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Abstract. We consider a semi-classical nonlinear Schrödinger equation. For
initial data causing focusing at one point in the linear case, we study a nonlin-
earity which is super-critical in terms of asymptotic effects near the caustic. We
prove the existence of infinitely many phase shifts appearing at the approach
of the critical time. This phenomenon is suggested by a formal computation.
The rigorous proof shows a quantitatively different asymptotic behavior. We
explain these aspects, and discuss some problems left open.

1. Introduction

We consider the semi-classical limit of the Cauchy problem, for (t, x) ∈ R+×R
n:

(1.1) iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε ; uε

|t=0 = εk/2a0(x)e
−i |x|2

2ε .

In the linear case f ≡ 0, the quadratic oscillations of the initial data cause focusing
at the origin at time t = 1 in the limit ε → 0 (see Section 2.1). In the nonlinear
case, the effective nonlinear effects strongly depend on the size of the initial data,
that is on k. Changing notations, we consider:

(1.2) iε∂tu
ε +

ε2

2
∆uε = f

(
εk|uε|2

)
uε ; uε

|t=0 = a0(x)e
−i |x|2

2ε .

In [1], we justified the general heuristics presented in [9], in the case of (1.2), for f
homogeneous of degree σ, f(y) = yσ. Two notions of criticality exist for k: outside
the focal point, and near the focal point, where the amplitude of uε is strongly
modified. We described the sub-critical and critical cases. The aim of the present
paper is to study a supercritical case.

Consider the case f(y) = yσ , and denote α = kσ. If a0 ∈ H1(Rn) with |x|a0 ∈
L2(Rn) and σ < 2/(n− 2) when n ≥ 3, uε is defined globally in time in H1(Rn).
The following distinctions were established in [1]:

α > nσ α = nσ
α > 1 linear caustic nonlinear caustic

linear WKB linear WKB
α = 1 linear caustic nonlinear caustic

nonlinear WKB nonlinear WKB

The term “linear WKB” means that outside the caustic, the propagation of uε

can be described by a geometrical optics approximation, with only linear effects
involved at leading order. The term “linear caustic” means that nonlinear effects
are negligible at leading order when the solution crosses the focal point. In either
of the two critical cases, nonlinear phenomena are described (the doubly critical
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2 R. CARLES

case was studied more precisely in [2]); we recall the case “nonlinear caustic, linear
WKB” in Section 2.2. The case we study in this paper corresponds to nσ > α > 1:
super-critical caustic with linear WKB régime.

A look at conservation laws suggest the existence of new relevant scales. In the
case discussed so far, the conservations of charge and energy read (see e.g. [3]):

(1.3)

‖uε(t)‖L2 = ‖a0‖L2 ,

1

2
‖ε∇xu

ε(t)‖2
L2 +

εα

σ + 1
‖uε(t)‖2σ+2

L2σ+2 = const. = O(1) ∼
ε→0

1

2
‖xa0‖

2
L2 .

When α ≥ nσ, the boundedness of uε and ε∇xu
ε in L2 implies, along with

Gagliardo–Nirenberg inequalities:

εα‖uε(t)‖2σ+2
L2σ+2 ≤ εnσ‖uε(t)‖2σ+2

L2σ+2 . ‖uε(t)‖
2−(n−2)σ
L2 ‖ε∇xu

ε(t)‖nσ
L2 = O(1) .

Thus, linear arguments allow us to recover a control of the nonlinear term in the
energy. Such a line of reasoning fails when α < nσ: the control provided by the
conservation of energy hides stronger nonlinear effects. In the linear case f ≡ 0,
and a0 ∈ S(Rn), one can check that the following point-wise estimate holds:

(1.4) |uε(t, x)| .
1

(ε+ |t− 1|)n/2
·

In the four cases of the table, the same estimate holds for the nonlinear solution
in space dimension one ([1, 2]); like in the linear case, it is sharp. Thus, the above
estimate εnσ‖uε(t)‖2σ+2

L2σ+2 = O(1) is sharp only near the focal point. We now use

the a priori estimate εα‖uε(t)‖2σ+2
L2σ+2 = O(1) given by the conservation of energy

only for t ≈ 1. Assuming like in all the cases of the above table that at time t = 1,
uε is described by a concentrating profile,

uε(t, x) ∼
ε→0

1

εnγ/2
φ
( x
εγ

)
,

we check that the “linear” value γ = 1 is forbidden (the power of ε in front of φ is to
ensure the L2-norm conservation). Guessing that the nonlinear term εα‖uε(t)‖2σ+2

L2σ+2

in the energy is exactly of order O(1) at the caustic, we find γ = α/(nσ), that is:

(1.5) γ =
k

n
< 1 .

We will not prove that the above argument is correct (see Section 6), but we will
show that the scale εγ is an important feature of this problem. Notice also that the
above argument suggests that the amplification of the solution uε as time goes to
1 is less important than in the linear case; super-critical phenomena may occur in
the phase, and also affect the amplitude.

We now go back to the notation (1.2), and do not assume in general that the
nonlinearity is homogeneous (unless it is cubic):

Assumptions 1.1. The space dimension is n ≥ 2.
The initial amplitude belongs to the Schwartz space: a0 ∈ S(Rn).
The nonlinearity is smooth: f ∈ C∞(R+; R).
f(0) = 0 and f ′ > 0. In particular, the nonlinearity is cubic at the origin.

Remark 1.2. We suppose a0 ∈ S(Rn) to avoid to count derivatives when not neces-
sary. We could as well assume that a0 belongs to Sobolev type spaces. If we require
a control on the growth of f at infinity, (0 ≤)f(y) . 〈y〉q for q < 2

n−2 when n ≥ 3,

then for every fixed ε > 0, uε is global in time, continuous with values in H1(Rn)
(see e.g. [3]). This includes a cubic nonlinearity in space dimension two or three.

Remark 1.3. The assumption f(0) = 0 is only to simplify notations, since replacing
f with f − f(0) turns uε(t, x) into uε(t, x)eif(0)t/ε.
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Remark 1.4. The assumption of the nonlinearity being cubic at the origin is rem-
iniscent of the paper by E. Grenier [8] (see also P. Gérard [7]). The proof of our
main result relies on ideas introduced in [8] (see Section 4).

Remark 1.5. The one-dimensional cubic nonlinear Schrödinger equation is inte-
grable. The case k = 0 with more general WKB data was treated in [10].

Before stating our main result, we give the following definition (see e.g. [13]):

Definition 1.6. If T > 0, (kj)j≥1 is an increasing sequence of real numbers, (φj)j≥1

is a sequence in H∞(Rn) := ∩s≥0H
s(Rn), and φ ∈ C([0, T ];Hs(Rn)) for every

s > 0, the asymptotic relation

φ(t, x) ∼
∑

j≥1

tkJφj(x) as t→ 0

means that for every integer J ≥ 1 and every s > 0,
∥∥∥∥∥∥
φ(t, ·) −

J∑

j=1

tkjφj

∥∥∥∥∥∥
Hs(Rn)

= o
(
tkJ
)

as t→ 0 .

