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Abstract

In this paper, following the ideas introduced in [5], [6] and [7] (cf. also [9] and [3] for
related results), we study the existence of weak solutions for the Cauchy problem and the
existence of shock profiles for the system in viscoelasticity

vt—uI:O
zeR. t >0,
up — 0 (V) = plgy, @ >0

with 0" (v) = o(v) + H(v), where ¢ is a smooth stress function as considered in [10] and
H is the usual Heaviside function. This kind of models is motivated by some problems in
mechanics of solids (cf.[12] and [1]). Finally we solve, in related situations, the Riemann
problem for the corresponding hyperbolic system.

1. Introduction and main results.
The existence (and stability) of shock profiles for the system in viscoelasticity

Ve — Ugp = 0
reR, t>0,
U — 0 (V)g = gy, >0

has been studied in [10] for nonconvex smooth stress functions ¢ such that
g(0)=0, ¢ (0)>c>0, d'(v)v>0,veER (1.1)

(ex: o(v)=v+ %)

In some problems in mechanics of solids, like the Savart-Masson efect (cf.[12], §3.3.2,
and [1], §4.31) it is reasonable to consider models where o is replaced by

c*(v)=o(v)+ H(v), veER (1.2)
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where H(v) = 1forv > 0 and H(v) = 0 for v < 0 is the usual Heaviside function considered
as the multivaluated function

H(v)=H(v) for v#0, H(0)=]0,1]. (1.3)

A reasonable approximation of H is given by ffe pe(y) dy, with, for each & > 0, p.(y) =
Lp(¥), where p > 0 is a D(R) = C°(R) function with support [~1, 1] such that p(—y) =

p(y) and [ pe(y)dy = 1 (cf.[5]). The functions p. are the usual Friedrichs mollifiers and
we have p. — 0 (Dirac distribution) in D’(R). We set
£ 3 :

v

oe(v) = o(0) + / pe(y) dy (1.4)

—E&
and we consider the approximate system

Vet — Uegg = 0
zeR, 120 (1.5)
Uet — 05(U5>x = UlUegy

The Cauchy problem for systems of the type (1.5) has been studied in [8], [14] and [2] with
the hypothesis

— 0, where ZU:/Uz d1 1.0
S0) o ()QO(ﬂJ (1.6)

and since

&WZ/CMMWZZM,UER
0
we get the following result (cf.[14] and [2]) :

Proposition 1 Assume that the initial data (vo,ug) € (H*(R))? and vy € L*(R). Then
the Cauchy problem for the system (1.5) has a unique global solution

(ve,ue) € (CH([0, +oof; H?) N C([0, +o00[; H)) x (CH([0, +00; L*) N C([0, +oc[: H?))

such that
/ (v +ul) (z,t)de < ¢y, t >0, (1.7)
R
't

@ / / (02, +u2) (m,7)dedr < ¢y, t>0, 0<p<l, (1.8)

o JR
,u2/ v (zt)dr <ec3, >0 (1.9)

R

with ¢;, 1 = 1,2, 3, not depending on € (neither on p).
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Remark. From (1.7) and (1.9) we get, for each p, a uniform (in ¢ and in ) estimate for
ve (- )| Lo (m)-

Now, by the usual techniques in functional analysis, the well known compact imbed-
dings of Sobolev spaces in bounded domains of R? and by lemma 1 in [7], if we let ¢ — 0,
1t 1s easy to obtain, by diagonalization, a sub-sequence of (ve, u.)es>o given by proposition
1, still denoted by (v, te)e>o0, such that

Ve 0 in L>°(R,; L?) weakx and a.e. in R x R,
e—

(Ve Vet) — (vg,vy) in (L*(Ry;L?)? weak, wue — u in L®(Ry; L?) weakx.

e-—0 e—0

Uggp — Uy 1N LZ(R+;L ) weak,

e~+0

/ pe(y) dy . 0 € H(v) a.e., and in L®(R x R) weakx
e—

and
Theorem 1. We have v € L®(Ry; HY) N C([0, +o0]; L?), vg,vy € L2(R: L%, w
LRy L?), up € L2 (Ry;L?), 0 € L°(R x Ry), 0 € H(v) a.e. and

ov  Ju ‘
*8—{‘5—;*—0 m RXR+

v(z,0) =vo(x) ae in R

O A A K R

“+oo
_u/ /@%ddt v € CHR x [0, +00]).

Hence, we say that (v, u) is a weak solution of the Cauchy problem for the system

Vg — Uy = 0
(1.10)

ur — (o(v) + H(v))z = g
with initial data (ug,ve) € (H?*(R))?, vo € L}(R).

Now, in the spirit of [10] (cf. [4] and [13] for related results), we look for the existence of
shock profiles for system (1.10) that is special solutions of the form

T — st
L

(v,u) (z,t) = (V,U) < > . (V,U) e (C(R)NL>=(R))? (1.11)
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for given s € R such that for certain pairs (v_,u_), (v4,us) € R? we have

lim (V(E.U() = (v-rus), T (V(EU(E) = (vs, 1), (1.12)

§—r—00 E—+o0

We will choose s,v_, v, such that

vy <0<wv_, - <s < —\ol(vo) (1.13)
o(vy)
Ut
u_,uy such that (Rankine-Hugoniot conditions)

(notice that < ¢'(v4), so (1.13) implies the Lax shock conditions, cf.[11]). and

—s(uy —v_) =uy —u_
(1.14)
—s(ug —u_)=o(vy) —o(v_) ~ 1

(notice that H(vy) = 0, H(v_) = 1). Similarly, it is possible to consider the case v_ <
0<wvg.

