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Abstract. A new stochastic algorithm for determination of a global
minimum of a real valued continuous function defined on K, a compact
set of Rn, having an unique global minimizer in K is introduced and
studied, a context discussion is presented and implementations are used
to compare the performance of the algorithm with other algorithms.
The algorithm may be thought to belong to the random search class
but although we use Gaussian distributions, the mean is changed at
each step to be the intermediate minimum found at the preceding step
and the standard deviations, on the diagonal of the covariance matrix,
are halved from one step to the next. The convergence proof is simple
relying on the fact that the sequence of intermediate random minima is
an uniformly integrable conditional Gaussian martingale.

1 Introduction

Quite some attention has been recently devoted to stochastic algorithms, as
more than 300 bibliographic entries in the reference textbook [9] testifies. Highly
schematized global optimization methods using randomized search strategies are
object of a thorough synthetic theoretical study in [12] which also presents ap-
plications of these methods to engineering problems. Negative results as those in
[10] show that overconfidence on the effectiveness of stochastic methods is not de-
sirable but, nevertheless, it is natural to speculate that an adequate randomized
algorithm may perform better than a deterministic one in global optimization,
at least in most of the situations. Theoretical results such as those in [2], [11]
and [7], indicate that stochastic algorithms may be thought to be as reliable
as deterministic ones and efforts in order to find better performing algorithms
continue to be pursued as in [1] and [6]. The main feature of the new algorithm
presented here, allows to recover some interesting properties of other stochas-
tic algorithms such as the clustering and adaptiveness properties simultaneously
with the property of continuing to search the whole domain at each step, which
is a characteristic feature of simulated annealing.
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2 The Solis and Wets approach to random search

We recall next the powerful meta-approach of Solis and Wets (see [8]) in order to
generalize its formulation to the case of adaptive random search and almost sure
convergence. The original formulation of the authors solves the problem for non
adaptive random search and convergence in probability, as noted in the remark 1
ahead. According to [2, p. 22], with the exception of [8] there were no synthesis
studies of random search algorithms prior to 1986. Consider f : K ⊆ Rn −→ R,
K a Borel set, where we suppose that for x ∈ Kc we have f(x) = +∞ and,
(Ω,A,P) a complete probability space. The following general selection scheme
is the nuclear part of the random algorithm. Let ψ : K×Rn −→ K be such that
the following hypothesis [H1] is verified.{

∀x, t f(ψ(t, x)) ≤ f(t)
∀x ∈ K f(ψ(t, x)) ≤ f(x) .

(2.1)

The general conceptual algorithm of Solis and Wets is as follows.

S. 0: Take t0 ∈ K and set j = 0.
S. 1: Generate a point xj from (Rn,B(Rn),Pj).
S. 2: Set tj+1 = ψ(tj , xj) choose Pj+1, set j = j + 1 and return to step 1 (S.1).

Observe that in adaptive methods, xj is a point with distribution Pj which
depends on tj−1, tj−2, . . . , t0, thus being a conditional distribution. Let now λ
denote the Lebesgue measure over (Rn,B(Rn)) and α be the essential infimum
of f over K, that is: α := inf{t ∈ R : λ({x ∈ K : f(x) < t}) > 0}. Consideration
of the essential infimum is mandatory to deal correctly with non continuous
or unbounded functions such as 1I[0,1]\{1/2} defined in [0, 1], or ln(|x|)1IR\{0} +
(−∞)1I{0}. Let Eα+ε,M denote the level set of f having level α+ ε defined by:

Eα+ε,M :=

{
{x ∈ K : f(x) < α+ ε} if α ∈ R
{x ∈ K : f(x) < M} if α = −∞ .

(2.2)

A Solis and Wets’s type convergence theorem may now be formulated and proved.