Theorem 1.7. Let Assumptions 1.1 be satisfied. Assume n > k > 1. Then
there exists T > 0 independent of ε ∈]0, 1], a sequence (φj)j≥1 in H∞(Rn), and
φ ∈ C([0, T ];Hs(Rn)) for every s > 0, such that:
1. φ(t, x) ∼

∑
j≥1 t

jn−1φj(x) as t→ 0.

2. For 1 − t� εγ (γ = k/n < 1), the asymptotic behavior of uε is given by:

lim sup
ε→0

sup
0≤t≤1−Λεγ

‖uε(t) − vε(t)‖L2(Rn) −→
Λ→+∞

0 ,

where vε(t, x) =
ei |x|2

2ε(t−1)

(1 − t)n/2
a0

(
x

1− t

)
exp

(
iεγ−1φ

(
εγ

1 − t
, x

1 − t

))
.

We now comment this result. In the linear case f ≡ 0, the above result holds
with γ = 1 and φ ≡ 0 (see Section 2.1). We recall in Section 2.2 that in the critical
case “nonlinear caustic, linear WKB”, the same asymptotic as in the linear case
holds for 1− t� ε. The case k < n is super-critical as far as nonlinear effects near
t = 1 are concerned. We emphasize two important features in the above result: the
analysis stops sooner than 1 − t � ε, and nonlinear effects cause the presence of
the (nontrivial) phase φ. For 1 − t� εγ , we have

εγ−1φ

(
εγ

1 − t
,

x

1 − t

)
∼
∑

j≥1

εjk−1

(1 − t)jn−1
φj

(
x

1 − t

)
.

The above phase shift starts being relevant for 1− t ∼ ε
k−1
n−1 (recall that n > k > 1);

this is the first boundary layer where nonlinear effects appear at leading order,
measured by φ1. We will check that this phase shift is relevant: φ1 is not zero in
general, see (5.1) below. We then have a countable number of boundary layers in
time, of size

1 − t ∼ ε
jk−1
jn−1 ,

which reach the layer 1− t ∼ εγ in the limit j → +∞. At each new boundary layer,
a new phase φj becomes relevant at leading order. In general, none of the φj ’s is
zero: see e.g. (5.3) for φ2. The result of a cascade of phases can be compared to the
one discovered recently by C. Cheverry [5] in the case of fluid dynamics, although
the phenomenon seems to be different.

The assumption k > 1 means that we start with a linear WKB régime. Indeed,
for small positive time, uε remains of order O(1), and f(εk|uε|2) ∼ εk|uε|2f ′(0).
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The main term is then the same as in [1] with σ = 1 and α = k. As recalled in the
above table, α > 1 corresponds to a propagation which is linear at leading order.

Each phase shift oscillates at a rate between O(1) (when it starts being relevant)
and O(εγ−1) (when it reaches the layer of size εγ). Since γ > 0, this means that
each phase shift is rapidly oscillating at the scale of the amplitude, but oscillating

strictly more slowly than the geometric phase |x|2

2ε(t−1) , for 1 − t � εγ . We will see

in Section 6 that for 1 − t = O(εγ), all the terms in φ, plus the geometric phase,
have the same order: all these phases become comparable.

We will prove a more precise asymptotics than the L2 estimate of Theorem 1.7:
see Proposition 4.1 and (4.1). We restricted our attention to the L2 norm for the
sake of brevity.

Unfortunately, our analysis stops at the boundary layer of size εγ (we can only
go up to 1 − t = λεγ for some finite λ). We will discuss this fact in Section 6, and
explain why we took care of never speaking of “focal point” in the super-critical
case, but only of caustic (as a matter of fact, even the existence of a caustic is not
clear, see Section 6). For instance, the geometry of the propagation is not known
for 1−t ≤ εγ , while the analysis shows that it occurs on the rays of linear geometric
optics before this layer (see Figure 1). On the other hand, we know that the order

Λε
k−1

n−1

t

1

x

Which geometry??

Cascade of phase shifts
along the same rays

Free transport along rays
of geometric optics

Λεγ

Figure 1. Geometry of the propagation, with morally Λ → +∞.

of magnitude of the amplitude changes in the boundary layer of size εγ . Recall
that Theorem 1.7 describes the asymptotic behavior of uε for 1 − t ≥ Λεγ , in the
limit Λ → +∞. In this region, leading order nonlinear effects are visible only in the
phase. As mentioned above, our analysis is valid for 1− t ≥ λεγ , for some finite λ.
Between the initial time and this region, the amplitude of uε varies like (1− t)−n/2,
and changes from O(1) to O(ε−k/2).

The rest of the paper is organized as follows. In Section 2, we recall the proof of
the analog of Theorem 1.7 in the linear and critical nonlinear cases. In Section 3,
we present a formal computation that suggests a result like Theorem 1.7. Based on
the result by E. Grenier [8] and a “semi-classical conformal transform”, we give the
proof of Theorem 1.7 in Section 4. In Section 5, we compare the rigorous approach
with the formal result of Section 3. The discussion about the possible phenomena
for t ≥ 1 − λεγ appears in the final Section 6.

Acknowledgments. The author is grateful to Christophe Cheverry for stimu-
lating discussions about this work.
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2. Free and critical cases

2.1. The linear equation. Consider the linear equation:

(2.1) iε∂tu
ε
lin +

ε2

2
∆uε

lin = 0 , (t, x) ∈ R × R
n ; uε

lin|t=0 = a0(x)e
−i |x|2

2ε .

As ε→ 0, the rays of geometric optics (classical trajectories) are lines x
1−t = const.,

and meet at the origin at time t = 1. Indeed, the bicharacteristic curves are defined

by the Hamilton flow associated to p(t, x, τ, ξ) = τ + |ξ|2

2 :

ṫ = 1 ; ẋ = ξ ; τ̇ = ξ̇ = 0 ; x(0) = x0 ; ξ(0) = ∇φ(0, x(0)) = −x0 .

Of course, uε
lin can be expressed in terms of an oscillatory integral:

(2.2) uε(t, x) =
1

(2iπεt)n/2

∫

Rn

ei |x−y|2

2εt
−i |y|2

2ε a0(y)dy .

Applying stationary phase formula yields the same result as using WKB methods
below, up to the same boundary layer. Seek

uε
lin(t, x) ∼

ε→0
vε
lin(t, x) = v0(t, x)ei

φ(t,x)
ε .

Plugging this into (2.1) and canceling the O(ε0) and O(ε1) terms, we find:

∂tφ+
1

2
|∇xφ|

2 = 0 , φ(0, x) = −
|x|2

2
;

∂tv
0 + ∇xφ · ∇xv

0 +
1

2
v0∆φ = 0 , v0(0, x) = a0(x) .