Definition 1. We say that (v,u) € (L>°(R x R))? is a weak solution of system (1.10) if
there exists 0 € L (R x Ry) such that 0 € H(v) a.e. and

Vg — Up = 0
, in D'RxR,) (1.15)
up — (0(v) +0)p = pgy
For special solutions of the form (1.11), (1.15) can be written as follows, with © € L>(R)),
© € H(v) a.e.,
sVI+U =0
. in D'(R) (1.16)
—sU" — (a(V)+0) =U"
(where V' = d%V ).

We will prove the following theorem :

Theorem 2. Under the hypothesis (1.13),(1.14), the system (1.10) has a special weak

3

solution (v,u) of the form (1.11) verifying (1.12) (shock profile).

xr — St

Now. for each p > 0, let (v,,u,) (z,t) = (V,U) ( ) , be a shock profile in the

framework of theorem 2 and let y — 0. For z # st, (v,,u,) — (v, u) defined by

e
vy for = > st uy for x> st
v(z,t) = , o ulz,t) = (1.17)
v_ for z<st u_ for z <st



and if 0, € ﬁ(bu) is an in definition (1.15) we derive 6, — 0 (for x # st) with
L

O(z,t) =0 for © > st, O(z,t)=1 for = < st (1.18)

that is, 6(z.t) = 1 — H(z — st), § € H(v) a.e.. Furthermore, it is easy to deduce (from
(1.15) applied to (v,.w,) and letting u — 0)

+oc +00
/ / vy dzdt — / / up, dedt + / v(z,0) p(x,0) do+
0 R Jo R R

oo g +00 .
+ / / uthy dedt — / / (o(v) + 0, dedt + / u(z,0) ¥(z,0)dr =0
0 R o JR R

Vo, € CHR x [0, +oa).

(1.19)

Hence, under the hypothesis of theorem 2, we have solved the corresponding Riemann
problem for the discontinuous p — system

Uy — Uy = 0
(1.20)
ug — (o(v) + H(v))z =0

in the sense introduced in [5]:

Theorem 3. Assume (1.13),(1.14). Then there exists a shock solution (v,u), defined by
(1.17), of the Riemann problem for (1.20).

2. Proof of theorem 2.

For fixed 11 > 0, € > 0, we look for a solution (we drop the e for simplicity) (v, u) of the
approximate system (1.5) in the form (1.11), (V,U) € C}(R)xC?(R) verifying (1.12) under
the hypothesis (1.13) and (1.14) by choosing € small enough such that p.(vy) = p.(v_) = 0.
System (1.5) reduces to (by setting £ = = — st)

sV 4+ U =0

(2.1)

—sU" — (o' (V) + pc (V) V' =U"

R R
Vy — V-
As in [10], proposition 3.1, we derive, with o, defined by (1.4),
sV —U =a; = —sv4 — U4

(2.2)

—sU = (0.(V)=U"+ a2, ay=—suyx —o(vy)— H(vy)

D



and so
sV = -5’V +0.(V) —a, (2.3)

with @ = sa; — as = —s?vy + o(v4) + H(v4). Hence the function
he(y) = =5’y + 0:(y) — a
verify h.(vy) = 0. If we put h(y) = —s*y + o(y) + H(y) — a we deduce
h(vg) =0, h(07)=-a, h(0T)=1-a and a<0

—-—UEJUJF). It is easy to see that h(y) > 0, he(y) > 0, y €lvy,v_| (cf. fig.1 below).
+

since s° <

—£

Fig. 1

Hence, following [10], proof of proposition 3.1, a solution V; of the approximate problem

(2.3) is given by
VE(’E) dy
s =&+ Ce
[ on

and we can choose ¢, = 0, that is V,(0) = 0. By (2.2) we obtain the solution (V,,U,).
Now, for each € > 0 (e small enough to have p.(vy) = p(v_) = 0) let

(Ve, ue)(m, ) = (Vi Uy) (56 ;st)

be the corresponding shock profile. We know that V.(§) €lv_,vy[, Uc(€) €Ju_,uy]. From
(2.3), (2.2) and (2.1) we derive that

{(Ve,Uo)boce<e, is bounded in  (WH(R))2.

Hence, there is a sub-sequence, still denoted {(V;,U.)}. and a pair (V,U) € (C(R))?, such
that V(0) =0, V(&) € [v_,vy], U(€) € [u_,uy] and

Ve —V, U, — U,

e—0 e—0



uniformly in compact subsets of R. In particular, by lemma 1 in [5], we can assume that

V. B
/ pe(y) dy - © in L% weakx, ©e€ H(V) a.e..
£—

—E

We derive, by (2.1) written for (V;,U.), by passing to the limit when ¢ — 0,

sVI+U =0
o d in D'(R) (2.4)
- [/T _ — 1
s dé(a(V) +0)=U
It is easy to see that, if
vy < V() <v_, €€R, (2.5)
then
Ve (&) dy V() dy
s / L / 4y
0 he(y) =0 0 h(y)
and so

-V (€) d

Yy

s =£, € R.
/0 h(y) &t

From the properties of h (cf. [10] for related arguments) we derive

V(E) o v VIO v

and so (by passing also to the limit in (2.2), written for (V.,U.), when ¢ — 0) we deduce

UE) o, ue U(E) o u-

Finnaly, it is easy to conclude that (2.5) holds. This achieves the proof of theorem 2. =&
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