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Abstract. We consider Bingham incompressible flows with temperature de-
pendent viscosity and plasticity threshold and with mixed boundary condi-
tions, including a friction type boundary condition. The coupled system of
motion and energy steady-state equations may be formulated through a vari-
ational inequality for the velocity and variational methods provide a weak
solution to the model. In the asymptotic limit case of a high thermal conduc-
tivity, the temperature becames a constant solving an implicit total energy
equation involving the viscosity function, the plasticity threshold and the fric-
tion yield coefficient. The limit model corresponds to a steady-state Bingham
flow with nonlocal parameters, which has therefore at least one solution.

1. Introduction

In the sixties, Ladyzhenskaya [8] proposed a modified Navier-Stokes system with
nonlocal viscosity. In [5], the authors proved that the nonlocal model, as well as
other nonlocal non-Newtonian models, can be obtained as an asymptotic limit case
of a very large thermal conductivity when the viscosities depend on temperature.
In the present work, we extend some of those models for the nonlocal Bingham flow
when the friction behavior on a part of the boundary is also taken into account.
The principal difficulty is that the quadratic term due to the energy dissipation
arising in the right hand side of the heat equation leads to the L1-analysis of the
partial differential equation. The new feature in the limit model is due to a Fourier
type boundary condition, and consists in the appearance of a nonlocal energy term
on the boundary part where friction is taken into account.

The Bingham viscoplastic fluid does not flow as a fluid unless the stress tensor
achieves at least some critical shear stress η (the plasticity threshold):

D(u) = 0 if |τ | ≤ η(1.1)

D(u) =
|τ | − η

µ|τ |
τ if |τ | > η(1.2)
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where u is the velocity vector, D(u) = (∇u+(∇u)T )/2 the symmetric part of the
gradient of the velocity vector, µ the viscosity and τ the deviator tensor of the
Cauchy stress tensor σ, that is, σ = −pI + τ where p denotes the pressure and I is
the identity matrix. The law (1.1)-(1.2) is an inverse form of the constitutive law
[6]

τ = µ(θ)D(u) + η(θ)
D(u)
|D(u)|

if |D(u)| 6= 0

|τ | ≤ η(θ) if and only if |D(u)| = 0

considering the viscosity and the plasticity threshold dependent on the tempera-
ture θ, and |D(u)| = (Dij(u)Dij(u))1/2, with the convention on implicit summa-
tion over repeated indices.

Here, let Ω be a bounded open subset of Rn(n = 2, 3) with Lipschitz continu-
ous boundary ∂Ω, which is assumed to consist of two disjoint parts Γ0 and Γ such
that ∂Ω = Γ̄0 ∪ Γ̄ and meas(Γ0) > 0. The governing equations to the Bingham
incompressible thermal flow at steady-state are given by

(u · ∇)u−∇ · τ = −∇p + f in Ω;(1.3)

∇ · u =
n∑

i=1

∂ui

∂xi
= 0 in Ω;(1.4)

u · ∇θ − κ∆θ = τ : D(u)− αθ in Ω, (α ≥ 0),(1.5)

where the density and the specific heat are assumed equal to one, f denotes the
external forces, and κ is the thermal conductivity. Note that we admit a possible
external heat source proportional to the temperature if α > 0, in addition to the
dissipation energy factor τ : D(u).

We introduce a thermal friction law on the part Γ of the boundary, keeping
the no-slip condition on the other part Γ0:

on Γ0 : u = 0(1.6)
on Γ : uN = 0 and(1.7)

|σT | < ν(θ) ⇒ uT = 0(1.8)
|σT | = ν(θ) ⇒ ∃λ ≥ 0, uT = −λσT .(1.9)

Here the tangential and normal velocities and the components of the tangential
stress tensor are given, respectively, by

uT = u− uNn, uN = uini, σTi = σijnj − σNni

where n = (ni) denotes the unit outward normal to ∂Ω. In (1.8)-(1.9), we assume a
temperature dependent function ν, ν ≥ 0, to represent the friction yield coefficient
(see, for instance, [6] for solid-solid interface or [2, 3, 4] for liquid-solid interface).