For t < 1, one has explicitly:

φ(t, x) =
|x|2

2(t− 1)
; v0(t, x) =

1

(1 − t)n/2
a0

(
x

1 − t

)
.

Moreover, vε
lin solves:

iε∂tv
ε
lin +

ε2

2
∆vε

lin =
ε2

2(1 − t)2
ei |x|2

2(t−1)

(1 − t)n/2
∆a0

(
x

1− t

)
; vε

lin|t=0 = a0(x)e
−i |x|2

2ε .

Let rε(t, x) denote the source term: ‖rε(t)‖L2 .
ε2

(1 − t)2
. Standard energy esti-

mates for Schrödinger equation yield:

ε
d

dt
‖uε(t) − vε(t)‖L2 . ‖rε(t)‖L2 .

ε2

(1 − t)2
,

and

sup
0≤s≤t

‖uε(s) − vε(s)‖L2 .
1

ε

∫ t

0

‖rε(s)‖L2ds .
ε

1 − t
·

Thus, WKB approximation is interesting up to a boundary layer in time of size ε
before the focus. Moreover, vε

lin is exactly the approximate solution of Theorem 1.7
with φ ≡ 0. Past this boundary layer, (2.2) shows that for |1 − t| = O(ε),

uε(t, x) ∼
ei |x|2

2ε

(2iπε)n/2

∫
e−i x·y

ε a0(y)dy =
ei |x|2

2ε

εn/2
Fa0

(x
ε

)
∼

1

εn/2
Fa0

(x
ε

)
,

where F denotes the Fourier transform. For t − 1 � ε, stationary phase formula
yields the same asymptotic description as above, up to the Maslov index (see [6, 1]).
In particular, we see that (1.4) holds for uε

lin, and is sharp.
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2.2. The critical nonlinear case. We recall the main result of [1]. Consider (1.2)
in the case k = n, which is critical concerning the role of the nonlinearity near the
focal point. Introduce the scaling

uε(t, x) =
1

εn/2
ψε

(
t− 1

ε
,x

ε

)
.

Then the function ψε solves

(2.3) i∂tψ
ε +

1

2
∆ψε = f

(
|ψε|2

)
ψε ; ψε

|t=−1
ε

= εn/2a0(εx)e
−iε |x|2

2 .

A way to understand criticality is that ε has disappeared from the equation satisfied
by ψε. Using global well-posedness results for nonlinear Schrödinger equations
(under assumptions on the nonlinearity which are different from Assumptions 1.1,
see e.g. [3]), one has

‖ψε − ψ‖L∞(R;H1(Rn)) → 0 as ε→ 0 ,

where ψ is the (global) solution of the Cauchy problem

(2.4) i∂tψ +
1

2
∆ψ = f

(
|ψ|2

)
ψ ; e−i t

2 ∆ψ(t, x)
∣∣
t=−∞

= F−1(a0)(x) .

Scattering theory shows two interesting features: for large |t|, ψ(t, x) behaves like
a solution of the linear Schrödinger equation. This implies that for 1 − t � ε, the
solution uε can be approximated by uε

lin (or vε
lin): no nonlinear effect is relevant

before the same boundary layer as before. The second point is that for |1− t| . ε,
nonlinear effects occur at leading order, and are measured (in average) by the
nonlinear scattering operator associated to (2.4).

3. A formal computation

From now on, we assume that k < n. To simplify notations, and since the
Assumptions 1.1 will be needed for rigorous proofs only, consider the case of an
homogeneous nonlinearity: f(y) = yσ, and denote α = kσ. Then (1.2) becomes

(3.1) iε∂tu
ε +

ε2

2
∆uε = εα|uε|2σuε ; uε

|t=0 = a0(x)e
−i

|x|2

2ε .

The caustic is supercritical: nσ > α. We also assume α > 1 (linear WKB). Because
this section is only formal, we shall be very brief about the computations, and only
give the main steps.

3.1. A first boundary layer. Two approaches (at least) lead to the same result:
Lagrangian integral with stationary phase formula (like in [2] where the critical
one-dimensional cubic case is considered), and generalized WKB methods. We
shall retain the second one, which we use in the next subsection. Seek

uε(t, x) ∼
ε→0

vε
1(t, x) = u0(t, x)ei φ(t,x)

ε ,

and change the usual hierarchy to force the contribution of the nonlinear term to
appear in the transport equation:

∂tφ+
1

2
|∇xφ|

2 = 0 , φ(0, x) = −
|x|2

2
;

∂tu
0 + ∇xφ · ∇xu

0 +
1

2
u0∆φ = −iεα−1|u0|2σu0 , u0(0, x) = a0(x) .

The eikonal equation is the same as in Section 2.1, as well as its solution. The
transport equation is an ordinary differential equation along the rays of geometric
optics x

1−t = const., of the form

ẏ = −iεα−1|y|2σy .
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The modulus of u0 is constant along rays, and

u0(t, x) =
1

(1 − t)n/2
a0

(
x

1 − t

)
exp

(
−iεα−1

∣∣∣∣a0

(
x

1 − t

)∣∣∣∣
2σ ∫ t

0

ds

(1 − s)nσ

)
.

Note that the notation is no longer relevant, since u0 now depends on ε. We have
a new boundary layer in time, of size εβ before the focus, where

β =
α− 1

nσ − 1
.

For 1− t ∼ εβ , the above phase shift measures relevant nonlinear effects. We have:

iε∂tv
ε
1 +

ε2

2
∆vε

1 = εα|vε
1|

2σvε
1 + rε

1 ; vε
1|t=0 = a0(x)e

−i |x|2

2ε ,

with
1

ε

∫ t

0

‖rε
1(s)‖L2ds .

ε

1 − t
+

ε2α−1

(1 − t)2nσ−1
.

Following the energy estimates of Section 2.1, this quantity might be the one that
dictates the size of the error uε − vε

1 (see Section 5 for a discussion on that issue).
The second term is “new” (the first term is the same as in Section 2.1), and suggests

the existence of a second boundary layer, of size ε
2α−1
2nσ−1 .

3.2. Infinitely many boundary layers: cascade of phase shifts. Seek an
approximate solution of the form:

vε(t, x) =
1

(1 − t)n/2
a0

(
x

1 − t

)
eiφε(t,x), φε(t, x) =

|x|2

2ε(t− 1)
+ gε(t, x) .

We find

iε∂tv
ε +

ε2

2
∆vε =

(
i
ε2

2
∆gε − ε∂tg

ε −
ε2

2
|∇xg

ε|2 +
ε

1 − t
x · ∇xg

ε

)
vε

+i
ε2

(1 − t)
n
2 +1

∇xg
ε · ∇a0

(
x

1 − t

)
eiφε

+
1

2

(
ε

1 − t

)2
eiφε

(1 − t)n/2
∆a0

(
x

1 − t

)
.