Theorem 1 Suppose that f is bounded from below. Let the sequence of random
variables (Tj)j≥0 be defined inductively by using the sequence (Xj)j≥0 which, in
turn, depends on the family of probability laws (Pj)j≥0 given by the algorithm
above and verifying: T0 = X0 such that X0 _ P0, Xj _ Pj (to mean that Xj

has Pj as law) and Tj+1 = ψ(Tj , Xj). If we have that the following hypothesis
[H2(ε)] is verified: for some ε ≥ 0 and M ∈ R

lim
k→+∞

inf
0≤j≤k−1

Pj [Ec
α+ε,M ] = lim

k→+∞
inf

0≤j≤k−1
P[Xj ∈ Ec

α+ε,M ] = 0 , (2.3)

then,
lim

k→+∞
P[Tj ∈ Eα+ε,M ] = 1 . (2.4)

If, for all ε > 0 [H2(ε)] is true, (f(Tj))j≥0 converges almost surely to a random
variable Y∗ such that:

P[Y∗ ≤ α] = 1 . (2.5)
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Proof. Observe first that by hypothesis [H1] in formula 2.1 we have that if Tk ∈
Eα+ε,M or Xk ∈ Eα+ε,M then for all n ≥ 0, Tk+n ∈ Eα+ε,M . As a consequence,

{Tk ∈ Ec
α+ε,M} ⊆ {T1, T2, . . . , Tk−1 ∈ Ec

α+ε,M}∩{X1, X2, . . . , Xk−1 ∈ Ec
α+ε,M} .

So, for all j ∈ {0, 1, . . . , k − 1}:

P[Tk ∈ Ec
α+ε,M ] ≤ P

 ⋂
0≤l≤k−1

{Tl ∈ Ec
α+ε,M} ∩ {Xl ∈ Ec

α+ε,M}

 ≤

≤ P[Xj ∈ Ec
α+ε,M ] = Pj [Ec

α+ε,M ] ,

which implies P[Tk ∈ Ec
α+ε,M ] ≤ inf0≤j≤k−1 Pj [Ec

α+ε,M ]. We may now conclude
that:

1 ≥ P[Tk ∈ Eα+ε,M ] = 1− P[Tk ∈ Ec
α+ε,M ] ≥ 1− inf

0≤j≤k−1
Pj [Ec

α+ε,M ] ,

which, as a consequence of formula 2.3 implies the conclusion in formula 2.4.
Define now the filtration G = (Gj)j≥0 by Gj = σ(T0, T1, . . . , Tj). It is then clear,
from hypothesis [H1] in formula 2.1, that:

E[f(Tj+1) | Gj ] = E[f(ψ(Tj , Xj) | Gj ] ≤ E[f(Tj) | Gj ] = f(Tj) ,

thus showing that (f(Tj)j≥0 is a supermartingale bounded from below which
we know to be almost surely convergent to some random variable which we will
denote by Y∗. This conclusion together with formula 2.4 already proved shows
that formula 2.5 yields, as a consequence of lemma 1.

Remark 1 Hypothesis [H2] given by formula 2.3 mean that the more the al-
gorithm progresses in its steps, the more mass of the distributions Pj should be
concentrated in the set Eα+ε,M where the interesting points are. Our formulation
of hypothesis [H2] differs from the one presented in [8] which reads:

∀A ∈ B(Rn) λ(A) = 0 ⇒
+∞∏
j=0

(1− Pj [A]) = 0 . (2.6)

Formula 2.3 implies that, for ε > 0, we have
∏+∞

j=0 (1− Pj [Eα+ε,M ]) = 0 and so,
our hypothesis is stronger then the one in [8]. The hypothesis given by formula 2.6
is more appealing as it does not use a condition on the set Eα+ε,M which, in
general, is not explicitly known and, in almost every case, will be difficult to use
computationally. On the other hand, hypothesis given by formula 2.6 does not
allow the conclusion of the Convergence Theorem (Global Search) in [8, p. 20] to
hold in full generality. The theorem is true, with the proof presented there, if the
sequence (Xj)j≥0 is a sequence of independent random variables. The authors
do not mention this caveat and the phrase . . . Nearly all random search methods
are adaptive by which we mean that µk

1 depends on the quantities . . . generated
1 In our notation, the Pj .
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by the preceding iterations . . . may induce the reader in the opposite belief. In
fact, the inequality on the right in the third line in the proof of the theorem (see
[8, p. 21]) is, in the general case of dependent draws of the (Xj)j≥0, the reversed
one as a consequence of the elementary fact that if A ⊂ B and 0 < P[B] < 1
then: P[A ∩B] = P[A] = P[B] · P[A]/P[B] ≥ P[A] · P[B].

