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Abstract. The behavior at infinity of the Fourier transform of the random measures that
appear in the theory of multiplicative chaos of Mandelbrot, Peyrière and Kahane, is an
area quite unexplored. For context and further reference, we present first an overview of
this theory and then the result which is the main objective of this work generalizing a
result previously announced by J.-P. Kahane. We establish an estimate for the asymptotic
behavior of the second moment of the Fourier transform of the limit random measure in
the theory of multiplicative chaos. In the last section, after looking at the behavior at
infinity of the Fourier transform of some remarkable functions and measures, we prove
a formula essentially due to Frostman involving the Riesz kernels and finally, we present
a methodological remark on the connection between uniform continuity and behavior at
infinity for an integrable function.

1. Introduction

The problem considered in the second section of this work admits a general formulation
that can be stated as follows. A random measure is defined in the sense of a random
object (see [9, p. 9]) by the action of a random operator on a usual Borel measure in a
way such that its Fourier transform is almost surely a uniformly continuous and bounded
function. A natural conjecture to be made is that the almost sure behavior, at infinity,
of the Fourier transform of the random measure is somehow related to the behavior at
infinity of the Fourier transform of the Borel measure used to build this random measure.
A technique that has given good results in problems such as the one here presented goes as
follows (see [10, p. 253–255, 265–267]). One gets first good estimates on the behavior of the
moments of the random functions and then, by an accumulation argument, the almost sure
behavior is obtained. The study of the asymptotic behavior of the second moment, besides
the instrumental usefulness for the technique described, can give an idea of what to expect
on the almost sure behavior.

1.1. Multiplicative chaos: an overview. For future reference and for an understandable
context to the following let us explain briefly some of the most important ideas of the
beautiful theory of multiplicative chaos. The main references of the plainly developed theory
are the masterful expositions [9], [11] and [12]. The foundation stones of this circle of
ideas may be traced to Mandelbrot’s work of 1972 [23] criticizing ideas of Kolmogorov’s
model for turbulence (1962) and proposing a substitute framework by means of a limit
lognormal model. In it, instead of having the average energy dissipation over a cube of
fixed radius being lognormal, as in Kolmogorov’s model, it is an approximate dissipation of
energy depending on a continuous parameter that would be lognormal. In that way, and
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as explained by Mandelbrot in 1977 (see [24]) the normalized exponentiation of Gaussian
processes could be a more adjusted interpretation of limit lognormal processes which would
in turn be the correct version of the lognormal hypothesis of Kolmogorov. Later on in
1974, a couple of notes of Mandelbrot ([21],[22]) were followed by works of Kahane ([8]) and
Peyrière ([27], [15]) developing some of the characteristic features of the theory. Extensions,
refinements and a refutal of a conjecture by Kahane were provided later by other authors
(see [2],[33], [3] and [38]).

For a basic start let (Ω,A, P) be a probability space and consider (Xn(t))n∈N a sequence
of independent Gaussian centered random functions defined over T a locally compact metric
space which for us will be the usual Euclidean normed space R

ν . We may then define the
associated lognormal weights

Pn(t) := exp
(

Xn(t) − 1
2

E[X2
n(t)]

)
.

Observing that E[Pn(t, ·)] = 1 if we define

Qn(t) := P1(t) · P2(t) · · ·Pn(t) ,

then (Qn(t, ω)n∈N,t∈Rν ,ω∈Ω is a positive R
ν-martingale. That means that:

1. for each t0 ∈ R
ν fixed (Qn(t0, ·)n∈N is a C martingale where the filtration C = (Cn)n∈N

is naturally given by:

Cn = σ({Xm : m ≤ n}) ;

2. for almost all ω0 ∈ Ω we have that (Qn(·, ω0))n∈N is a sequence of positive Borel
functions on R

ν .
Take now σ a positive Radon measure on R

ν (see [25, p. 9] or [20, p. 75]) and consider
the sequence of random measures defined by (Qnσ)n∈N. The following result ensures the
existence of the weak limit of this sequence.

Theorem 1.1. [12, p. 12] Under the condition

r(t) := E[Qn(t, ·)] ∈ L1(σ)

we have that (Qnσ)n∈N converges weakly (that is, over C0 the continuous functions on R
ν

having zero as a limit at infinity) almost surely to a random measure we designate by Sσ.

As a consequence of this result we may define an operator Q on the positive Radon
measures on R

ν , M+ = M+(Rν), into the space of random measures by

∀σ ∈ M+ Qσ = Sσ = lim
n→+∞

Qnσ .