As suggested by the previous paragraph, write

(3.2) gε(t, x) =
1

ε

∫ t

0

h

(
εα

(1 − s)nσ
, x

1 − t

)
ds , with h(z, ξ) ∼

∑

j≥1

zjgj(ξ) .

In the equation solved by vε, the last term is the “same” as in the linear case: it
becomes relevant only in a boundary layer of size ε. Since our approach will lead
us to the boundary layer of size εγ (recall that γ = k/n = α/nσ < 1), we ignore
that term.

The remaining terms with a factor i are of order, in L2,

ε2‖∆gε(t)‖L∞ +
ε2

1 − t
‖∇xg

ε(t)‖L∞ .
ε

(1 − t)2

∫ t

t0

εα

(1 − s)nσ
ds .

εα+1

(1 − t)nσ+1
,

and their contribution is also left out in this computation.
Now we require that vε be an approximate solution to (3.1):

(3.3)

(
∂t −

x

1 − t
· ∇x

)
gε +

ε

2
|∇xg

ε|2 = −
εα−1

(1 − t)nσ

∣∣∣∣a0

(
x

1 − t

)∣∣∣∣
2σ

.

Using (3.2), we get:

(3.4)

g1(ξ) = −|a0(ξ)|
2σ ,

for j ≥ 2, gj(ξ) = −
1

2

∑

p+q=j

1

(pnσ − 1)(qnσ − 1)
∇gp · ∇gq ,
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with the convention g0 ≡ 0. This algorithm produces smooth solutions provided
that |a0(ξ)|

2σ is smooth (σ ∈ N
∗ or a0 Gaussian for instance). We neglected the

terms corresponding to s = 0 in the integration (3.2): this does not increase the
error, since nσ > α > 1. Defining

g̃ε
N(t, x) =

1

ε

N∑

j=1

∫ t

0

(
εγ

1 − s

)nσj

ds× gj

(
x

1 − t

)
,

ṽε
N (t, x) =

1

(1 − t)n/2
a0

(
x

1 − t

)
ei |x|2

2ε(t−1)
+egε

N (t,x) ,

the approximate solution ṽε
N solves

iε∂tṽ
ε
N +

ε2

2
∆ṽε

N = εα|ṽε
N |2σ ṽε

N + r̃ε
N ; ṽε

N |t=0 = a0(x)e
−i |x|2

2ε ,

with, for 1 − t ≥ εγ :

1

ε

∫ t

0

‖r̃ε
N (s)‖L2ds .

ε(N+1)α−1

(1 − t)(N+1)nσ−1
+

εα

(1 − t)nσ
.

To compare with Theorem 1.7, remove the terms corresponding to s = 0 in the
integration (recall that nσ > 1), and define:

gε
N(t, x) =

1

ε

N∑

j=1

∫ t

−∞

(
εγ

1 − s

)nσj

ds× gj

(
x

1 − t

)
,

vε
N (t, x) =

1

(1 − t)n/2
a0

(
x

1 − t

)
ei |x|2

2ε(t−1)
+gε

N (t,x) .

By definition, we have ‖vε
N(t)− ṽε

N (t)‖L2 = O(εα−1) for 1− t ≥ εγ . One can check
that vε

N solves

iε∂tv
ε
N +

ε2

2
∆vε

N = εα|vε
N |2σvε

N + rε
N ,

with

(3.5)

rε
N (t, x) =

(
εα

(1 − t)nσ

)N+1

vε
N (t, x)gN+1

(
x

1 − t

)

+
1

2

(
ε

1 − t

)2

eigε
N (t,x) ei |x|2

2ε(t−1)

(1 − t)n/2
∆a0

(
x

1 − t

)

+i
ε

1− t

N∑

j=1

1

jnσ − 1

(
εα

(1 − t)nσ

)j (
vε

N (t, x)∆gj

(
x

1 − t

)

+ eigε
N (t,x) e

i |x|2

2ε(t−1)

(1 − t)n/2
∇gj · ∇a0

(
x

1 − t

))
.

We have the following result:

Proposition 3.1 (Formal approximation to (3.1)). Let nσ > α > 1, a0 ∈ S(Rn),
and fix N ∈ N

∗. Denote

gε
N(t, x) =

N∑

j=1

εjα−1

(1 − t)jnσ−1

1

jnσ − 1
gj

(
x

1 − t

)
,

and let vε
N be the associated approximate solution. The function vε

N solves

iε∂tv
ε
N +

ε2

2
∆vε

N = εα|vε
N |2σvε

N + rε
N ; vε

N |t=0 = a0(x)e
−i |x|2

2ε + O
(
εα−1

)
in L2.
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For 1 − t ≥ εγ = ε
α

nσ , the source term satisfies:

1

ε

∫ t

0

‖rε
N (s)‖L2ds .

ε(N+1)α−1

(1 − t)(N+1)nσ−1
+

εα

(1 − t)nσ
.

For 1 ≤ j ≤ N , the jth term of the series defining gε
N becomes relevant in

a boundary layer of size ε
jα−1

njσ−1 : in the limit N → +∞, a countable family of
boundary layers appear, between εβ and εγ . In the case σ = 1, which is the only
homogeneous nonlinearity consistent with Assumptions 1.1, we have α = k and we
find the boundary layers announced in the introduction.

Letting N → +∞ (using Borel lemma, see e.g. [13]), we find:

1

ε

∫ t

0

‖rε(s)‖L2ds .
εα

(1 − t)nσ
,

which is small for 1 − t� εγ .

Remark 3.2. In the critical case α = nσ > 1, we have β = γ = 1: the above
boundary layers “collapse” one on another. There are no such phase shifts as
above.

We point out that the sole estimate of the source term proves nothing. In a
stability argument, the nonlinearity |uε|2σuε − |vε

N |2σvε
N is usually treated by a

Gronwall type argument. If the nonlinearity is “too strong”, then the above esti-
mate, which is completely relevant in the linear case, does not necessarily account
for the size of the error. Since we are in a super-critical case, it is not surprising
that Proposition 3.1 is only a formal result. This remark can be compared to the
approach in [7]. To justify a WKB expansion for the nonlinear equation

iε∂tu
ε +

ε2

2
∆uε = f

(
|uε|2

)
uε ,

constructing an approximate solution that solves

iε∂tu
ε
app +

ε2

2
∆uε

app = f
(
|uε

app|
2
)
uε

app + O (ε∞) ,

is not sufficient. Indeed, the computations in [7] show that energy estimates and
Gronwall lemma do not yield better than

∥∥uε(t) − uε
app(t)

∥∥
L2 ≤ eCt/εO (ε∞) .

