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Abstract: Consider an attractor of a dissipative non-autonomous system
with one angle coordinate. We give conditions for this attractor to be home-
omorphic to the circle where we find connections with the work of R. A.
Smith. Several applications are studied, such as: the forced pendulum, dis-
cretizations of the sine-Gordon equation, n’th order equations, among others.

1 Introduction

Let us consider a system of differential equations

x′ = F (t, x), (1)

where F : R × RN → RN is a continuous function verifying the following
periodicity conditions

F (t, x) = F (t + T, x) = F (t, x + R),

for some positive constant T ∈ R and a non-zero vector R ∈ RN . Moreover
we will suppose that the solutions of (1) are uniquely determined by their
initial conditions and consequently vary continuously with them.

An example of the class of equations we have in mind is the periodically
driven pendulum equation with friction{

x′1 = x2

x′2 = −cx2 − sin(x1) + p(t)
,
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where c > 0 and p is a T -periodic continuous function. In this particular case

R =

(
2π
0

)
. Similarly to the case of the pendulum, we can regard the phase

space of equation (1) as a cylinder C where each solution u is identified with
the solutions u + kR, k ∈ Z.

We assume that there exists a compact set B ⊂ C that intersects the
forward orbit starting from any point and moreover every compact set of
C enters in B in finite time. This characterizes the dissipative nature of
equation (1). Consider the Poincaré map P on the cylinder. Like many other
cases of dissipative systems, we can define a maximal invariant set A for the
Poincaré map (see [5], [7], [11] p.21). This set is also an attractor for the orbits
given by iterates of the Poincaré map. In this paper we study conditions
under which A is homeomorphic to T1 = R/Z. There are already some
results in this direction in the literature: in [6], [10] two dimensional systems
arising from a periodically driven pendulum with friction were analyzed,
and in [9], [12], [13] the case of autonomous coupled systems of differential
equations were studied.

The existence of an unidimensional attractor allows a reduction in dimen-
sion on the dynamics of this system. Moreover, in this case the Poincaré map
becomes an homeomorphism from the circle to itself, which permits to define
a rotation number that gives considerable information about the dynamics
of the system (see [8], [10], [12], [13]).

We give a geometrical condition for A to be homeomorphic to the circle
that unifies some of the results obtained before. This condition is related to
the work of R. A. Smith [16].

In section 2 we will formulate the main hypotheses. In section 3 we intro-
duce a class of equations satisfying the dissipativity condition. An equation
of pendulum type is studied in section 4. The connections with the work of
R. A. Smith will be analyzed in section 5. The remaining paper is devoted
to the study of some particular cases of non-autonomous systems, some of
which generalizing results in the papers referred above.

This work resulted from the studies towards a Ph.D. degree of the author
supervised by Professor Rafael Ortega. The reader can find related results
in http://ptmat.lmc.fc.ul.pt/˜rmartins

2 General conditions

We denote by ‖x‖ the euclidean norm of a column vector in RN and by x∗ its
transpose, the transpose of a real matrix will be denoted by A∗. We define
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the equivalence relation in RN by

x ∼ y ⇔ x− y ∈ RZ.

The set of equivalence classes will be denoted by C and x will denote the
class of x ∈ RN . The space C is a metric space with the distance

d(x, y) = inf
u∈x−y

‖u‖.

Given the periodicity conditions in F , we observe that if x is a solution of
(1) then x + R is also a solution; we conclude that the Poincaré map is well
defined in C. More precisely, if x(t; t0, x0) is the solution of (1) satisfying the
initial conditions x(t0) = x0 then the Poincaré map is defined by

P : D ⊂ C → C
P (x0) = x(T ; 0, x0),

where D = {x0 ∈ C/x(·; 0, x0) is well defined in [0, T ]}, and is an homeomor-
phism from D to P (D).

The following hypothesis clarifies the notion of dissipation for system (1).

(H1)

∣∣∣∣∣∣
There exists a non-empty compact set B ⊂ C such that
for every compact set B0 ⊂ C there exists τ0 ∈ R in such a way that

if x is a solution of (1) with x(t0) ∈ B0 then x(t) ∈ B, ∀t > t0 + τ0.