This is by definition the multiplicative chaos operator associated with (Xn)n∈N. A basic
fundamental fact is that the distribution of the operator Q, namely the joint distribution of
(Qσ1(B1), Qσ2(B2), . . . , Qσn(Bn)) for all choices of n, σ1, . . . , σn, B1, . . . , Bn, depends only
on

q(s, t) :=
+∞∑
n=1

pn(t, s) ≤ +∞

where we suppose that pn(t, s) := E[Xn(t) · Xn(s)] ≥ 0.
In this work we will be particularly interested in the case where for a certain parameter

u > 0 we have

q(s, t) = u ln+

(
1

‖t − s‖
Rν

)
+ ©(1)(1.1)
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which is a natural model for isotropic turbulence. Suppose that r ∈ L1(σ). In general there
are two extreme cases concerning the image of operator Q.

1. Either Qσ ≡ 0 a.s. in which case we say that Q is degenerate on σ;
2. Or the martingale (Qnσ(B))n∈N converges in L1(Ω) for each given Borel set B. This

means that

E[Qσ](B) = rσB =
∫

B
r(t)dσ(t) ,

which we represent by

EQσ = E[
∫

dSσ] =
∫

rdσ(1.2)

and is usually described by saying that Q is fully acting on σ or Q lives on σ. It is
possible to show [12, p. 13] that for each ϕ ∈ C0 we have

E[
∫

ϕdSσ] =
∫

ϕrdσ .

In the case where q(s, t) is given by formula (1.1) every compact having Hausdorff dimen-
sion greater than u/2 supports measures such that Qσ 	= 0.

When dealing with moments it is particularly useful to consider the L2 theory. One may
say that Q is strongly non degenerate on σ if for every compact K of R

ν we have

EQσ(K) = σ(K) .

The L2 theory gives some conditions for Q to be strongly non degenerate on σ.

Theorem 1.2. [9, p. 133] The following are equivalent.
(i) Q is strongly non degenerate in σ and moreover E[Qσ(K)]2 < +∞;
(ii) ∫

K

∫
K

epn(t,s)dσ(t)dσ(s) = ©(1) ;

(iii) ∫
K

∫
K

eq(t,s)dσ(t)dσ(s) < +∞ .

Under condition (iii) of theorem (1.2) if k(t) is a complex bounded function over R
ν we

have

E

[∣∣∣∣
∫

K
k(t)dSσ

∣∣∣∣
2
]

=
∫

K

∫
K

k(t)k(s)eq(t,s)dσ(t)dσ(s) .(1.3)

For q(s, t) given by formula (1.1) condition (iii) of theorem 1.2 says that σ has finite
u-energy (see for a definition [25, p. 109] or theorem 3.1). As a consequence (see [12, p.
45]), for u < d we have Q lives on σ whenever σ has finite u-energy.

Let us define the Fourier transform of the random measure Sσ. Under the main hypothesis
of theorem 1.1, namely r ∈ L1(σ), we have almost surely

lim
n→+∞

∫
Qndσ = Sσ(1) < +∞ ,

as a consequence of formula (1.2). We can then conclude that there is convergence over the
bounded continuous functions on R

ν ([20, p. 98]). As a consequence, the definition of the
Fourier transform of the random measure Sσ is straightforward.
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Definition 1. The Fourier transform Ŝσ, of the random measure Sσ is by definition the
map defined almost surely by:

∀ξ ∈ R
ν Ŝσ(ξ) = lim

n→+∞

∫
Rν

exp(2πiξt)Qnσ(dt) .

As usual (see [16, p. 132]), it is easily verified that almost surely Ŝσ is uniformly contin-
uous and that for a bounded and positive Radon measure σ the map Ŝσ is almost surely
bounded.

Remark 1. With additional hypothesis it can be verified that Sσ is a random measure in
the sense of a measurable map taking its values in a (measurable) space of measures. More
precisely, if the operator Q is strongly non degenerate, then the martingale defined for all
ϕ ∈ C0(Rν) by (

∫
ϕQndσ)n∈N is a L2 martingale. In fact for some constants c, A

∀n ∈ N E

[∣∣∣∣
∫

ϕQndσ

∣∣∣∣
2
]
≤ c

∫ ∫
exp(qn(t, s))dσ(t)dσ(s) ≤ A < +∞ .

Following [26], we can say that the sequence of random measures (Qnσ)n∈N, converges in
quadratic mean (see [26, p. 49]). This shows that Sσ is a random measure when considered
as a map defined on a probability space and taking its values in the space of the Radon
signed measures, which is a measurable space, when endowed with the Borel σ algebra
associated with the topology of vague convergence. The random measures associated to
the multiplicative chaos are in this way and under some restrictive hypothesis nontrivial
examples of random signed measures in the sense of Kallemberg and Oliveira.