This is the reason why in [7], WKB expansions are justified for analytic data. This
assumption yields a source term for uε

app which is O(e−δ/ε), counterbalancing the
exponential growth of Gronwall lemma to lead to a good approximation on [0, T ]
for T > 0 independent of ε.

4. Rigorous results

We now prove Theorem 1.7. We will see that the approximate solution we find
diverges from the one constructed above, a fact which we discuss in Section 5.

4.1. Semi-classical conformal transform. Introduce the new unknown function
ψε given by:

(4.1) uε(t, x) =
1

(1 − t)n/2
ψε

(
εγ

1 − t
, x

1 − t

)
ei |x|2

2ε(t−1) .

Recalling that γ = k
n < 1, denote

(4.2) ~ = ε1−γ → 0 .
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Changing the notation ψε(τ, ξ) into ψ~(t, x), we check that (1.2) becomes:

(4.3) i~∂tψ
~ +

~
2

2
∆ψ~ = t−2f

(
tn|ψ~|2

)
ψ~ ; ψ~

∣∣
t=~

γ
1−γ

= a0(x) .

The singular term t−2 in factor of the nonlinearity is actually harmless: as t goes
to zero, t−2f

(
tn|ψ~|2

)
≈ tn−2|ψ~|2f ′(0), and is bounded since n ≥ 2.

The proof of Theorem 1.7 is now reduced to the asymptotic expansion for ψ~ as

~ → 0 for t ∈ [~
γ

1−γ , 1
Λ ]. Denote t~0 = ~

γ
1−γ . We shall prove the following:

Proposition 4.1. Let Assumptions 1.1 be satisfied. Assume n > k > 1, and let
s ∈ N. Then there exists T > 0 independent of ~ ∈]0, 1] such that for t ∈ [t~0 , T ],

the function ψ~ can be written as ψ~(t, x) = a~(t, x)eiφ~(t,x)/~, with
∥∥a~ − a

∥∥
L∞([t~

0 ,T ];Hs)
+
∥∥φ~ − φ

∥∥
L∞([t~

0 ,T ];Hs)
→ 0 as ~ → 0 ,

where (a, φ) solves

(4.4)
∂tφ+

1

2
|∇xφ|

2 + t−2f
(
tn|a|2

)
= 0 ; φ|t=0 = 0 ,

∂ta+ ∇xφ · ∇xa+
1

2
a∆φ = 0 ; a|t=0 = a0 .

Moreover,

lim sup
~→0

sup
t~

0≤t≤τ

∥∥∥ψ~(t, x) − a0 (x) eiφ(t,x)/~

∥∥∥
Hs(Rn)

→ 0 as τ → 0 .

The second point of Theorem 1.7 follows from the above proposition, since the
transform (4.1) is L2 unitary (see Proposition 4.3 below for the asymptotic expan-
sion of φ). We could also include not only derivatives in the above estimates, but
also momenta. As announced in the introduction, we chose to leave out this refine-
ment. Note that except for two aspects, Proposition 4.1 is nothing but rewriting
Theorems 1.1 and 1.3 of [8]. In our case, time is present in the nonlinearity, and
data for ψ~ are prescribed at time t~0 (with t~0 → 0 as ~ → 0) instead of time zero.

4.2. Construction of solutions to (4.3). We recall the ideas introduced by
E. Grenier [8], and show how to handle the presence of time in the nonlinearity. The
main idea in [8] is to write the solution of a semi-classical nonlinear Schrödinger
equation as a WKB solution, where not only the amplitude may depend on the
small parameter, but also the phase. This changes the usual WKB hierarchy, and
overcomes the difficulties pointed out in [7]. Seek the solution of (4.3) of the form

ψ~(t, x) = a~(t, x)eiφ~(t,x)/~,

with

(4.5)
∂tφ

~ +
1

2

∣∣∇φ~
∣∣2 + t−2f

(
tn|a~|2

)
= 0 ; φ~

∣∣
t=t~

0
= 0 ,

∂ta
~ + ∇φ~ · ∇a~ +

1

2
a~∆φ~ = i

~

2
∆ah ; a~

∣∣
t=t~

0

= a0 .

Introducing the “velocity” v
~ = ∇φ~, (4.5) yields

(4.6)
∂tv

~ + v
~ · ∇v

~ + 2tn−2f ′
(
tn|a~|2

)
Re
(
a~∇a~

)
= 0 ; v

~
∣∣
t=t~

0
= 0 ,

∂ta
~ + v

~ · ∇a~ +
1

2
a~ div v~ = i

~

2
∆ah ; a~

∣∣
t=t~

0
= a0 .

To force the initial time to be zero, introduce

ṽ
~(t, x) = v

~
(
t+ t~0 , x

)
; ã~(t, x) = a~

(
t+ t~0 , x

)
.
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Then (4.6) becomes

∂tṽ
~ + ṽ

~ · ∇ṽ
~ + 2

(
t+ t~0

)n−2
f ′
((
t+ t~0

)n
|ã~|2

)
Re
(
ã~∇ã~

)
= 0 ; ṽ

~
∣∣
t=0

= 0,

∂tã
~ + ṽ

~ · ∇ã~ +
1

2
ã~ div ṽ~ = i

~

2
∆ãh ; ã~

∣∣
t=0

= a0.

Notice that if n = 2 and f ′ = const. (2D cubic equation, which is conformally
invariant), the above system is exactly the same as in [8].

Separate real and imaginary parts of ã~, ã~ = ã
~ + ib̃~. Then we have

(4.7) ∂tu
~ +

n∑

j=1

Aj(u
~)∂ju

~ =
~

2
Lu~ ,

with u~ =




ã
~

b̃
~

ṽ
~
1
...
ṽ

~
n




, L =




0 −∆ 0 . . . 0
∆ 0 0 . . . 0
0 0 0n×n


 ,

and A(u, ξ) =

n∑

j=1

Aj(u)ξj =




ṽ · ξ 0 ea

2
tξ

0 ṽ · ξ
eb

2
tξ

2
(
t+ t~0

)n−2
f ′
ã ξ 2

(
t+ t~0

)n−2
f ′
b̃ ξ ṽ · ξIn


 ,

where f ′ stands for f ′
((
t+ t~0

)n
(|ã|2 + |b̃|2)

)
. The matrix A(u, ξ) can be sym-

metrized by

S =

(
I2 0
0 1

4(t+t~

0 )
n−2

f ′
In

)
,

which is symmetric and positive since f ′ > 0. We now reproduce the ideas of [8],
inspired by hyperbolic theory, see e.g. [11]. For an integer s > 2 + n/2, we bound
(S∂α

x u~, ∂α
x u~) where α is a multi index of length ≤ s, and (·, ·) is the usual L2

scalar product. We have

d

dt

(
S∂α

x u~, ∂α
x u~

)
=
(
∂tS∂

α
x u~, ∂α

x u~
)

+ 2
(
S∂t∂

α
x u~, ∂α

x u~
)

since S is symmetric. For the first term, we must consider the lower n×n block in
S. Differentiating (t+ t~0)2−n yields a non-positive term, and we get

(
∂tS∂

α
x u~, ∂α

x u~
)
≤

∥∥∥∥
1

f ′
∂t

(
f ′
((
t+ t~0

)n
(|ã~|2 + |b̃~|2)

))∥∥∥∥
L∞

(
S∂α

x u~, ∂α
x u~

)
.