Assuming (H1), the Poincaré map has domain D = C, and there exists
an integer k0 > 0 such that if k ∈ N and k ≥ k0 then P k0(B) ⊂ B. Consider
the set

B1 = B ∪ P (B) ∪ . . . ∪ P k0(B),

that is a non-empty compact and P (B1) ⊂ B1. The set

A =
∞⋂

n=0

P n(B1)

is a non-empty compact and P (A) = A. It is clear that if B̃ is another set
in the conditions of (H1) and if we use it in the construction above we would
recover the same set A. It is also obvious that

d(P n(x),A) −−−→n→∞ 0,

for every x ∈ C.
We introduce the following set of solutions of (1):

B = {x : R → R/ x is solution of (1) bounded on the cylinder}.

The next lemma shows that A is the set of initial conditions of solutions in
B.
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Lemma 2.1 A = {x(0)/x ∈ B}.

Proof: For each x0 ∈ A consider x(t) = x(t; 0, x0). Since A is invariant for
P we obtain, for each n ∈ Z,

P n(x0) = x(nT ; 0, x0) ∈ A ⊂ B1.

Thus we obtain x(t) ∈ B, ∀t ∈ R, and so x ∈ B. On the other hand, if x ∈ B
then there exists a compact set B0 ⊂ C such that x(t) ∈ B0, ∀t ∈ R, by (H1)
we have necessarily x(t) ∈ B, ∀t ∈ R. Finally

P n(x(−nT )) = x(0) ∈ P n(B1),

for all n ∈ N; we conclude that x(0) ∈ A.

We want to give conditions under which A is necessarily homeomorphic
to the circle. To this end we introduce the following hypothesis:

(H2)

∣∣∣∣∣∣
Let F be a (N − 1)-dimensional subspace of RN , such that R 6∈ F .
Suppose that for each pair of distinct solutions x1 and x2 of (1)
bounded on the cylinder we have x1(0)− x2(0) 6∈ F .

Assuming (H2), consider the projection Q over F , such that Ker Q =
span{R} and the function

π : C → T1 = R/Z

π(x) =
1

‖R‖2
(I −Q)(x)∗R.

Observe that hypothesis (H2) essentially translates the injectivity of π/A in
terms of solutions of (1). Indeed we have the following Theorem.

Theorem 2.2 If (H1) and (H2) are satisfied then π/A : A → T1 is an
homeomorphism from A onto T1.

Proof: Using (H2) and the last Lemma we conclude that π/A is one-to-one.
It was proved in [14] that the inclusion i : A → C induces an isomorphism on
the Čech cohomology i∗ : Ȟ∗(C) → Ȟ∗(A). Since π/A is an homeomorphism
from A onto its image, we conclude that π/A(A) has a non-trivial Čech
cohomology, so π/A(A) = T1.
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3 Verification of (H1)

We aim to apply the results of the last section to an equation like

x′ = Cx + J(t, x) (2)

where x ∈ RN , N ≥ 2, and C ∈ MN×N(R). Suppose that C has an eigenvalue
λ1 = 0 with associated eigenspace spanned by an unitary eigenvector R,
and all the other eigenvalues λi, i = 2, 3, . . . , k (for some k ∈ N) satisfy
Re(λi) < 0. The function J : R × RN → RN is assumed to be continuous
and satisfying

J(t, x + R) = J(t + T, x) = J(t, x),

for some positive constant T . Finally, we will assume that the solutions exist
and are uniquely determined by each set of initial conditions.

We will denote by F an (N − 1)−dimensional subspace containing all
the generalized eigenspaces associated to λi, i = 2, . . . , k and such that
RN = span{R} ⊕ F . Consider the spectral projection Q over F such that
KerQ = span{R}.

Lemma 3.1 Suppose that

Re(λi) < β, i = 2, . . . , k. (3)

for some β ∈ R. Then, there exists an inner product < ·, · >G such that

< Cx, x >G≤ β‖x‖2
G, ∀x ∈ F .

Proof: The proof can be easily adapted from a similar result in [2].

Let us denote by Λ = −max{Re(λi) : i = 2, . . . , k} the absolute value of
the largest real part of the non-null eigenvalues.

Lemma 3.2 If there exists constants c1, c2 ∈ R and 0 ≤ p < 1 such that

‖J(t, x)‖ ≤ c1‖x‖p + c2, (4)

for every (t, x) ∈ RN+1, then system (2) satisfies condition (H1).