2. On the asymptotic behavior

Asymptotic behavior of the Fourier transform of a measure is a classical subject in Har-
monic Analysis ([17, p. 218], [25, p. 168], [32, p. 347–351, 360–364]). This subject has
received some attention recently. In part due to the relevance for applications of the L2

energy norm, the behavior of second order moments is particularly interesting (see, for
instance [36], [19], [5] and [39]).

The main result furnished by the established theory on the asymptotic behavior of the
Fourier transform of the random measure Sσ is the following.

Theorem 2.1. [9, p. 135] If q(s, t) given by formula (1.1) is a bounded C∞ function with
compact support and if σ has compact support and a C∞ density with respect to the Lebesgue
measure, then:

E

[∣∣∣Ŝσ(ξ)
∣∣∣2

]

 ‖ξ‖u−ν .

The main purpose of this work is to prove the following extension of this result. It gives
the asymptotic behavior of the second moment in the case where σ is a positive Radon
measure with compact support admitting an L2 density.

Theorem 2.2. If q(s, t) given by formula (1.1) and σ is a positive measure Radon measure
with compact support on R

ν , such that:
∫

Rν

|σ̂(x)|2 dx < +∞ , ∀ξ ∈ R
ν

∫
Rν

|σ̂(x)|2

‖x − ξ‖ν−u dx < +∞ .
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and such that, the operator Q is strongly non degenerate on σ. We have then for some
constants c and d that:

E[
∣∣∣Ŝσ(ξ)

∣∣∣2] ≤ 1
‖ξ‖ν−u (c + d ‖ξ‖ν sup

‖x−ξ‖< ‖ξ‖
2

|σ̂(x)|2) .

Proof. We use the result in [9] which says that

E[|Ŝ(ξ)|2] = E[|
∫

exp(2πitξ)dS(t)|2] =
∫

(Rν)2
exp(2πi(t − s)ξ)eq(t,s)dσ(t) dσ(s)(2.1)

as a consequence of formula (1.3). We will deal first with the special case where σ admits a
C∞ density f with compact support. Suppose then that dσ(t) = f(t)dt. By a trivial change
of variables and by Fubini’s theorem we get:∫

R2ν

e−2πi(t−s)ξ

||t − s||u dσ(t) dσ(s) =
∫

R2ν

e−2πivξ

||v||u f(v + s)f(s)dv ds =
∫

Rν

e−2πivξ

||v||u (f ∗ f )̌(s)dv .

The hypotheses on f imply that (f ∗ f )̌ is a C∞ function with compact support strictly
positive in a neighborhood of zero. As a consequence of proposition 3, we get for some
constant c:

E[|Ŝ(ξ)|2] ≤ c

||ξ||min(u, ν+1
2

)
,

which is a weaker result than the one announced for u ≥ (ν − 1)/2. The general case needs
another kind of approach. We apply theorem 3.1 to the last term in formula (2.1) to get for
some constant d:

E[|Ŝ(ξ)|2] ≤ d

∫
Rν

|σ̂(x)|2
||x − ξ||ν−u

dx .

Denote by I the following integral:

I =
∫

Rn

|σ̂(x)|2
||x − ξ||a dx .(2.2)

In order to obtain the asymptotic behavior of this integral we consider a point ξ, fixed in
R

n and the partition of the domain of integration given by:

R
n = B(0,

||ξ||
2

) ∪ B(ξ, α) ∪ {x ∈ R
n : ||x|| ≥ ||ξ||

2
, ||x − ξ|| ≥ α} ,(2.3)

where α is a parameter we will deal with, below. Let I1 (respectively I2, I3) be the integral
of the function |σ̂(x)|2

||x−ξ||a over the set on the left (respectively on the middle, on the right) of
the partition (2.3). Then, it is clear that:

I1 ≤ 1
||ξ||a

∫
||x||
||ξ|| <

1
2

|σ̂(x)|2

|1 − ||x||
||ξ|| |a

dx ≤ 1
||ξ||a 2a||σ̂||22 ,(2.4)

I2 ≤ sup
||x−ξ||<α

|σ̂(x)|2
∫
||x||<α

dx

||x||a ≤ αν−a sup
||x−ξ||<α

|σ̂(x)|2
∫
||x||<α

dx

||x||a ,(2.5)

I3 ≤ 1
αa

∫
||x||> ||ξ||

2

|σ̂(x)|2 dx ≤ ||σ̂||22
αa

.(2.6)
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As a consequence, for some constants c and d and choosing α = ||ξ||
2 in (2.5) and in (2.6) we

have that:

I ≤ 1
||ξ||a (c + d ||ξ||ν sup

||x−ξ||< ||ξ||
2

|σ̂(x)|2) ,(2.7)

as desired.