So long as ‖u~‖L∞ ≤ 2‖a0‖L∞ , we have, for t ≤ 2 (to fix the ideas),

f ′
((
t+ t~0

)n
(|ã~|2 + |b̃~|2)

)
≥ inf

{
f ′(y) ; 0 ≤ y ≤ 2n+2‖a0‖

2
L∞

}
= δn > 0 ,

where δn is now fixed, since f ′ is continuous with f ′ > 0. We infer, for t ≤ 2,
∥∥∥∥

1

f ′
∂t

(
f ′
((
t+ t~0

)n
(|ã~|2 + |b̃~|2)

))∥∥∥∥
L∞

≤ C
(
‖u~‖L∞

)
‖∂tu

~‖L∞ . ‖u~‖Hs ,

where we used Sobolev embeddings and (4.7). For the second term we use

(
S∂t∂

α
x u~, ∂α

x u~
)

=
~

2

(
SL(∂α

x u~), ∂α
x u~

)
−
(
S∂α

x

( n∑

j=1

Aj(u
~)∂ju

~

)
, ∂α

x u~

)
.
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We notice that SL is a skew-symmetric second order operator, so the first term is
zero. The second term can be rewritten under the form
(
S∂α

x

( n∑

j=1

Aj(u
~)∂ju

~

)
, ∂α

x u~

)
=
(
S

n∑

j=1

Aj(u
~)∂j∂

α
x u~, ∂α

x u~

)

+
(
S
(
∂α

x (
n∑

j=1

Aj(u
~)∂ju

~) −
n∑

j=1

Aj(u
~)∂j∂

α
x u~

)
, ∂α

x u~

)
.

By symmetry of SAj(u
~),

(
S

n∑

j=1

Aj(u
~)∂j∂

α
x u~, ∂α

x u~

)
= −

n∑

j=1

(
∂j(SAj(u

~))∂α
x u~, ∂α

x u~

)

−

n∑

j=1

(
SAj(u

~)∂j∂
α
x u~, ∂α

x u~

)
.

Therefore, so long as ‖u~‖L∞ ≤ 2‖a0‖L∞ for t ≤ 2,
∣∣∣∣∣∣

(
S

n∑

j=1

Aj(u
~)∂j∂

α
x u~, ∂α

x u~

)
∣∣∣∣∣∣
.
∥∥∂α

x u~
∥∥2

L2

∥∥∇xu
~
∥∥

L∞ .
∥∥u~

∥∥3

Hs .

The usual estimates on commutators (see e.g. [11]) lead to
∣∣∣∣∣∣

(
S
(
∂α

x

( n∑

j=1

Aj(u
~)∂ju

~

)
−

n∑

j=1

Aj(u
~)∂j∂

α
x u~

)
, ∂α

x u~

)∣∣∣∣∣∣
≤ C

(∥∥u~
∥∥

Hs

) ∥∥u~
∥∥2

Hs .

Notice that S−1 can be bounded by C(‖u‖Hs), thus we have proved:

d

dt

∑

|α|≤s

(
S∂α

x u~, ∂α
x u~

)
≤ C

(∥∥u~
∥∥

Hs

) ∑

|α|≤s

(
S∂α

x u~, ∂α
x u~

)
,

for s > 2 + d/2. Gronwall lemma along with a continuity argument yield the
counterpart of [8, Theorem 1.1]:

Proposition 4.2. Under Assumptions 1.1 with n > k > 0, let s > 2 + n/2. Then

there exist T > 0 independent of ~ ∈]0, 1] and ψ~(t, x) = a~(t, x)eiφ~(t,x)/~ solution
to (4.3) on [t~0 , T + t~0 ]. Moreover, a~ and φ~ are bounded in L∞([t~0 , T + t~0 ];Hs),
uniformly in ~ ∈]0, 1].

4.3. Convergence and small time properties. We can now complete the proof
of Proposition 4.1. For s > 2 + n/2, we know that ã~ and ṽ

~ are bounded in
L∞([0, T ];Hs), uniformly in ~ ∈]0, 1]. Using (4.7), we infer that ∂tã

~ and ∂tṽ
~

are bounded in L∞([0, T ];Hs−2). Therefore, a subsequence of (ã~, ṽ~) converges

uniformly in C([0, T ];Hs′

loc) to (a, v) solution of (4.4) for any s′ < s− 2 (decreasing
T if necessary, depending on the lifespan associated to (4.4), see e.g. [11, 12]). By
uniqueness for (4.4), the whole sequence (ã~, ṽ~) is convergent. For t~0 ≤ t ≤ T ,
write

v
~(t, x) = ṽ

~(t, x) −

∫ t

t−t~

0

∂tṽ
~(s, x)ds ; a~(t, x) = ã~(t, x) −

∫ t

t−t~

0

∂tã
~(s, x)ds

Still using the boundedness of ∂tã
~ and ∂tṽ

~ in L∞([0, T ];Hs−2), we deduce that
the sequence (a~, v~) also converges to (4.4).

So far, we have not used the assumption k > 1. It appears when one wants to

approximate eiφ~/~ by eiφ/~: the factor 1/~ requires some care. This is where the
analysis of (4.4) for small times comes into play.
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Proposition 4.3. Let Assumptions 1.1 be satisfied, with n > k > 1. Then there
exist sequences (φj)j≥1 and (aj)j≥1 in H∞(Rn), such that the solution of (4.4)
satisfies

φ(t, x) ∼
∑

j≥1

tjn−1φj(x) , and a(t, x) ∼
∑

j≥0

tjnaj(x) as t→ 0 .

This result follows easily from the proof of Proposition 4.2 and Borel lemma (see
e.g. [13]); the first terms are computed in (5.1)–(5.3). Note that the series for a
starts with j = 0: the notations are consistent. We deduce

φ~(t~0 , x) − φ(t~0 , x) = −φ(t~0 , x) = O
((
t~0
)n−1

)
= O

(
~

γ(n−1)
1−γ

)
,

and by stability, for t~0 ≤ τ ≤ T ,

sup
t~

0≤t≤τ

∥∥φ~(t) − φ(t)
∥∥

Hs(Rn)
= O

(
~

γ(n−1)
1−γ

)
+ ~O(τ) .