Proof: Notice that from (4) and the periodicity of J we conclude that there
exist a constant c3 such that

‖J(t, x)‖ ≤ c1‖Qx‖p + c3.
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Applying the projection Q to both sides of (2) and observing that Q com-
mutes with C, we obtain

Qx′(t) = CQx(t) + QJ(t, x(t)).

Since the conditions of the last Lemma are satisfied with β = −Λ/2, consider
an inner product < ·, · >G such that

d

dt
‖Qx(t)‖2

G = 2 < CQx(t) + QJ(t, x(t)), Qx(t) >G

≤ −Λ‖Qx(t)‖2
G + c4‖Qx(t)‖p+1

G + c5‖Qx(t)‖G,

for some constants c4, c5. For each ρ > 0 we will consider the set

Bρ = {x ∈ C/‖Q(x)‖2
G ≤ ρ}.

If we fix a sufficiently large ρ0 in order that −Λρ2 + c4ρ
p+1 + c5ρ < −1, for

every ρ > ρ0, then given ρ1 > ρ0, if ‖Qx(t0)‖2
G < ρ1 then ‖Qx(t)‖2

G < ρ0 for
all t > t0 + ρ1 − ρ0. We conclude that (H1) is satisfied with B = Bρ0 .

4 An equation of pendulum type

We consider the equation

x′′ + h(x)x′ + g(t, x) = 0 (5)

where the damping coefficient h : R → R is an element in C(R/Z) and is
strictly positive, say 0 < minR h(x) = c. The nonlinearity g : R2 → R is
continuous and satisfies the following periodicity conditions

g(t + T, x) = g(t, x) = g(t, x + 1),

for some positive constant T . Finally we will suppose that the solutions exist
and are uniquely determined by each set of initial conditions.

If H(x) =
∫ x

0
h(s)ds is a primitive of h, we can rewrite equation (5) as{

y′1 = y2 −H(y1)
y′2 = −g(t, y1)

, (6)

and x is a solution of (5) iff (x, x′ + H(x)) is solution of (6). If we denote

h̄ =
∫ 1

0
h(s)ds then the equation above can be written as(

y1

y2

)′
=

(
−h 1
0 0

)(
y1

y2

)
+

(
hy1 −H(y1)
−g(t, y1)

)
.

So (6) has the form of (1) with R = (1, h̄)∗. Lemma 3.2 shows that the
equation (6) satisfies (H1).
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Theorem 4.1 If there exists a constant c1 such that

c1 <
g(t, x)− g(t, y)

x− y
<

c2

4

for each (t, x, y) ∈ R3, with x 6= y, then π/A is an homeomorphism from A
onto T1.

Proof: Notice that we only need to show that equation (6) satisfies (H2).
Consider F = span{(−h, 1)} and Q the orthogonal projection over F such
that KerQ = span{R}. Let x = (x1, x2), y = (y1, y2) be two distinct
solutions of (6). The difference (ξ, η) = x−y is solution of the linear equation{

ξ′ = η − α(t)ξ
η′ = −β(t)ξ

,

where

α(t) =

{
H(x1(t))−H(y1(t))

x1(t)−y1(t)
if x1(t) 6= y1(t)

0 if x1(t) = y1(t)

and

β(t) =

{
g(t,x1(t))−g(t,y1(t))

x1(t)−y1(t)
if x1(t) 6= y1(t)

0 if x1(t) = y1(t)
.

Although α and β are not necessarily continuous, they are measurable and
bounded. Moreover, for each t ∈ R such that x1(t) 6= y1(t) we have α(t) ≥ c
and β(t) < c2/4. Observe that for each t ∈ R such that ξ 6= 0 the function
γ = η

ξ
satisfies the Ricatti equation

γ′ = −γ2 + α(t)γ − β(t).

Since α and β are bounded, there is a constant M > 0 such that γ′(t) < 0
whenever γ(t) = M . On the other hand, if γ(t) = c

2
then γ′(t) > 0. This

shows that the orbits do not leave the shaded cone in figure 1. Supposing
that the constant M is such that α(t) < M

2
, for all t ∈ R, we observe that:

• If η < cξ and ξ ≥ 0 then ξ′ < 0.

• If η < M
2
ξ and ξ < 0 then ξ′ < 0.

• If η > M
2
ξ and ξ ≥ 0 then ξ′ > 0.