Remark 2. Let σ be the Lebesgue measure concentrated on the unit ball of R
ν . As a

consequence of formula (3.1) we will have that for some constant c:

|σ̂(x)|2 ≤ c

||x||ν+1
,

And as a consequence:

E[|Ŝ(ξ)|2] ≤ c

||ξ||ν−u
,

in agreement with the result stated in ([9, p. 30]).

Remark 3. The final conclusion in the statement of theorem (2.2) clearly depends on the
asymptotic behavior of the Fourier transform of the measure σ. We present next an example,
(given by [29]), that shows that in general the integral in (2.2) has no rate of decay better
than ©(1). We will see that the measure under scrutiny hasn’t compact support. As a
consequence, a natural question is to find an example such as the one presented but with a
measure with compact support.

Consider a sequence of functions (ϕn)n∈N defined by:

∀n ∈ N ϕn = I[−n,1−n] + I[n−1,n] .

As ϕn is an even function its Fourier ϕ̂n transform is real valued. A quick computation
shows that:

∀n ∈ N ϕ̂n(ξ) =
2 sin(πξ) cos((2n − 1)πξ)

πξ
.

Define now a sequence of functions (ψn)n∈N by:

∀n ∈ N ψn = ϕn ∗ ϕn .

A simple but tedious computation shows that ψn(x) is a linear by pieces continuous function
with compact support, simply described as the sum of three tent functions given by:

ψn(x) = (2n + x)I[−2n,−2n+1](x) + (−x − 2n + 2)I[−2n+1,−2n+2](x) +
(2x + 2)I[−1,0](x) + (2 − 2x)I[0,1](x) +
(x − 2n + 2)I[2n−2,2n−1](x) + (2n − x)I[2n−1,2n](x) .

As ψ̂n = (ϕ̂n)2, we have that:

∀n ∈ N ψ̂n(ξ) =
4 sin2(πξ) cos2((2n − 1)πξ)

π2ξ2

This shows that ψn belongs to L1(R) ∩ L2(R). Take a sequence (an)n∈N∗ of non negative
numbers such that

∑+∞
n=1 an < +∞ and define a measure dσ(ξ) = f(ξ)dξ with:

∀ξ ∈ R f(ξ) =
+∞∑
n=1

anψ̂n(ξ) .
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As σ(R) = 2
∑+∞

n=1 an, the measure σ is finite. Moreover, as a consequence of Cauchy-
Schwarz inequality, the density of σ with respect to the Lebesgue measure is in L2(R). In
fact, we have:

(
∫

R

f2(ξ)dξ)
1
2 =


 +∞∑

n,m=1

anam

∫
R

ψ̂n(ξ)ψ̂m(ξ)dξ




1
2

≤

||ψn||2||ψm||2(
+∞∑
n=1

a2
n)

1
2 (

+∞∑
m=1

a2
m)

1
2 < +∞ .

Observe now that for every p ∈ N:

|σ̂(x)| =
1
2π

+∞∑
n=1

anψn(x) ≥ apψp(x) .

As a consequence, for some constant c:

I(2n − 1) =
∫

R

|σ̂(x)|2
|x − (2n − 1)|a dx ≥

∫ 2n

2n−2
|σ̂(x)|2 ≥ ca2

n

Finally, by choosing for example:

an =

{
1
k2 , if n = 22k

0, otherwise ,

we see that I has no rate of decay better than ©(1).

3. Auxiliary results and methodological remarks

In this section we develop some results that were used in the proof of theorem 2.2 and
that may be considered interesting in themselves.

3.1. Some remarkable Fourier transforms. For completeness’s sake we next state and
prove a classical result (see [4] or [35, p. 51]) on the asymptotic behavior of the Fourier
transform of the indicator function of the unit ball in R

n. The method used in the proof
will be next applied to study a similar but less classical result. Hereafter in this chapter,
letters c, d and e will denote constants not necessarily the same at every instance.

