kerry Ojakian for point us a few potential problems in the formal-
ization of [13], situations that we don’t know yet how to solve. These problems
were avoided in the formulation of this paper.

References

[1] J. Robert Ashley. Introduction to Analog Computation, John Wiley and
Sons, Inc., 1963.

[2] José L. Balcázar, Josep Dı́az, and Joaquim Gabarró. Structural Complexity
I, Springer-Verlag, Second Edition, 1995.

[3] Paul Blanchard, Robert L. Devaney, and Glen R. Hall. Differential Equa-
tions, Brooks/Cole Publishing Company, 1998.

[4] Michael S. Branicky. Universal computation and other capabilities of hy-
brid and continuous dynamical systems. Theoretical Computer Science,
138(1):67-100, 1995.

20

[5] Manuel L. Campagnolo. Computational complexity of real valued recursive
functions and analog circuits, PhD dissertation, Universidade Técnica de
Lisboa, 2001.

[6] Manuel L. Campagnolo, Cristopher Moore, and José Félix Costa. Iteration,
inequalities, and differentiability in analog computers. Journal of Complex-
ity, 16(4):642-660, 2000.

[7] Manuel L. Campagnolo, Cristopher Moore, and José Félix Costa. An ana-
log characterization of the Grzegorczyk hierarchy. Journal of Complexity,
18(4):977–1000, 2002.

[8] Daniel Graça and José Félix Costa. Analog computers and recursive func-
tions over the reals. Journal of Complexity, 19(5): 644-664, 2003.

[9] A. C. King, J. Billingham, and S. R. Otto. Differential Equations, Linear,
Nonlinear, Ordinary, Partial, Cambridge University Press, 2003.

[10] Cristopher Moore. Recursion theory on the reals and continuous-time com-
putation. Theoretical Computer Science, 162: 23-44, 1996.

[11] Jerzy Mycka. µ-recursion and infinite limits. Theoretical Computer Science,
302: 123-133, 2003.

[12] Jerzy Mycka and José Félix Costa. Real recursive functions and their hier-
archy. Journal of Complexity, 20(6): 835-857, Elsevier, 2004.

[13] J. Mycka and J. F. Costa. The P 6= NP conjecture in the context of real
and complex analysis. Journal of Complexity, 22 (2): 287-303, 2006.

[14] Piergiorgio Odifreddi. Classical Recursion Theory I, Elsevier, 1992.

[15] Piergiorgio Odifreddi. Classical Recursion Theory II, Elsevier, 1999.

[16] D. Richardson. Journal of Symbolic Logic, 33:514, 1968.

[17] Claude Shannon. Mathematical theory of the differential analyzer. J. Math.
Phys. MIT, 20:337-354, 1941.

[18] Anders Vretblad. Fourier Analysis and Its Applications, Graduate Texts in
Mathematics 223, Springer-Verlag, 2003.

[19] Klaus Weihrauch. Computable Analysis, An Introduction, Texts in Theo-
retical Computer Science, Springer-Verlag, 2000.

[20] Daniel Zwillinger. Handbook of Differential Equations, Academic Press,
Third Edition, 1989, 1998.

21