• If η > cξ and ξ < 0 then ξ′ > 0.
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Figure 1:

We can resume the information obtained in the figure 1. Suppose that x(0)−
y(0) = (ξ(0), η(0)) ∈ F . We have (ξ(0), η(0)) 6= (0, 0) due to the fact that x1

and x2 are distinct solutions; we will assume that (ξ(0), η(0))(−h, 1)∗ > 0,
the other case is similar. Therefore ξ′(t) > 0, for every t ≤ 0, in particular
ξ(t) < ξ(0) < 0, for every t < 0. Since η(t) > c

2
ξ(t) ∀t < 0, we obtain

ξ′(t) = η(t)− α(t)ξ(t) >
( c

2
− α(t)

)
ξ(t) > − c

2
ξ(0) > 0,

for every t < 0. Finally

(ξ(t), η(t))(−h, 1)∗ ≥
( c

2
− h
)

ξ(t) → +∞

when t → −∞, which shows that x(t)− y(t) (and consequently x(t) or y(t))
are unbounded in the cylinder.

The estimation obtained in the last Theorem is similar to the estimations
obtained in [6], [10] but refers to a more general type of equation. On the
other hand the estimation for an equation with this kind of generality is
optimal accordingly to [8] where it was proved that for each H > c2/4 there
exists a nonlinearity g ∈ C∞(R/Z), T1 > 0, and a forcing p ∈ C(R/T1Z)
such that g′ < H and the attractor associated to the equation

x′′ + cx′ + g(x) = p(t)

is not homeomorphic to T1. An open and interesting problem is to find a
similar optimal estimate for some classes of nonlinearities g, in particular to
g(x) = sin(x).
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5 Connections with the work of R. A. Smith

In [16], Russell A. Smith looking for sufficient conditions for the existence of
periodic solutions for (1) in RN (without the periodicity of F on the second
variable) and in particular stable periodic solutions, introduced the following
condition:

(H3)

∣∣∣∣∣∣∣∣
Suppose that there exist λ > 0, ε > 0 and P a symmetric matrix,
with a negative eigenvalue and all the other eigenvalues positive,
in such a way that for all x1, x2 ∈ Rn and t ∈ R.
(x1 − x2)

∗P [F (t, x1)− F (t, x2) + λ(x1 − x2)] ≤ −ε|x1 − x2|2.

We will show that, under our hypothesis of periodicity, (H3) implies (H2).

Proposition 5.1 If system (1) satisfies (H3) then it also satisfies (H2).

Proof. Let λ1 < 0 and λ2, . . . , λN > 0 be the eigenvalues of P , counted
accordingly to its multiplicity. Let V1, V2, . . . , VN be an orthogonal basis of
eigenvectors of P associated to λ1, λ2, . . . , λN respectively. Taking x1 = R
and x2 = 0 in (H3) we obtain R∗PR ≤ − ε

λ
‖R‖2, so we conclude that R 6∈

span{V2, . . . , VN}. Define F = span{V2, . . . , VN} and Q the projection over
F such that Ker Q = span{R}. Let x1(t), x2(t) be two distinct solutions of
(1) bounded on the cylinder. Considering a constant C1 in such a way that
‖Q(x1 − x2)‖ < C1 and defining V (x) = x∗Px, we will prove that the set

A = {x ∈ RN/‖Q(x)‖ < C1 and V (x) ≥ 0}

is bounded. Indeed, if this is not the case then there exists a sequence in A
that can be written as xn = Q(xn) + αnR with αn an unbounded sequence.
On the other hand, denoting by | · | the spectral norm of a matrix,

0 ≤ x∗nPxn = Q(xn)∗PQ(xn) + 2αnQ(xn)∗PR + α2
nR

∗PR

≤ C2
1 |P |+ 2|αn|C1|P |‖R‖ − α2

n

ε

λ
‖R‖2;

which gives a contradiction.
Using (H3) we obtain

d

dt

(
e2λtV (x1(t)− x2(t))

)
≤ −2εe2λt|x1(t)− x2(t)|2 < 0;

so e2λtV (x1(t) − x2(t)) is a decreasing function. If by contradiction x1(0) −
x2(0) ∈ F then

e2λtV (x1(t)− x2(t)) ≥ V (x1(0)− x2(0)) > 0
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for all t < 0; so {x1(t)− x2(t), t < 0} is unbounded and a subset of A which
is an absurd.