If f is continuous over K, a compact subset of Rn, then f attains its mini-
mum and it is verified that α = minx∈K f(x). The conceptual algorithm above
furnishes a way of determining this minimum. This is a simple consequence of
the following result, for which the proof is easily seen.

Corolary 1 Under the same hypothesis, if in addition for all x ∈ K we have
f(x) ≥ α, then: P[Y∗ = α] = 1.

For the reader’s commodity, we state and prove the lemma used above.

Lemma 1 Let (Zj)j≥0 be a sequence of random variables such that almost surely
we have limj→+∞ Zj = Z and for some δ > 0 we have limj→+∞ P[Zj < δ] = 1.
Then, P[Z ≤ δ] = 1.

Proof. It is a consequence of a simple observation following Fatou’s lemma.

P[Z > δ] = P[(lim inf
j→+∞

Zj) > δ] = P[lim inf
j→+∞

{Zj > δ}] ≤ lim inf
j→+∞

P[{Zj > δ}] ≤

≤ lim sup
j→+∞

P[{Zj ≥ δ}] = lim
j→+∞

P[{Zj ≥ δ}] = 0 .

3 The conditional Gaussian martingale (CGM) algorithm

The algorithm presented here may be included, on a first approximation, in
the class of random search methods as this class consists of algorithms which
generate a sequence of points in the feasible region following some prescribed
probability distribution or sequence of probability distributions, according to [3,
p. 835]. The main idea of the method studied here is to change, at each new step,
the location and dispersion parameters of the probability Gaussian distribution
in order to concentrate the points, from which the new intermediate minimum
will be selected, in the region where there is a greater chance of finding a global
minimum not precluding, however, a new intermediate minimum to be found
outside this region. We use a sequence of Gaussian distributions taking at each
step the mean equal to the intermediate minimum found in the preceding step
and the standard deviation diagonal elements of the covariance matrix equal to
half the ones taken in the preceding step. We now briefly describe the algorithm
and after we will present the almost sure convergence result. The goal is to find a
global minimum of a real function f defined over a compact set K ⊂ Rn having
diameter c. From now on, U(K) will denote the uniform distribution over K
and N (m,σ) denotes the Gaussian distribution with mean m and covariance
matrix with equal diagonal elements σ. With the presentation protocol of [5] the
algorithm is as follows.
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S. 0 Set j = 0;
S. 1 Generate x0

1, x
0
2, . . . , x

0
N from the uniform distribution over the domain K.

S. 2 Choose t0 = x0
i0

such that f(x0
i0

) is equal to min{f(x0
i ) : 1 ≤ i ≤ N}.

Increment j.
S. 3 Generate xj

1, x
j
2, . . . , x

j
N from the normal distribution N (tj−1, c/2j) having

mean tj−1 and diagonal covariance matrix elements c/2j , c being the diame-
ter of K.

S. 4 Choose tj = ti−1 if f(ti−1) is strictly inferior to min{f(xj
i ) : 1 ≤ i ≤ N} and

choose tj = xj
i0

if f(xj
i0

) is less or equal to min{f(xj
i ) : 1 ≤ i ≤ N} ≤ f(ti−1).

S. 5 Perform a stopping test and then: either stop, or increment j and return to
step 3 (S. 3).

Observe that steps 1 and 2 are useful in order to choose a starting point for the
algorithm in K. The repetition of steps 3, 4 and 5, provide a sort of clustering of
the random test points around the intermediate minimizer found at the preceding
step while continuing to search the whole space.

This algorithm’s core is easily implemented in a programming language al-
lowing symbolic computation (all implementations presented in this text are
fully downloadable from the author’s web page). For general purposes, we may
extend f to the whole space by defining f(x) = A (A large enough) for x /∈ K.