Finally we consider a homogeneous Neumann boundary condition

(1.10)
∂θ

∂n
= 0 on Γ0,
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and the Fourier boundary condition

(1.11) κ
∂θ

∂n
+ βθ = ν(θ)|uT | on Γ, (β ≥ 0).

In the framework of Lebesgue and Sobolev spaces with W 1,2(Ω) = H1(Ω),
we introduce

V = {v ∈ (C∞(Ω))n : ∇ · v = 0 in Ω};
Hs = {v ∈ (Ls(Ω))n : ∇ · v = 0 in Ω, vN = 0 on ∂Ω}, (s > 1);
V = {v ∈ (H1(Ω))n : ∇ · v = 0 in Ω, v = 0 on Γ0, vN = 0 on Γ},

endowed with the standard norm

‖v‖V = ‖D(v)‖2,Ω = ‖D(v)‖L2(Ω).

For fixed κ > 0, we formulate the problem (1.1)-(1.11) in variational form
[6]: find a weak solution (u, θ) ∈ V ×W 1,q(Ω), for 1 < q < n/(n− 1), such that,∫

Ω

{µ(θ)D(u)− u⊗ u} : D(v − u)dx + J(θ,v)− J(θ,u) ≥(1.12)

≥
∫

Ω

f · (v − u)dx, ∀v ∈ V ;

κ

∫
Ω

∇θ · ∇φdx−
∫

Ω

θu · ∇φdx + α

∫
Ω

θφdx + β

∫
Γ

θφds =(1.13)

=
∫

Ω

{µ(θ)|D(u)|2 + η(θ)|D(u)|}φdx +
∫

Γ

ν(θ)|uT |φds, ∀φ ∈ W 1,q′
(Ω);

where J : W 1,1(Ω)× V → R+
0 is defined by

J(θ,v) =
∫

Ω

η(θ)|D(v)|dx +
∫

Γ

ν(θ)|vT |ds.

The main idea is to pass to the limit on κ (κ → +∞) in order to reformulate
the local system (1.12)-(1.13) into a nonlocal problem with constant parameters for
the viscosity, the plasticity threshold and the friction yield coefficient calculated
at the constant homogenized temperature, which is implicitly given through a
scalar equation. We notice that the argument used in this work is applicable to
the Newtonian as well as non-Newtonian fluids, as shown in [5].

2. The main result

Let us state the weak nonlocal formulation to the problem (1.1)-(1.4) and (1.6)-
(1.9) corresponding formally to the limit model κ = ∞.



4 L. Consiglieri and J. F. Rodrigues

Problem. Find (u,Θ) ∈ V × R satisfying

µ(Θ)
∫

Ω

D(u) : D(v − u)dx−
∫

Ω

u⊗ u : D(v − u)dx +(2.1)

+η(Θ)
∫

Ω

{|D(v)| − |D(u)|}dx + ν(Θ)
∫

Γ

{|vT | − |uT |}ds

≥
∫

Ω

f · (v − u)dx, ∀v ∈ V,

where Θ is a solution to the implicit scalar equation

(2.2) (α|Ω|+ β|Γ|) Θ = µ(Θ)
∫

Ω

|D(u)|2dx + η(Θ)
∫

Ω

|D(u)|dx + ν(Θ)
∫

Γ

|uT |ds.

Remark 2.1. Notice that the antisymmetry of the convective term
∫
Ω
(u · ∇)u · v

is valid by the incompressibility property (1.4) and the boundary condition uN =
0 on ∂Ω given by (1.6)-(1.7).

We assume

µ ∈ C0(R) : ∃µ∗, µ∗ > 0, µ∗ ≤ µ(s) ≤ µ∗, ∀s ∈ R;(2.3)
η ∈ C0(R) : ∃η∗ > 0, 0 ≤ η(s) ≤ η∗, ∀s ∈ R;(2.4)
ν ∈ C0(R) : ∃ν∗ > 0, 0 ≤ ν(s) ≤ ν∗, ∀s ∈ R;(2.5)

α, β ≥ 0 : α + β > 0;(2.6)
f ∈ V ′.(2.7)

The main result of this work is the following theorem.