In the same paper [16] the author also gave conditions for a system of the
type of (2) to satisfy condition (H3) and by the last Theorem (H2). From
now on consider a system of the type of (2) and satisfying the assumptions
assumed on section 3. For each λ ∈]0, Λ[ we have det[C + λI − iwI] 6= 0, for
every w ∈ R, so we can consider the number

µ(λ) = sup
w∈R

|[C + λI − iwI]−1|.

We will say that J is K−Lipschitz in the second variable if

‖J(t, x)− J(t, y)‖ ≤ K‖x− y‖

for every (x, y, t) ∈ R2N+1. The following result was proved in [15] and [16]
in much more general conditions. For the convenience of the reader we will
present a proof for this particular seting.

Theorem 5.2 If J is K-Lipschitz in the second variable with K < µ(λ)−1

for some λ ∈]0, Λ[, then (2) satisfies (H3).

Proof: Notice that if we define V (x) = x∗Px then (H3) is satisfied iff for
every pair x1, x2, of solutions of (2) we have:

d

dt
[e2λtV (x1(t)− x2(t))] ≤ −2ε|x1(t)− x2(t)|2e2λt. (7)

Given an arbitrary pair of solutions of (2) x1, x2, the function X = x1 − x2

satisfies the equation
X ′ = CX + M(t)X,

where

M(t) =
1

‖X‖2
(J(t, x1(t))− J(t, x2(t)))X

∗

that by hypothesis satisfies |M(t)| ≤ K, for all t ∈ R.
We have

µ(λ)−2 = inf
ω∈R

min σ{(C + λI − iwI)(C∗ + λI + iwI)},

so if we consider γ ∈ R such that µ(λ)−1 > γ−1 > K then the real matrix
polynomial

B(z) = γ2(C∗ + λI + zI)(C + λI − zI)− I
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is such that B(z)∗ = B(−z) and B(iω) is positive definite for every ω ∈ R.
A result of matrix theory (see [3], Theorem 4) shows that exists a real matrix
polynomial h(z) = C1 + C2z such that

B(z) = h∗(−z)h(z) ⇔


γ2(C∗ + λI)(C + λI)− I = C∗

1C1

γ2(C − C∗) = C∗
1C2 − C∗

2C1

γ2I = C∗
2C2

.

Consider the symmetric matrix

P = −γ2(C + λI)− C∗
2C1 = −γ2(C∗ + λI)− C∗

1C2.

If Y = eλtX, then Y ′ = (C + λI)Y + M(t)Y and

d

dt
[e2λtV (X(t))] = (Y ′)∗PY + Y ∗PY ′

= (Y ′)∗(−γ2(C + λI)− C∗
2C1)Y + Y ∗(−γ2(C∗ + λI)− C∗

1C2)Y
′

= γ2[Y ∗(C∗+λI)−(Y ′)∗][(C+λI)Y−Y ′]−Y ∗Y−(Y ∗C∗
1+(Y ′)∗C∗

2)(C1Y +C2Y
′)

= γ2(M(t)Y )∗(M(t)Y )−Y ∗Y−‖C1Y +C2Y
′‖2 ≤ −(1−γ2(sup

t∈R
|M(t)|)2)‖Y ‖2.

We conclude that (7) is satisfied with ε = 1− γ2(supt∈R |M(t)|)2 > 0.
We could repeat the same argument to show that (H3) is satisfied with

the same P , ε, and J ≡ 0, i.e.

(x1 − x2)
∗P (C + λI)(x1 − x2) ≤ −ε|x1 − x2|2,

for every x1, x2 ∈ RN . With x1 = x and x2 = x + h we obtain

h∗P (C + λI)h ≤ −ε|h|2.

So the symmetric matrix of the quadratic form 1/2(P (C +λI)+(C∗+λI)P )
is negative definite. From the general inertia Theorem (see [4], p.445 ) we
conclude that −P and C + λI have the same number of eigenvalues with
positive, null, and negative real part.