Jota � 400; Uba � ��; Ruba � ��;
For�j � 1, j � Jota, j��,

Tuba � �0�; Luba � ��;
minimo � Module��ptminX � xm, ptminY � ym, ptmaxX � xM, ptmaxY � yM,

cont � 850, cont1 � 5000, alea1, alea, T1, M1, Tes, eMes, NunOr�,
alea1 � Table��Random�Real, �ptminX, ptmaxX��,

Random�Real, �ptminY, ptmaxY���, �i, 1, cont1��;
T1 � Table��alea1��i��, f�alea1��i����1��, alea1��i����2����, �i, 1, cont1��;
NunOr � Table�i, �i, 1, cont1��;
M1 � Select�NunOr, Apply�f, Column�T1, 1���#��� �� Min�Column�T1, 2�� &�;
M1 � Min�M1�;
eMes � Flatten�Column�T1, 1���M1���; ��Print�eMes���;
For�i � 1, And�i � 52, Abs�Apply�f, �x0, y0�� � Apply�f, eMes�� � 10^��10�,

Norm��x0, y0� � eMes� � 10^��10��, i��,
alea � Table�Random�MultinormalDistribution�eMes, ���ptmaxX � ptminX��2^�i � 2�,

0�, �0, �ptmaxY � ptminY��2^�i � 2�����, �j, 1, cont��;
Tes � Table��alea��k��, f�alea��k����1��, alea��k����2����, �k, 1, cont��;
M2 � Select�Table�i, �i, 1, cont��,

Apply�f, Column�Tes, 1���#��� �� Min�Column�Tes, 2�� &�; M2 � Min�M2�;
eMes � If�Apply�f, Flatten�Column�Tes, 1���M2���� �� Apply�f, eMes�,

Flatten�Column�Tes, 1���M2���, eMes�;
Tuba � �Max�Append�Tuba, i���;
Luba � �Abs�Apply�f, eMes� � f�x0, y0��� Abs�f�x0, y0��, Norm�eMes��;��; Uba � Append�Uba, Tuba��1���; Ruba � Append�Ruba, �Tuba��1��, Luba��;�

Fig. 3.1. The Mathematica implementation of the CGM algorithm

The algorithm introduced converges to a global minimizer under the hypo-
thesis of continuity of the function f defined on a compact set. For notational
purposes given three random variables X, Y , Z and (a, b) ∈ Rn ×Rn×n we will
write X ∈ N (Y, Z) to mean that conditionally on Y = a, Z = b, X ∈ N (a, b),
that is, X has Gaussian distribution with mean a and covariance matrix b.
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Theorem 2 Let f : K −→ R be a real valued continuous function defined over
K, a compact set in Rn, and let z be an unique global minimizer of f in K, that
is: f(z) = minx∈K f(x) and for all x ∈ K we have f(z) < f(x).

For each N ∈ N\{0} fixed, define almost surely and recursively the sequence
(TN

j )j∈N by:

TN
0 =

{
X0

i0 : f(X0
i0) = min

1≤i≤N
f(X0

i ) X0
1 , . . . , X

0
N ∈ U(K) i.i.d.

}
.

Next, for all j ≥ 1

TN
j+1 :=


TN

j if f(TN
j ) < min

1≤i≤N

{
f(Xj+1

i ) : Xj+1
i ∈ N (TN

j ,
c

2j+1
) i.i.d.

}
Xj+1

i0
if f(Xj+1

i0
) = min

1≤i≤N

{
f(Xj+1

i ) : Xj+1
i ∈ N (TN

j ,
c

2j+1
) i.i.d.

}
≤ f(TN

j ) .

Then, for all N ≥ 1 fixed, the sequence (TN
j )j≥0 is a uniformly integrable mar-

tingale which converges almost surely to a random variable TN and the sequence
(TN )N≥1 converges almost surely to z, the unique global minimizer of f .