Theorem 2.2. Under the assumptions (2.3)-(2.7), there exists (u,Θ) ∈ V × R a
solution to the problem (2.1)-(2.2), which can be obtained as a limit in V×W 1,q(Ω),
1 < q < n/(n− 1), as κ →∞ of solutions (uκ, θκ) of (1.12)-(1.13).

3. Auxiliary existence results

The following propositions are essential in the proof of the theorem 2.2.

Proposition 3.1. For every w ∈ Hs, s ≥ n, and ξ ∈ W 1,1(Ω) there exists a unique
solution u = u(w, ξ) ∈ V to the variational inequality∫

Ω

{µ(ξ)D(u)−w ⊗ u} : D(v − u)dx + J(ξ,v)− J(ξ,u) ≥(3.1)

≥
∫

Ω

f · (v − u)dx, ∀v ∈ V,

and it satisfies the estimate

(3.2) ‖u‖V ≤ ‖f‖V ′

µ∗
.
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Moreover, if wm and ξm are sequences in Hs and W 1,1(Ω), respectively, such that
wm → w in Hs, ξm → ξ in L1(Ω) and ξm → ξ in L1(Γ), and um = u(wm, ξm)
are the corresponding solutions satisfying (3.1), then there exists u = u(w, ξ) ∈ V
the solution to (3.1) such that um → u in V .

Proof. The existence and uniqueness of the solution are consequences of
classical results (for instance, see [9]) on variational inequalities with convex con-
tinuous functionals. The estimate (3.2) follows by choosing v = 0 as a test function
in (3.1).

Let wm, ξm,um = u(wm, ξm) be sequences in the conditions of the Propo-
sition. From estimate (3.2) we have um ⇀ u in V for a subsequence of um, still
denoted by um, and consequently

um → u in Hs, for s < 2n/(n− 2)(3.3)
and in Lr(Γ), for r < 2(n− 1)/(n− 2).(3.4)

The convective term wm ⊗ um : D(v) easily passes to the limit in m. Since ξm →
ξ a.e. in Ω and on Γ, the functions µ, η and ν are continuous, and due to the
sequential weak lower semicontinuity of the continuous and convex functional J ,
we obtain as in [7]∫

Ω

{µ(ξ)D(u)−w ⊗ u} : D(v)dx + J(ξ,v)−
∫

Ω

f · (v − u)dx ≥

≥ lim inf
m→+∞

∫
Ω

µ(ξm)|D(um)|2dx + lim inf
m→+∞

J(ξm,um) ≥
∫

Ω

µ(ξ)|D(u)|2dx + J(ξ,u)

So u is a solution to (3.1), and its uniqueness is due to the standard variational
argument.

Choosing v = (um +u)/2 as a test function in (3.1) for the solutions um and
u, and subtrating the obtained inequalities, it results

µ∗

∫
Ω

|D(um − u)|2dx +
∫

Ω

{η(ξm)− η(ξ)}|D(um)|dx +
∫

Γ

{ν(ξm)− ν(ξ)}|um|ds

≤
∫

Ω

(w −wm)⊗ um : D(u)dx +
∫

Ω

{µ(ξ)− µ(ξm)}D(u) : D(um − u)dx +

+
∫

Ω

{η(ξm)− η(ξ)}|D(u)|dx +
∫

Γ

{ν(ξm)− ν(ξ)}|uT |ds.