Proposition 1. Let B = B(0, 1) = {x ∈ R
n : ||x|| < 1} be the unit ball of R

n and U = IB

the indicator function of B. Then, for some constant c, we have that:

|Û(ξ)| ≤ c

|ξ|n+1
2

(3.1)

Proof. As U is a radial function its Fourier transform is given by (see [32, p. 430] and for a
proof [31, p. 155]):

Û(ξ) = 2π||ξ|| 2−n
2

∫ +∞

0
Jn−2

2
(2π||ξ||r)U0(r) r

n
2 dr ,(3.2)

where U0 is such that U(x) = U0(||x||) and, Jn−2
2

is a Bessel function. As U0 is the indicator
function of [0, 1[ then:

Û(ξ) = 2π||ξ|| 2−n
2

∫ 1

0
Jn−2

2
(2π||ξ||r) r

n
2 dr .
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By a change of variables given by 2π||ξr|| = ρ this expression is turned on the following one:

Û(ξ) = (2π)−
n
2 ||ξ||−n

∫ 2π||ξ||

0
Jn−2

2
(ρ) ρ

n
2 dρ .

Now, a classical relation of Bessel functions (see [18, p. 141]) states that:

tν+1 Jν(t) =
d

dt
[ tν+1Jν+1(t)] .(3.3)

Applying this relation with ν = n
2 − 1, gives:

Û(ξ) = ||ξ||−n
2 Jn

2
(2π||ξ||)

The asymptotic behavior of Jν(t) is known (see [18, p. 134]). In fact, as for some constant
c, the following estimate holds

|Jν(t)| ≤
c√
t

(3.4)

we have finally that

|Û(ξ)| ≤ (
c√
2π

)
1

||ξ||n+1
2

,

which is the result requested.

A similar result is attained when the unit ball is replaced by B(0, δ) and the indicator
function appears multiplied by a remarkable locally integrable radial function.

Proposition 2. Let Bδ = B(0, δ) = {x ∈ R
n : ||x|| < δ} be a ball of R

n, centered in zero
with radius δ > 0 and, for 0 < α < n, the function defined by:

Uα
δ (x) =

IBδ
(x)

||x||α .

Then, for some constants which we denote always by c we have that:

|Ûα
δ (ξ)| ≤




c
||ξ||n−α if α > n−1

2
c

||ξ||
n+1

2
if α ≤ n−1

2
(3.5)

Proof. We will consider that δ = 1. In fact, the change of variables given by x = δy shows
that: ∫

||x||<δ

e−2πix·ξ

||x||α dx = δn−α

∫
||y||<1

e−2πiy·(δξ)

||y||α dy .

As that means that

Ûα
δ (ξ) = δn−α Ûα

1 (δξ) ,(3.6)

if for some constant c we have:

|Ûα
1 (ξ)| ≤ c

||ξ||min(n−α, n+1
2

)
,

we will have also that

|Ûα
δ (ξ)| ≤ c · δmax(0, n−1

2
−α)

||ξ||min(n−α, n+1
2

)
.
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We will use this remark later on. By using formula (3.2) again, and then a change of
variables given by 2π||ξ||r = ρ in the integral obtained, the Fourier transform of Ûα

1 can be
written in the following form:

Ûα
1 (ξ) =

(2π)α−n
2

||ξ||n−α

∫ 2π||ξ||

0
Jn−2

2
(ρ) ρ

n
2
−α dρ .(3.7)

We observe that by using the estimate given by (3.4) the integral on the right-hand side
above converges absolutely at +∞ if α > n+1

2 . Under that condition on α, the first line in
formula (3.5) is obtained. In order to deal with a second instance of the first line of the result
and with the second line of the result we have to prove, we notice that as a consequence of
formula (3.3) and of a trivial integration by parts:∫ z

0
ρµ Jν(ρ) dρ = zµJν+1(z) − (µ − ν − 1)

∫ z

0
ρµ−1 Jν+1(ρ) dρ .(3.8)

(See again [18, p. 141]). Suppose now that:

n − 1
2

< α ≤ n + 1
2

.

Applying formula (3.8) to the integral in formula (3.7) we get, for some constants c and d,
that:

|Ûα
1 (ξ)| ≤ c

||ξ||n+1
2

+
d

||ξ||n−α

∫ 2π||ξ||

0
Jn

2
(ρ) ρ

n
2
−α−1 dρ ,(3.9)

where the integral on the right-hand side of the expression converges absolutely by force of
the condition on α. This condition obviously implies also that n−α < n+1

2 and so, the first
line of the statement of the proposition also holds in this case. Suppose now that:

n − 3
2

< α ≤ n − 1
2

.