Proof. For all j ≥ 1 define the σ algebras GN
j = σ(TN

0 , . . . TN
j ) and the sets:

AN
j+1 =

{
f(TN

j ) < min
1≤i≤N

{
f(Xj+1

i ) : Xj+1
i ∈ N (TN

j ,
c

2j+1
) i.i.d.

}}
⊂ Ω .

As a first fact, we have obviously that AN
j+1 ∈ GN

j . Let us remark that (TN
j )j≥0

is a a martingale with respect to the filtration (GN
j )j≥0. This is a consequence

of:

E[TN
j+1 | GN

j ] = E[TN
j 1IAN

j+1
+Xj+1

i0
1I(AN

j+1)
c | GN

j ] =

= TN
j 1IAN

j+1
+ 1I(AN

j+1)
cE[Xj+1

i0
| GN

j ] = TN
j ,

as we have, by the definitions,

E[Xj+1
i0

| GN
j ] = E[Xj+1

i0
| TN

0 , . . . , TN
j ] = E[Xj+1

i0
| TN

j ] = TN
j .

As a third fact, we notice that as TN
j ∈ K, which is a compact set, we then

have for some constant M > 0 that
∥∥TN

j

∥∥
1
≤ M . As a consequence of these

three facts (TN
j )j≥0 is a uniformly integrable martingale which converges almost

surely to an integrable random variable TN . Observe now that, by construction,
f(TN

j+1) ≤ f(TN
j ) almost surely and so we have that (f(TN

j ))j≥0 decreases to
f(TN ). Let us remark that for all i, j we have f(TN ) ≤ f(Xj

i ). In fact, by
definition:

min
1≤i≤N

f(Xj0+1
i ) ≥

{
f(TN

j0 ) in AN
j0+1

f(Xj0+1
i0

) in (AN
j0+1)

c
=

= f(TN
j0+1)1IAN

j0+1
+ f(TN

j0+1)1I(AN
j0+1)

c = f(TN
j0+1) ,
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so, if for some i0, j0 we had

f(TN ) > f(Xj0+1
i0

) = min
1≤i≤N

f(Xj0+1
i ) ≥ f(TN

j0+1),

we would also have f(TN ) > f(TN
j0+1), which contradicts the properties of

(f(TN
j ))j≥0. We will now show that the sequence (f(TN ))n≥1 converges to f(z)

in probability. For that purpose, we recall the definition and some simple pro-
perties of Et := {x ∈ K : f(x) < t} the set of points of K having a level, given
by f , less then t. First, the monotony: t < s ⇒ Et ⊆ Es; secondly, Es is open:
x0 ∈ Et ⇒ ∃δ > 0 BRn(x0, δ) ⊆ Et; finally, Et 6= ∅ ⇒ z ∈ Et. Observe now that
for all ω ∈ Ω and all η > 0:

| f(TN (ω))− f(z) |> η ⇔

{
f(TN (ω)) < f(z)− η which is impossible;

f(TN (ω)) > f(z) + η ⇒ TN (ω) /∈ Ef(z)+η .

As a consequence, for all i, j we have Xj
i (ω) /∈ Ef(z)+η, as otherwise we would

have f(Xj
i (ω)) < f(z) + η < f(TN (ω)) ≤ f(Xj

i (ω)), which is impossible. As a
result, we finally have:

{
| f(TN )− f(z) |> η

}
⊆

+∞⋂
j=0

N⋂
i=0

{
Xj

i /∈ Ef(z)+η

}
,

which implies that P
[
| f(TN )− f(z) |> η

]
is bounded above, for instance, by:(

inf
0≤j<+∞

P

[
Xj

i /∈ Ef(z)+η

])N

≤ P
[
X0

i /∈ Ef(z)+η

]N
.

Now, X0
i being uniformly distributed over K we have, with η small enough:

P
[
X0

i /∈ Ef(z)+η

]
= λ(Ec

f(z)+η)/λ(K) < 1. So, we have as wanted, for all η > 0
small enough: limn→+∞P

[
| f(TN )− f(z) |> η

]
= 0.