Applying Fatou lemma to the second and third terms on the left hand side of the
above inequality and using Lebesgue theorem to the convergences on the right
hand side, the required strong convergence holds. �

Proposition 3.2. Let u = u(w, ξ) be the solution given by Proposition 3.1. Then
there exists θ = θ(u, ξ) ∈ W 1,q(Ω) a solution to the variational problem∫

Ω

(κ∇θ − θu) · ∇φdx + α

∫
Ω

θφdx + β

∫
Γ

θφds =(3.5)

=
∫

Ω

{µ(ξ)|D(u)|2 + η(ξ)|D(u)|}φdx +
∫

Γ

ν(ξ)|uT |φds, ∀φ ∈ W 1,q′
(Ω),
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that satisfies the estimate

α‖θ‖q,Ω + β‖θ‖q,Γ +
√

κ‖∇θ‖q,Ω ≤ F
(
‖f‖V ′ ,

µ∗

µ∗
, η∗, ν∗

)
(3.6)

for an arbitrary 1 < q < n/(n − 1), and F is a positive function. Moreover, let
wm and ξm be sequences in Hs and W 1,1(Ω), respectively, such that wm → w
in Hs, ξm → ξ in L1(Ω) and ξm → ξ in L1(Γ), and um = u(wm, ξm) be the
corresponding solutions given by Proposition 3.1. If θm = θ(um, ξm) are solutions
satisfying (3.5), then there exists θ = θ(u, ξ) a solution to (3.5) such that θm → θ
in W 1,q(Ω)− weak, L1(Ω)− strong and L1(Γ)− strong.

Remark 3.3. In (3.5), the terms on the right hand side have sense, since φ ∈
W 1,q′

(Ω)) ↪→ C(Ω̄) for q′ > n, that is, q < n/(n− 1), and the term
∫
Ω

θu · ∇φ has
meaning for θ ∈ W 1,q(Ω), u ∈ Hs with s ≥ n, and φ ∈ W 1,q′

(Ω).

Proof. Let us define F = µ(ξ)|D(u)|2 + η(ξ)|D(u)| and G = ν(ξ)|uT | ∈
Lr(Ω) for r as in (3.4), and, for each m ∈ N, take

Fm =
mF

m + |F |
∈ L∞(Ω).

From the Lax-Milgram theorem, there exists a unique solution θm ∈ H1(Ω)
to the following variational problem∫

Ω

(κ∇θm − θmu) · ∇φdx + α

∫
Ω

θmφdx + β

∫
Γ

θmφds =(3.7)

=
∫

Ω

Fmφdx +
∫

Γ

Gφds, ∀φ ∈ H1(Ω).

From L1−data theory (see, for instance, [5] or [10]), the estimate (3.6) follows
for θm. Indeed, choosing

φ = sign(θm)[1− 1/(1 + |θm|)ς ] ∈ W 1,2(Ω) ∩ L∞(Ω), for ς > 0,

as a test function in (3.7) it follows

κ

∫
Ω

ς|∇θm|2

(1 + |θm|)ς+1
dx + βC(ς)

∫
Γ

|θm|ds ≤ ‖F‖1,Ω + ‖G‖r,Γ.

Arguing as in [10] and [5] we conclude, for q < n/(n− 1), that∫
Ω

|∇θm|qdx ≤
(
‖F‖1,Ω + ‖G‖r,Γ

κς

)q/2

(ε
(∫

Ω

|θm|qn/(n−q)

)(2−q)/2

+ C(ε))

for arbitrary ε > 0. If β > 0, using a Poincaré-Sobolev type inequality we obtain

‖θm‖qn/(n−q),Ω ≤ C

(
‖∇θm‖q,Ω + β

∫
Γ

|θm|ds

)
≤(3.8)

≤ C

√
‖F‖1,Ω + ‖G‖r,Γ

ς
(ε1/q‖θm‖n(2−q)/[2(n−q)]

qn/(n−q),Ω + C ′(ε)) for κ > 1.
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If β = 0, the assumption (2.6) implies that α > 0. Choosing φ ≡ 1 as a test
function in (3.7) we get

0 ≤
∫

Ω

θm =
∫

Ω

Fmdx +
∫

Γ

Gds ≤ ‖F‖1,Ω + ‖G‖1,Γ;

and instead of (3.8) we obtain

‖θm‖qn/(n−q),Ω ≤ C‖∇θm‖q,Ω + |Ω|(n−q)/(nq)|
∫
−

Ω

θm| ≤

≤ C

√
‖F‖1,Ω + ‖G‖r,Γ

ς
(ε1/q‖θm‖n(2−q)/[2(n−q)]

qn/(n−q),Ω + C ′(ε)) for κ > 1,

where C is a constant depending on Ω, and
∫
−

Ω
denotes 1

|Ω|
∫
Ω

.