The last factor is due to the source term ~∆a~ in the error estimate between (4.6)
and (4.4). Recalling that γ = k/n, we then have, for s > n/2,

∥∥∥ψ~ − a0e
iφ/~

∥∥∥
L∞([t~

0 ,τ ];Hs)
.
∥∥a~ − a

∥∥
L∞([t~

0 ,T ];Hs)
+ ‖a− a0‖L∞([t~

0 ,τ ];Hs)

+
1

~

∥∥φ~ − φ
∥∥

L∞([t~

0 ,τ ];Hs)

≤ o(1) + O(τn) + O
(
~

k−1
1−γ

)
+ O(τ) .

This completes the proof of Proposition 4.1, and Theorem 1.7 follows.

Remark 4.4 (Well-prepared data). If we had t~0 = 0, then the assumption k > 1
could be weakened to k > 0. Back to the transform (4.1), if we assume that

uε
|t=0 = a0(x)e

−i |x|2

2ε exp
(
iεγ−1φ (εγ , x)

)
,

then the O
(
~

k−1
1−γ

)
term in the above estimate disappears, and we can conclude

as before, supposing only n > k > 0 (but still n ≥ 2). Recall that if 0 < k ≤ 1,
then nonlinear effects are relevant at leading order for any positive time (nonlinear
propagation); they show up precisely in the phase φ.

5. Stability issues

The construction of Section 3 and the results of the previous paragraph do not
agree. To see this, we come back to Proposition 4.3: in (4.4), we have

O
(
tn−2

)
: φ1(x) =

1

n− 1
f ′(0)|a0(x)|

2 ,(5.1)

O
(
tn−1

)
: a1 + ∇φ1 · ∇a0 +

1

2
a0∆φ1 = 0 ,(5.2)

O
(
t2n−2

)
: (2n− 1)φ2 +

1

2
|∇φ1|

2 + 2 Re(a0a1)f
′(0) +

f ′′(0)

2
|a0|

4 = 0 .(5.3)

The function φ1 is the same as the one obtained by the approach of Section 3: the
two approximate solutions are close to each other up to the first boundary layer,
when the first phase shift appears. On the other hand, we see that to get φ2,
the modulation of the amplitude (a1) must be taken into account; in (3.3), g2 is
computed without evaluating ∆a0, unlike φ2. This means in particular that the
two approximate solutions diverge when reaching the second boundary layer: the
approach of Section 3 is only formal, and does not lead to a good approximation.
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And yet, the source term in Proposition 3.1 is small: thus, the linearized semi-
classical Schrödinger operator is not stable, in the semi-classical limit. We will see
below that this instability is not due to a spectral instability, but to the fact that
the approach followed to construct the formal approximation was too crude.

This phenomenon is due to the super-criticality of the problem. Indeed, for
fixed ε, we deal with a nonlinear Schrödinger equation with repulsive nonlinearity
(f ′ > 0), for which global well-posedness results are available (see Remark 1.2).
When using the transform (4.1), notice that the parameter ~ in (4.3) goes to zero as
ε→ 0 only when n > k, that is in the super-critical case (compare with Section 2.2).

To understand better the instability mechanism, let us go back to the comparison
between the construction of Section 3 and the results of the previous paragraph.
Letting N → +∞ in Proposition 3.1, we have an approximate solution of the form

vε(t, x) =
ei |x|2

2ε(t−1)

(1 − t)n/2
a0

(
x

1− t

)
exp

(
i
1 − t

ε
g

(
εγ

1 − t
, x

1 − t

))

=
e−i

|ξ|2

2~τ

(1 − t)n/2
a0 (ξ) exp

(
i

~

g (τ, ξ)

τ

) ∣∣∣
(τ,ξ)=( εγ

1−t
, x
1−t )

.

This formula and the transform (4.1) show that the approximation of Section 3
is too crude, since it ignores the coupling between phase and amplitude for (4.3).
Proposition 4.3 and (4.4) show that to have a good approximation of the phase, the
coupling between phase and amplitude must be taken into account at every order.

We can go one step further in the understanding of this apparent instability,
by applying the transform (4.1) to the intermediary approximate solution vε

N . We
show that the formal approximation stops being a good approximation between
the first and the second boundary layer. Assume σ = 1 so that the homogeneous
nonlinearity satisfies Assumptions 1.1. Like for the exact solution, write

vε
N (t, x) =

1

(1 − t)n/2
ψε

N

(
εγ

1 − t
, x

1 − t

)
ei |x|2

2ε(t−1) .

Using the expression (3.5), we check that ψ~

N solves

i~∂tψ
~

N +
~

2

2
∆ψ~

N = tn−2|ψ~

N |2ψ~

N + θ~

N (t, x) ,

along with the initial condition ψ~

N

∣∣
t=~

γ
1−γ

= a0(x) + O
(
~

(α−1)(1−γ)
)

in Hs(Rn)

for any s > 0, where:

θ~

N (t, x) =
(
t(N+1)n−2K0(x) + i~K1(t, x)

)
ψ~

N (t, x) + i~K2(t, x) + ~
2K3(t, x) ,

for some “nice” functions Kj . Now write ψ~

N (t, x) = a~

N (t, x)eiφ~

N (t,x)/~. We have:

(5.4)

∂tv
~ +

n∑

j=1

Aj(v
~)∂jv

~ =
~

2
Lv~ + S

~(t, x) , with v~(t, x) =




Re a~

N

Im a~

N

∂1φ
~

N
...

∂nφ
~

N



,

and S
~(t, x) = (t+ t~0)




K1 + Re
(
(K2 − i~K3)e

iφ~

N/~

)

K1 + Im
(
(K2 − i~K3)e

iφ~

N /~

)

−(t+ t~0)(N+1)n−3∂1K0

...

−(t+ t~0)(N+1)n−3∂nK0




,
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where the matrices Aj are the same as in Section 4.2 and the functions in the
definitions of v~ and S

~ are evaluated at (t + t~0 , x). We can proceed like in Sec-
tion 4.2: the new term is the source S~. Unlike for the exact solution, the oscillatory
aspect of the problem has not disappeared: the first two components of S~ con-
tain a highly oscillatory factor. Therefore, we cannot expect ~ independent energy
estimates here. To measure the effect of this oscillatory term, forget the shift in
time, and take t~0 = 0. Then assuming that for small times, ∂a

xφ
~

N (t, x) = O(tn−1)
for any multi-index a (like for the exact solution), the Hs norms of the first two
components of S~ are controlled by

O

(
t+

t1+s(n−1)

~s

)
.

A source of order O(t) is not a problem, since we eventually consider the limit t→ 0.
On the other hand, let us examine the last term. Back to the initial variables, this
yields a control by

(
εγ

1 − t

)1+s(n−1)

ε−s(1−γ) =
εγ+sα−s

(1 − t)1+s(n−1)
.

This is small for 1 − t� εω, with

ω =
γ + sα− s

1 + s(n− 1)
.