We now observe that the above convergence is, in fact, almost sure conver-
gence, that is, (f(TN ))N≥1 converges to f(z) almost surely. This is a consequence
of the well known fact that a non increasing sequence of random variables con-
verging in probability, converges almost surely and the facts proved above that
show:

f(TN+1
j ) ≤ f(TN

j )
↓j→+∞ ↓j→+∞

f(TN+1) ≤ f(TN ) .

Consider Ω
′ ⊂ Ω such that P[Ω

′
] = 1 such that the above convergence takes

place over Ω
′

and observe that for every ω ∈ Ω
′

the sequence (TN (ω))N≥1

is a sequence of points in the compact set K. As a consequence, every con-
vergent subsequence (TNk(ω))N≥1 of (TN (ω))N≥1 converges to z. In fact, if
limk→+∞ TNk(ω) = y ∈ K then limk→+∞ f(TNk(ω)) = f(y) and by the result
we just proved limk→+∞ f(TNk(ω)) = f(z). This implies that f(y) = f(z) and
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as z is a unique minimizer we have that y = z. We now conclude the proof of
the theorem by noticing that (TN (ω))N≥1 converges to z because if otherwise
we would have: ∃ε > 0 ∀N∃Nm > N | TNm(ω)− z |> ε. As (TNm(ω))m≥1 is a
sequence of points in K which is a compact set, by Bolzano Weierstrass theorem
it has a convergent subsequence. This subsequence must converge to z which can
not occur by the definition of (TNm(ω))m≥1.

4 Computational results

CGM algorithm was compared with other algorithms. With Styblinski-Tang
function, we compared algorithms A (simple random search), B (localized ran-
dom search), C (enhanced random search), from [9, p. 38–48], and ARS (ac-
celerated random search) from [1]. The following notations are used. N is the

Jota � 400; Uva � ��;
Ce � 2^0.5;
Rol � 10^��4�;
For�j � 1, j � Jota, j��,

XisEne � �Random�Real, �xm, xM��, Random�Real, �xm, xM���;
ErEne � 1;
ind � 0;
For�

i � 1,
And�i � 25000, Abs�Apply�f, �x0, y0�� � Apply�f, XisEne�� � 10^��10�,

Norm��x0, y0� � XisEne� � 10^��10��, i��,
YupEne � �Random�Real, �XisEne��1�� � ErEne��xM � xm��2,

XisEne��2�� � ErEne��xM � xm��2��, Random�Real,�XisEne��1�� � ErEne��xM � xm��2, XisEne��1�� � ErEne��xM � xm��2���;
If�Apply�f, YupEne� � Apply�f, XisEne�, And�XisEne � YupEne, ErEne � 1�,

ErEne � ErEne�Ce�;
If�ErEne � Rol, ErEne � 1,�;
ind � i;
Vaca � �ind, Abs�Apply�f, XisEne� � f�x0, y0��� Abs�f�x0, y0��, Norm�XisEne��;�; Uva � Append�Uva, Vaca�;�

Fig. 4.1. The Mathematica implementation of the ARS algorithm used.

number of random points drawn at each repetition; M will denote the number of
repetitions in the simulation; J will be number of steps in the repetition; J repre-
sents the sample mean of the number of steps J necessary to achieve a prescribed
result, taken over the whole set of repetitions of the simulation; SD(J) is the
sample standard deviation of J . The stopping criterion for the number of steps
j in the simulation will be: j ≤ J0 ∧ | f(zn)− f(z) |> 10−10 ∧ | zn− z |> 10−10,
J0 being the number of steps we decide to impose as an upper bound and zn

being the estimated minimizer at step n of a repetition. A true minimizer of the
function is z. The function evaluation accuracy criterion after j steps is:

∆f(zj) =

{
(f(zj)− f(z))/f(z) if f(z) 6= 0
f(zj) if f(z) = 0 .

The function argument evaluation accuracy criterion after j steps is:
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∆zj =

{
‖(zj − z)/z‖ if z 6= 0
‖zj‖ if z = 0 .