Consequently, for ε sufficiently small it follows

‖θm‖qn/(n−q),Ω ≤ C (independent of m and κ),

and then θm satisfies the estimate (3.6). Thus, we can extract a subsequence of
θm, still denoted by θm, such that it weakly converges to θ in W 1,q(Ω), where θ
solves the limit problem (3.5).

Let wm, ξm and um = u(wm, ξm) be sequences in the conditions of Propo-
sition 3.1, that is, um is such that um → u in V . In order to pass to the limit in
(3.5) for solutions θm = θ(um, ξm) when m tends to infinity, from estimate (3.6),
we can extract a subsequence of θm, still denoted by θm, such that it converges to
θ, which is the solution to (3.5). Note that by (3.3) and θm ⇀ θ in Lqn/(n−q)(Ω)
we obtain θmum ⇀ θu in Lsqn/[qn+s(n−q)](Ω) ↪→ Lq(Ω) for n = 2, 3. �

4. Proof of Theorem 2.2

This proof is divided in two parts.

4.1. Existence for the coupled system (1.12)-(1.13)

Consider the multivalued mapping L defined on

K := {(w, ξ) ∈ V ×W 1,q(Ω) : ‖w‖V ≤ R1 and ‖ξ‖W 1,q(Ω) ≤ R2},

taking R1 ≥ ‖f‖V ′/µ∗ and R2 conveniently choosen from estimate (3.6), such that
L applies (w, ξ) into the nonempty convex set {(u, θ)} ⊂ K, where u and θ are
the solutions given at Propositions 3.1 and 3.2, respectively. Thus the Tychonof-
Kakutani-Glicksberg fixed point theorem (see [1, pages 218-220]) garantees a solu-
tion, (u, θ) ∈ L(u, θ), to (1.12)-(1.13) still satisfying the estimates (3.2) and (3.6),
provided L(w, ξ) is a closed set and L is upper semicontinuous for the weak topol-
ogy in V × W 1,q(Ω), for 1 < q < n/(n − 1). From the closed graph theorem [1,
page 413], it remains therefore to prove that if (wm, ξm) ⇀ (w, ξ) in V ×W 1,q(Ω)
and (um, θm) ∈ L(wm, ξm) then

(4.1) (um, θm) ⇀ (u, θ) ∈ L(w, ξ).
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By Rellich-Kondrachof imbeddings

V ↪→↪→ Hs, for n ≤ s < 2n/(n− 2);
W 1,q(Ω) ↪→↪→ L1(Ω), and W 1,q(Ω) ↪→↪→ L1(Γ),

the final assertion (4.1) derives from Propositions 3.1 and 3.2.

4.2. Passage to the limit on κ

Let (uκ, θκ) be a solution to (1.12)-(1.13), corresponding to each κ > 0 and let
κ → +∞. From the estimates (3.2) and (3.6), we can extract a subsequence of
(uκ, θκ), still denoted by (uκ, θκ), satisfying

∇θκ → 0 in Lq(Ω),
θκ → Θ = constant in W 1,q(Ω).

We can proceed as in the proof of Proposition 3.1 to get a strong convergence of
uκ to u in H1(Ω). Then, we can pass to the limit (1.13) on κ (κ → +∞), taking
φ ≡ 1 to obtain (2.2). Now, taking the limit κ → +∞ in (1.12), it follows that the
limit u solves the nonlocal problem (2.1). �

References

[1] C. Baiocchi and A. Capelo, Variational and quasivariational inequalities: Applications
to free boundary problems. Wiley-Interscience, Chichester-New York, 1984.
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