We check that for n > α = k > 1, we have

β =
α− 1

n− 1
< ω =

γ + s(α− 1)

1 + s(n− 1)
<

2α− 1

2n− 1
, for any s ≥ 1 .

The first inequality means that we can expect the formal approximation to be a good
approximation of the exact solution beyond the first boundary layer (and indeed,
it is close to the approximate solution of Section 4). The second one explains why
the approximation ceases to be relevant before the second boundary layer.

A possible way to understand the above computation is that the choice of the
variables is crucial: working with the “usual” unknown vε (as in Section 3) is not
very efficient. On the other hand, with the variables introduced by E. Grenier for
his generalized WKB methods, a precise and rigorous analysis is possible, via the
transform (4.1). Thus, adding new variables helps the analysis: this goes in the
same direction as the general theory of geometric optics, and the recent approach
followed by C. Cheverry for a refinement of this principle [4, 5].

6. After the cascade of phase shifts

As announced in the introduction, our analysis stops for times of order t =
1−λεγ . For λ → +∞, we have Theorem 1.7. For bounded λ, λ ∈ [ 1

T ,+∞[, the first
part of Proposition 4.1 provides an asymptotic description. This shows in particular
that the solution ψ~ is approximated in terms of nonlinear geometric optics: the
eikonal equation contains the amplitude, therefore the geometry of propagation
needs not be the same as before, which occurred along rays x

1−t = const. Note

also that the transform (4.1) changes the space variable into a parameterization of
the family of rays, when they are straight lines. This explains Figure 1. Moreover,
between the initial time t = 0 and t = 1 − εγ

T , the order of magnitude of uε

changes. Indeed, Proposition 4.1 shows that for t ∈ [t~0 , T ], ψ~ is of order O(1) in
L∞(Rn) (take s > n/2 and use Sobolev embeddings). By (4.1), we infer that the
amplitude of uε varies like (1− t)−n/2, and changes from O(1) initially, to O(ε−k/2)
for 1− t ≈ εγ . Such an amplification is similar to what happens in the linear case.



16 R. CARLES

The semi-classical conformal transform (4.1) cannot be interesting for values of
t too close to 1, since it becomes singular. It seems reasonable to introduce the (L2

unitary) scaling transform,

(6.1) uε(t, x) =
1

εnγ/2
ϕε

(
t− 1

εγ
, x

εγ

)
=

1

εk/2
ϕε

(
t− 1

εγ
, x

εγ

)
.

With the same change of notation as for ψ in Section 4.1, we have

(6.2) i~∂tϕ
~ +

~
2

2
∆ϕ~ = f

(
|ϕ~|2

)
ϕ~ .

We now have exactly the same equation as in [8]. On the other hand, let us examine
the initial condition. Taking into account the data uε(0, x) = a0(x), we find

ϕ~

(
−~

γ
γ−1 , x

)
= ~

k
2(1−γ) a0

(
~

γ
1−γ x

)
,

that one may try to decouple to

ϕ~(t, x) ∼
1

|t|n/2
a0

(x
t

)
ei |x|2

2~t as t→ −∞ and ~ → 0 .

Of course, the above limits t→ −∞ and ~ → 0 do not commute. Denote U~(t) the
unitary group associated to the linear semi-classical Schrödinger equation (f ≡ 0
in the above equation). Then for fixed ~ > 0,

U~(t)ϕ0(x) ∼
t→−∞

1

(2iπ~t)n/2
ϕ̂0

( x
~t

)
ei |x|2

2~t .

Fix ~ in the above asymptotics. If f has moderate growth as in Remark 1.2 (cubic
nonlinearity in space dimension two or three for instance), then there is scattering
for (6.2) with ~ fixed, and

ϕ~(0, x) ∼
~→0

1

~n/2
Φ
(x

~

)
,

for some concentrating profile Φ, where the powers of ~ stem from the asymptotics
for the free operator U~. We saw in the introduction that at least when the non-
linearity is homogeneous, the conservation of energy rules out such a possibility, in
the limit ~ → 0.

It is probably more interesting to try to match with the results of Proposition 4.1.
Comparing (4.1) and (6.1), Proposition 4.2 yields, for −1

t~

0
≤ t ≤ −1

T+t~

0
:

ϕ~(t, x) =

(
−1

t

)n/2

ψ~

(
−1

t
,−x

t

)
ei |x|2

2~t

=

(
−1

t

)n/2

a~

(
−1

t
,−x

t

)
exp

(
i

~

(
|x|2

2t
+ φ~

(
−1

t
,−x

t

)))

=: a~(t, x)eiΦ~(t,x)/~ .

Note however that the term |x|2

2t in the phase does not belong to any Sobolev space;
we have to adapt the statement of Proposition 4.2 before claiming that we have ~

independent estimates. We can then try to use Grenier’s ideas again to extend the

lifespan of a~ and Φ~ to [ −1
T+t~

0
, T̃ ], with suitable ~ independent estimates. We shall

not pursue this point of view here.
We conclude this section by listing a series of questions that remain:
Do we have a WKB like description of uε for some time t > 1? If yes, with one

or several phases?
Is there a caustic for ϕ~? This is not even clear. Indeed, the initial problem (1.2)

contains a data which causes focusing at one point in the linear case. However, we
saw above that when reaching the boundary layer of size εγ , phase and amplitude
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of the solution become coupled in such a way that the geometry of the propagation

is modified. If by any chance there is no caustic for ϕ~, then we might take T̃
arbitrarily large, and hope to get a description of uε for any time.

Note also that when WKB asymptotics is valid for ϕ~, then the nonlinear term
in the conservation of the energy reaches its maximal order of magnitude. This is
how we found the parameter γ in the introduction for an homogeneous nonlinearity.
In the case of Assumptions 1.1, things are similar. Denote

F (y) =

∫ y

0

f
(
η2
)
ηdη (η is a real variable).

Then the generalization of the conservation of energy in (1.3) is:

1

2
‖ε∇xu

ε(t)‖2
L2 + ε−k

∫

x∈Rn

F
(
εk/2|uε(t, x)|

)
dx = const. = O(1) ∼

ε→0

1

2
‖xa0‖

2
L2 .

The nonlinear term in the above energy is exactly
∫
F
(
|ϕ~

(
t−1
εγ , x

)
|
)
dx, and is of

order O(1) for, say, t−1
εγ ∈ [−2

T , −1
T ], where WKB asymptotics for ϕ~ stems from

Proposition 4.1. (For t−1
εγ → −∞, dispersive properties of ϕ~ make the nonlinear

term small.) On the other hand, we saw that if there is a caustic for ϕ~, then it
cannot be reduced to a (single) point.

Finally, the apparent instability discussed in Section 5 suggests that computing
reliable numerical simulations to understand the asymptotic behavior of uε is a
challenging problem. Understanding the behavior of (a~, φ~) and (a~,Φ~), rather
than working on uε directly, would certainly be more reasonable.
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