The averages or sample means over M repetitions with j(k) steps at repeti-
tion k are: ∆z = (1/M)

∑M
k=1∆zj(k) , z = (1/M)

∑M
k=1 zj(k), ∆f(z) =

(1/M)
∑M

k=1∆f(zj(k)) and f((z) = (1/M)
∑M

k=1 f(zj(k)).

Table 1. Styblinski-Tang function; Repetitions: 400; ARS number of evaluations: 25000

Algorithm f(z) SD(f(z)) E SD(E)

A -78.2732 2.8× 10−3 25000 –

B -78.3201 6.1581× 10−4 25000 –

C -78.3201 5.9301× 10−4 25000 –

ARS (381) -78.3323 1.35255× 10−8 24778 1818

CGM -78.3323 2.72116× 10−11 15783 970

Table 2. CGM algorithm; random draws: 500; maximum number of steps: 50

Function J SD(J) ∆f(z) ∆z

Gaussian 1 (371) 33.372 1.91627 9.34019−×10−12 8.96686× 10−7

Gaussian 2 (97) 37.0103 1.70474 7.38679× 10−12 2.49709× 10−7

Griewank 30.475 1.873 4.65529× 10−11 9.63914× 10−6

Himmelblau 32.1675 1.91012 4.21595× 10−11 1.09551

Jennrich-Sampson 49.7375 2.13541 4.90973× 10−11 8.77548× 10−7

Rastrigin (399) 32.3885 1.75567 2.29124× 10−11 4.93828× 10−7

Rosenbrock 30.5325 1.90868 4.30236× 10−11 6.17981× 10−6

Freudenstein-Roth 33.9725 1.83033 4.42997× 10−11 5.23501× 10−7

Styblinski-Tang 31.5675 1.93903 5.13851× 10−13 3.45016× 10−7

Table 3. ARS algorithm; Maximum number of function evaluations: 25000

Function N SD(N) ∆f(z) ∆z

Gaussian 1 24984.8 303.95 5.34489× 10−9 2.03585× 10−5

Gaussian 2 (356) 25000 0 7.45836× 10−8 2.27671× 10−5

Griewank 25000 0 4.75247× 10−8 2.90102× 10−4

Himmelblau 25000 0 5.03447× 10−1 6.76862× 10−1

Jennrich-Sampson 24900.3 1426.31 1.00239× 10−9 1.24142× 10−5

Rastrigin 23991.4 3954.14 7.65517× 10−10 2.67892× 10−6

Rosenbrock (398) 24518.6 2543.41 2.89627× 10−9 4.59241× 10−5

Freudenstein-Roth 25000 0 4.80997× 10−2 1.63671× 10−2

Styblinski-Tang (382) 24777.9 1862.48 7.08203× 10−11 3.6433× 10−6

ARS and the CGM algorithms were compared for nine different test func-
tions from [1] and [4]. The numerical results presented in the tables show that
CGM outperforms all other algorithms tried, in precision and with less function
evaluations. For one of the test functions (Gaussian 2) a further test, run with
2700 random draws at each step of the repetitions (instead of 500 used for the
tables study) gave a result with the prescribed precision for all repetitions, in
accordance with theorem 2. In the tables, the number between parenthesis in a
given line report correct locations of the global minimum among the repetitions
performed.
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5 Conclusion

To achieve its goal, any random search algorithm has simultaneously to detect
the region where the global minimum is located and to achieve enough precision
in the calculation of the minimizer. Practically, and to the limits of machine and
software precision used this is obtained, respectively, by an increasing number
of random trials and, by concentrating these trials in the favorable region. CGM
algorithm, hereby introduced and studied, always attained better precision than
ARS; we got also perfect global minimum location for all the test functions
tried, provided (in three cases) the number of random draws was sufficiently
augmented. The CGM convergence result was proved under mild but fully ve-
rifiable hypothesis in sharp contrast with our formulation of a Solis and Wets’s
type theorem for adaptive random search with an hypothesis of difficult if not
impossible verification even, in very simple cases.
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