Given an equation of the type of (1) we can write it in the form (2) in
many different ways and this will in general give distinct conditions for a
system to satisfy (H3). As a consequence of the last Theorem, Proposition
5.1, and Theorem 2.2 we obtain:

Theorem 5.3 If condition (H1) is satisfied and J is K-Lipschitz in the sec-
ond variable with K < µ(λ)−1 for some λ ∈]0, Λ[, then π/A is an homeomor-
phism from A onto T1.
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6 Some examples of application

In this section we consider a system of the type of (2) satisfying the hypothesis
assumed in section 3 and moreover the eigenvalues of C are λ1 = 0, λ2, . . . , λN

that we will suppose to be real, written in decreasing order, and counted
accordingly to its multiplicity. When the matrix C is diagonal the number
µ(λ) can be easily computed.

Theorem 6.1 Suppose that condition (H1) is satisfied, there exists a non-
singular matrix M ∈ MN×N(R) such that

MCM−1 = diag{0, λ2, λ3, . . . , λN},

and the function G(t, y) = MJ(t,M−1y) is K−Lipschitz on the second vari-
able with K < −λ2

2
. Then π/A is an homeomorphism from A onto T1.

Proof: The change of variables y = Mx transform equation (2) in

y′ = Dy + G(t, y) (8)

where D = diag{0, λ2, λ3, . . . , λN}. Notice that the equation above is of the
type of (2). In particular

G(t, y) = G(t + T, y) = G(t, y + R̃)

where R̃ = MR.
For each λ ∈]0,−λ2[ we have

µ(λ) = sup
w∈R

∣∣∣∣diag

(
1

iw − λ
,

1

iw − λ− λ2

, . . . ,
1

iw − λ− λN

)∣∣∣∣
= sup

w∈R
max

{
1√

w2 + λ2
,

1√
w2 + (λ + λ2)2

}
=

1

min{λ,−λ− λ2}
.

In particular

µ

(
−λ2

2

)−1

= −λ2

2
.

We conclude by Theorem 5.2 and Proposition 5.1 that (8) satisfies (H2) when-
ever K < −λ2/2. We claim that if (8) satisfies (H2) then (2) also satisfies
(H2). Indeed, if F̃ is an (n − 1)−dimensional subspace in the conditions of
(H2) and given two solutions x1, x2 of (2) bounded in C then y1 = Mx1 and
y2 = Mx2 are bounded in the cylinder C̃ correspondent to equation (8), thus
y1(0) − y2(0) 6∈ F̃ and then x1(0) − x2(0) 6∈ M−1F̃ . So system (2) satisfies
condition (H2) with F = M−1F̃ . The result follows from Theorem 2.2.
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6.1 Example 1

When the matrix C is symmetric we can easily compute the Lipschitz con-
stant of G. Consider for example the particular case of equation (2) with C
an N ×N , N ≥ 3 matrix with the form

C = −ν


1 −1 0
−1 2 −1

. . . . . . . . .

−1 2 −1
0 −1 1

 , (9)

where ν > 0. The autonomous case J(t, x) = (w1−sin(x1), . . . , wN−sin(xN))
was studied in [13], where the existence of an unidimensional attractor was
proved for every ν > 0. The matrix C is symmetric and its eigenvalues are

−4ν sin2

(
(j − 1)π

2N

)
, j = 1, . . . , N.

The non-autonomous case is treated in the next Theorem.

Theorem 6.2 If condition (H1) is satisfied and J is K−Lipschitz on the
second variable with

K < 2ν sin2
( π

2N

)
,

then π/A is an homeomorphism from A onto T1.

Proof: Let M be an orthogonal matrix such that MCM−1 is diagonal
and have on its diagonal entries the eigenvalues of C. Obviously G(t, y) =
MJ(t,M−1y) is also K−Lipschitz on the second variable, so the result follows
by the last Theorem.

6.2 Example 2

For each N ≥ 2 consider the system in RN

u′′ + γu′ + Au + S(t, u) = 0, (10)

where γ is a positive constant called the friction coefficient and A ∈ MN×N(R)
is a symmetric matrix with eigenvalues α1 = 0, and αi > 0, i = 2, . . . , N
(written in increasing order and counted according to its multiplicity). Let us
suppose that KerA = span{η}. Moreover, S : R× RN → RN is continuous
and such that S(t, u + η) = S(t + T, u) = S(t, u) for some T > 0. As usual
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we will assume that the solutions exists and are unique for each set of initial
conditions and vary continuously with them. This kind of equation appear
for example as a model of coupled forced pendula or as a discretization of
the sine-Gordon equation.