We apply again formula (3.8) but this time to the integral in the right-hand side of the
expression (3.9) and we get, for some constants c, d and e:

|Ûα
1 (ξ)| ≤ c

||ξ||n+1
2

+
d

||ξ||n+3
2

+
e

||ξ||n−α

∫ 2π||ξ||

0
Jn

2
+1(ρ) ρ

n
2
−α−2 dρ ,(3.10)

the integral, on the right-hand side, being absolutely convergent by the conditions imposed
on α. These conditions also imply that n+1

2 ≤ n − α < n+3
2 and so, in this case, we have as

a conclusion the second line of the statement made in the proposition. If we suppose that
the conditions on α are now given by:

n − 5
2

< α ≤ n − 3
2

,

the same method gives a new term in formula (3.10), namely, for some constants c, d, e, f :

|Ûα
1 (ξ)| ≤ c

||ξ||n+1
2

+
d

||ξ||n+3
2

+
e

||ξ||n+5
2

+
f

||ξ||n−α

∫ 2π||ξ||

0
Jn

2
+2(ρ) ρ

n
2
−α−3 dρ ,(3.11)

where the integral is absolutely convergent and n+3
2 ≤ n−α < n+5

2 by force of the conditions
imposed on α. In order to conclude it is only necessary to proceed by induction observing
that after a finite number of steps α will be close to its inferior limit, namely zero, and the
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integral appearing as a remainder is absolutely convergent. Observe that the integrals are
all convergent at zero by virtue of the fact that for small ρ:

Jν(ρ) ≈ ρν

2ν Γ(1 + ν)

see again [18, p. 134].

The following consequence of the last proposition was proven useful when dealing with a
particular case of our ultimate goal, theorem 2.2.

Proposition 3. Let g be a C∞(Rn) function with compact support such that g is strictly
positive in a neighborhood of zero. Let 0 < α < n and define Iα,g, a Fourier transform, by:

Iα,g(ξ) =
∫

Rn

e−2πi ξ·x

||x||α g(x) dx .(3.12)

The asymptotic behavior of Iα,g is the same as the asymptotic behavior of Ûα
1 , that is, for

some constant c,

|Iα,g(ξ)| ≤
c

||ξ||min(n−α, n+1
2

)
.(3.13)

Proof. The conditions imposed on g, insure the existence of M > 0 and 0 < η < 2 such that
for v ∈ B(0, η) we have that g(0) > 0,

g(v) = g(0) + dg(0)(v) + ||v||ε(v) ,(3.14)

where dg(0) is the differential of g at zero, ε(v) tends to zero with v and:

|dg(0)(v) + ||v||ε(v)| ≤ M .(3.15)

Let R > 0 be such that the support of g is contained in B(0, R). We can consider now
a standard partition of unity subordinated to the open cover of the support of g given by
B(0, η) and B(0, 2R)∪(B(0, η

2 ))c, (see [28, p. 162] for instance). More precisely, let φ1, φ2 be
C∞(Rn) functions with compact support such that φ1 ≡ 1 in B(0, η

2 ) and supt(φ1) ⊂ B(0, η),
φ2 ≡ 1 in B(0, R) and supt(φ2) ⊂ B(0, 2R). It is clear that if we define ψ1, ψ2 by φ1 ≡ ψ1

and ψ2 ≡ (1 − φ1) · φ2 then, ψ1, ψ2 are C∞(Rn) functions with compact support, verifying:
ψ1 + ψ2 ≡ 1 on B(0, R) and supt(ψ1 + ψ2) ⊂ B(0, 2R).

The Fourier transform whose asymptotic behavior we pretend to study can now be writ-
ten, using this partition of unity, as:

Iα,g(ξ) =
∫

Rn

e−2πi ξ·x

||x||α g(v) · ψ1(v) dv +
∫

Rn

e−2πi ξ·x

||x||α g(v) · ψ2(v) dv .(3.16)

Denote by I l
α,g(ξ) (respectively Ir

α,g(ξ)) the integral on the left (respectively on the right)
on the right-hand side of equality (3.16). Observe that as f(v) = g(v)·ψ2(v)

||x||α is a C∞(Rn)
function with compact support its Fourier transform as given by Ir

α,g(ξ), has a decay at
infinity as fast as we want as a consequence of, for instance, Paley-Wiener’s theorem (see
[28, p. 198]). There exists then a constant c such that:

|Ir
α,g(ξ)| ≤

c

||ξ||n .(3.17)

The integral I l
α,g(ξ) can be further decomposed as follows:

I l
α,g(ξ) =

∫
||v||< η

2

e−2πi ξ·x

||x||α g(v) dv +
∫

η
2
≤||v||<η

e−2πi ξ·x

||x||α g(v) · ψ1(v) dv .(3.18)
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Using now (3.14), the integral on the left can be rewritten as:∫
||v||< η

2

e−2πi ξ·x

||x||α g(v) dv = g(0) · Ûα
η
2
(ξ) +

∫
||v||< η

2

e−2πi ξ·x

||x||α (dg(0)(v) + ||v||ε(v)) dv .(3.19)

By passing to polar coordinates and on account of (3.15), we can estimate the integral on
the right-hand side of this equality, by:

|
∫
||v||< η

2

e−2πi ξ·x

||x||α (dg(0)(v) + ||v||ε(v)) dv| ≤ M

2n−α+1 (n − α + 1)
ηn−α+1 .(3.20)

By passing to polar coordinates we can also take care of the integral on the right in (3.18).
In fact, for some constant c:

|
∫

η
2
≤||v||<η

e−2πi ξ·x

||x||α g(v)ψ2(v) dv| ≤ c sup
||v||≤η

|g(v)ψ2(v)|
∫ η

2

η
ρn−α−1 dρ ≤ c ηn−α .(3.21)

In order to conclude, it is sufficient to collect the estimates made on (3.17), (3.19), (3.20)
and (3.21), to recall proposition (2), in particular the remark at the beginning of the corre-
sponding proof in conjunction with the fact that we took 0 < η < 2, and we get for some
constants c and d:

|Iα,g(ξ)| ≤
c

||ξ||min(n−α, n+1
2

)
+ d ηn−α .(3.22)

Observing that in obtaining estimates (3.20) and (3.21) we only consider the modulus of the
function we were integrating, we can take the parameter η as small as we want in (3.22),
thus getting the result stated.

3.2. Some Parseval formulas and tempered distributions. The following result was
used in the proof of the main theorem to express the second moment of the Fourier transform
of the random measure Sσ.

For 0 < α < n let Uα denote the locally integrable function, defined by:

Uα(x) =
1

||x||α IR∗n(x) ,

where R
∗n = R

n − {0}. This function defines a tempered distribution whose Fourier trans-
form denoted by Ûα but also by FUα is represented again by a locally integrable function
given by:

Ûα(ξ) =
c(α)

||ξ||n−α
IR∗n(ξ) , c(α) =

Γ(n−α
2 )

π
n
2
−αΓ(α

2 )
.

(See [30, p. 117] or [37, p. 52, 278]).
The following result essentially given by Frostman is usually formulated for real measures

and with no exponential term in formula (3.24) (see [1, p. 22]).

Theorem 3.1. : Let σ be a positive Radon measure over R
n with compact support and

0 < α < n such that Eα, the α energy of σ, is finite. That is:

Eα =
∫

Rn

∫
Rn

dσ(t) dσ(s)
||t − s||α < +∞ .(3.23)

We then have: ∫
Rn

∫
Rn

e2iπξ(t−s)

||t − s||α dσ(t) dσ(s) = c(α)
∫

Rn

|σ̂(x)|2
||x − ξ||n−α

dx ,(3.24)

whenever the integral on the right is finite.
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Proof. The formula we have to prove is verified for measures given by dσ(t) = φ(t)dt, where
φ ∈ S, S being the Schwartz test function space of rapidly decreasing functions. Indeed, for
such a measure the integral on the left-hand side of formula (3.24) which we denote by I is
written as:

I =
∫

Rn

(∫
Rn

e2iπξt

||t − s||α φ(t)dt

)
e−2iπξsφ(s)ds =

∫
Rn

(2π)n−α

c(n − α)
In−α(h)(s)h(s)ds ,

where, for 0 < β < n, the β Riesz potential of f is given by:

Iβ(f)(x) =
c(β)
(2π)β

∫
Rn

f(y)
||x − y||n−β

dy

and h stands for h(s) = e2iπξsφ(s). Now, given f, g ∈ S we have that:∫
Rn

Iβ(f)(x)g(x)dx =
∫

Rn

f̂(x)ĝ(x)
(2π||x||)β

dx ,

which is essentially Parseval’s formula (see [30, p. 117] for all the properties of the notion

of Riesz potential used). Observing that ĥ(y) = φ̂(y − ξ) and ĥ = φ̂(ξ − y), we have:

I =
1

c(n − α)

∫
Rn

φ̂(y − ξ)φ̂(ξ − y)
||y||n−α

dy ,

which gives the result claimed in the statement of the theorem by a trivial change of variables,
noticing that, as φ is real:

φ̂(u)φ̂(−u) = φ̂(u)φ̂(u) = |φ̂(u)|2 ,

and that C(α) = 1/c(n−α). Let now µ, be a complex measure with compact support and,
for 0 < β < n, define Iβ, the β Riesz potential of µ, by:

Iβ(µ)(x) =
c(β)
(2π)β

(µ ∗ Un−α) .