System (10) can be written in the form of (2) with x = (u, v)∗ ∈ R2N ,

C =

(
0 IN

−A −γIN

)
, J(t, x) =

(
0

−S(t, u)

)
.

Notice that J(t, x + R) = J(t, x) with R = (η, 0)∗ ∈ R2N and R ∈ KerC.
Since A is symmetric, we can take an orthonormal basis { η, η2, η3, . . . , ηN}
of eigenvalues of A, associated to α1 = 0, α2, α3, . . . , αN , respectively. If
P1 = (η|η2| . . . |ηN) is the N × N matrix whose columns are formed by the
eigenvectors of A then P ∗

1 = P−1
1 and P ∗

1 AP1 = diag(0, α2, . . . , αN). On the

other hand if P2 =

(
P ∗

1 0
0 P ∗

1

)
, then

P2CP−1
2 =

(
0 IN

−diag(0, α2, . . . , αN) −γIN

)
.

The matrix P3 associated to the linear operator

P3 : R2N → R2N

(u1, u2, . . . , uN , v1, v2, . . . , vN) → (u1, v1, u2, v2, . . . , uN , vN)

is such that

P3P2CP−1
2 P−1

3 =



0 1
0 −γ

. . . 0

0 1
−α2 −γ

...
. . .

...

0 . . .
0 1

−αN −γ


.

For each box Ai =

(
0 1
−αi −γ

)
, i = 1, . . . , N (we will suppose from now

on that αN < γ2/4 in order that the eigenvalues of C are real) the matrices

Mi =

 1√
2
√

γ2−4αi

1√
2
√

γ2−4αi

− γ

2
√

2
√

γ2−4αi

+ 1
2
√

2
− γ

2
√

2
√

γ2−4αi

− 1
2
√

2
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M−1
i =

 γ√
2

+

√
γ2−4αi√

2

√
2

− γ√
2

+

√
γ2−4αi√

2
−
√

2


are such that

M−1
i AiMi = diag

(
−γ

2
+

√
γ2 − 4αi

2
, −γ

2
−
√

γ2 − 4αi

2

)
.

We conclude that

P4 =

M−1
1 0

. . .

0 M−1
N

 (11)

is such that P4P3P2CP−1
2 P−1

3 P−1
4 is diagonal and have on its diagonal entries

the eigenvalues of C. Notice that if αN < γ2/4 the non-null eigenvalues of
C are all real and negative. Moreover, the largest non-null eigenvalue of C
is −γ/2 +

√
γ2 − 4α2/2. Our next goal will be to compute the Lipschitz

constant of G(t, y) = P4P3P2J(t, P−1
2 P−1

3 P−1
4 y).

Lemma 6.3 Suppose that αN < γ2/4. If y = (0, v) ∈ R2N then ‖P4P3P2y‖ =
2‖v‖ and for each y = (u, v) ∈ R2N we have

‖P4P3P2y‖ ≥
√

γ2 − 4αN‖u‖.

Proof: The first equality is a straightforward consequence of the form of
(11). Given y = (u, v) ∈ R2N then

‖P4P3P2y‖ = ‖P4(ηu, ηv, η2u, η2v, . . . , ηNu, ηNv)‖ =∥∥∥∥∥
(

γ√
2

+

√
γ2 − 4α1√

2

)
ηu +

√
2ηv,

(
− γ√

2
+

√
γ2 − 4α1√

2

)
ηu−

√
2ηv, . . .

∥∥∥∥∥
=

√
(γ2 − 4α1)(ηu)2 + 4

(γ

2
ηu + ηv

)2

+ . . .

≥
√

(γ2 − 4α1)(ηu)2 + . . . + (γ2 − 4αN)(ηNu)2

≥ mini=1,...,N

√
γ2 − 4αi‖P ∗

1 u‖ =
√

γ2 − 4αN‖u‖

(remember that αN is the largest of the eigenvalues of A).

We can finally prove the central Theorem of this example.
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Theorem 6.4 Suppose that (H1) is satisfied, αN < γ2/4 and S is K-Lipschitz
on the second variable. If

K <

√
γ2 − 4αN

8
(γ −

√
γ2 − 4α2)

then π/A is an homeomorphism from A onto T1.