This definition makes good sense as we are considering the convolution of µ, a distribution
with compact support, with Un−α which is a tempered distribution. Observe that as a
consequence of a theorem of Sobolev (see [34, p. 181]), Iβ(µ) is locally in Lq for q < n

n−β and
in particular Iβ(µ) is integrable over any compact of R

n. Moreover, the Fourier transform
of Iβ(µ) in the sense of distributions is easily computed (see for instance [7, p. 21]) to give:

Îβ(µ) =
c(β)
(2π)β

µ̂ · Ûn−β =
1

(π)β
µ̂ · Ûn−β .

Considering now dµ(t) = e2πiξ·tdσ(t) we have that:

I =
∫

Rn

(∫
Rn

dµ(t)
||t − s||α

)
dµ(s) =

(2π)α

c(n − α)

∫
Rn

In−α(µ)(s)dµ(s) .

As µ has compact support and as a consequence of the hypotheses done on the integral on
the right of formula (3.24) we can apply Parseval formula (as given for instance in [16, p.
132] or [20, p. 121]) to obtain

I =
(2π)α

c(n − α)

∫
Rn

̂In−α(µ)(x)µ̂(x)dx = c(α)
∫

Rn

µ̂(x)Uα(x)µ̂(−x)dx ,

which, after some computations of Fourier transforms and a change of variables, is exactly
the desired result.
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3.3. Uniform continuity and asymptotic behavior. A first idea to study the asymp-
totic behavior of integrals of Fourier transform of measures similar to the following one∫

Rn

|σ̂(x)|2
‖x − ξ‖a dx .

is naturally to study the asymptotic behavior at infinity of uniformly continuous functions.
Although as it is easy to see, the integrability of a function is not enough to ensure the

limit of the function at infinity is zero, the next proposition shows that under the additional
hypothesis of uniform continuity, the desired result is valid. This result could be taken in
consideration when dealing with the Fourier transform of a measure which is a uniformly
continuous function on R. (see [16, p. 132]).

Proposition 4. Let u be an integrable uniformly continuous function on R. Then we have
lim|x|→+∞ u(x) = 0.

Proof. By considering the positive and negative parts of u, we can restrain the proof to the
case in which the function u is non negative. Furthermore, we will only consider the case
of the limit in +∞ as the proof is similar for the other case that is, the limit in −∞. For
δ > 0, the integral of u can be decomposed in the following way:∫ +∞

0
u(x)dx =

+∞∑
n=0

∫ (n+1)δ

nδ
u(x)dx < +∞ .(3.25)

Using the mean value theorem of Cauchy (see [6, p. 321]), we get a real sequence (xn)n∈N

such that:

∀n ∈ N xn ∈ [nδ, (n + 1)δ] , u(xn)δ =
∫ (n+1)δ

nδ
u(x)dx ,

Observe that the decomposition of the integral, in (3.25), implies that limn→+∞ u(xn) = 0
Now, for ε > 0 given, we have, as a consequence of the uniform continuity of u that there
exists δ0 > 0 such that:

∀x, y ∈ R+ |x − y| ≤ δ0 ⇒ |u(x) − u(y)| ≤ ε .

For any x ∈ R+, let n0 be the integer such that x ∈ [n0δ0, (n0 + 1)δ0[. Then, for x big
enough, such that u(xn0) ≤ ε, we get:

|u(x)| ≤ |u(x) − u(xn0)| + u(xn0) ≤ 2ε

and so, the result announced follows.

Unfortunately, this kind of approach is doomed to fail as σ̂ need not go to zero at infinity
for Radon measures σ, even for Radon measures with finite energy. See [25, p. 169] for
positive partial results concerning the asymptotic behaviors of Fourier transforms of Radon
measures.

Acknowledgments: We hereby express our gratitude to the anonymous referees who
suggested ideas for a much needed rewriting of the first version of this note.
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[7] L. Hörmander, Linear Partial Differential Operators, Springer Verlag, New York 1963.
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[14] J.-P. Kahane, Multiplicative chaos and multimeasures; V. P. (ed.) et al., Complex analysis, operators,

and related topics. The S. A. Vinogradov memorial volume. Basel: Birkhäuser. Oper. Theory, Adv. Appl.
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[27] J. Peyrière, Turbulence et dimension de Hausdorff, C. R. Acad. Sc. Paris 278 (1974) 567–569.
[28] W. Rudin, Functional Analysis, Second Edition, McGraw-Hill Books, New York 1991.
[29] G. Sinnamon, G. Zimmerman, personal communication.
[30] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press,

Princeton New Jersey 1970.
[31] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press,

Princeton New Jersey 1971.
[32] E. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton

University Press, Princeton New Jersey 1993.
[33] H. Sato, M. Tamashiro, Multiplicative chaos and random translation. Ann. Inst. Henri Poincaré, Probab.
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