Proof: By Theorem 6.1 we only need to show that the Lipschitz constant
of G(t, y) on the second variable is less than γ/4 −

√
γ2 − 4α2/4. For each

y = P4P3P2(u, v), y′ = P4P3P2(u
′, v′) ∈ R2N and t ∈ R, we obtain by the last

Lemmas

‖G(t, y)−G(t, y′)‖ = ‖P4P3P2(0,−S(t, u) + S(t, u′))‖ = 2‖S(t, u)−S(t, u′)‖

≤ 2K‖u−u′‖ ≤
√

γ2 − 4αN

4
(γ−

√
γ2 − 4α2)‖u−u′‖ ≤ γ −

√
γ2 − 4α2

4
‖y−y′‖.

All the preceding argument could be repeated with minor modifications
to include the case N = 1. In this way we could recover the results of section
4 for the particular case h ≡ c.

The particular case where A is of the type of (9) and

S(t, u) = (sin(u1)− w1, . . . , sin(uN)− wN)

with (w1, . . . , wN) ∈ RN was studied in [12], where the existence of an at-
tractor homeomorphic to the circle was proved using different methods.

6.3 Example 3

Consider the ordinary differential equation

x(N) + aN−1x
(N−1) + . . . + a2x

′′ + a1x
′ = g(t, x, x′, . . . , xN−1) (12)

where g : RN+1 → R is a continuous function. Writing y = (x, x′, . . . , xN−1)∗,
we will suppose that

g(t + T, y) = g(t, y) = g(t, y + (1, 0, . . . , 0)∗),

for some T > 0. As usual we will suppose that g is such that there is existence
and uniqueness of solution for each set of initial conditions

x(N−1)(t0) = xN−1, . . . , x
′′(t0) = x2, x

′(t0) = x1, x(t0) = x0.
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We can write the equation above as a system of the form of (2) where

C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 −a1 −a2 · · · −aN−1

 and J(t, y) =


0
0
0
...

g(t, y)

 .

The matrix C has the eigenvalue λ1 = 0 with associate eigenvector (1, 0, . . . , 0)∗.
We will suppose that all the roots of the polynomial

λN−1 + aN−1λ
N−2 + . . . + a2λ + a1

are real, negative, and with multiplicity one. In other words, the non-null
eigenvalues of C λ2, λ3, . . . , λN are real, negative, and distinct (we suppose
that they are written in decreasing order). Each of these eigenvalues has
(1, λi, λ

2
i , . . . , λ

N−1
i )∗ as an eigenvector, so the matrix

P =


1 1 1 · · · 1
0 λ2 λ3 · · · λN

0 λ2
2 λ2

3 · · · λ2
N

...
...

...
. . .

...
0 λN−1

2 λN−1
3 · · · λN−1

N


is such that

P−1CP = diag(0, λ2, . . . , λN).

The matrix P is the so-called Vandermonde’s matrix and is well known
in the polynomial interpolation theory. Indeed, the equation P ∗x = y is
equivalent to the existence of a polynomial of order N − 1 satisfying

L(0) = y1, L(λ2) = y2, . . . , L(λN) = yN .

L is called the Lagrange interpolation polynomial and its uniqueness depends
of the determinant

det P =
N∏

i,j=1
i>j

(λi − λj).

Since we are assuming that the eigenvalues λi’s are all different, the last
determinant is different from zero.

In spite of the fact that the matrix P has an inverse, it is not easy to
compute it. Nevertheless the polynomial L can be written as

L(t) = y1L1(t) + y2L2(t) + . . . + yNLN(t)
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where for each i = 1, . . . , N ,

Li(t) =

∏N
j=1
j 6=i

(t− λj)∏N
j=1
j 6=i

(λi − λj)
.

The following vector will play a fundamental role in what follows

Ω =

 1∏N
j=1
j 6=1

(λ1 − λj)
,

1∏N
j=1
j 6=2

(λ2 − λj)
, . . . ,

1∏N
j=1
j 6=N

(λN − λj)


∗

.

Lemma 6.5 Given x = (0, 0, . . . , 0, xN)∗ ∈ RN , we have P−1x = xNΩ.

Proof: Let x = (0, 0, . . . , 0, xN)∗ ∈ RN and y ∈ RN , then

(P−1x)∗y = x∗(P−1)∗y

is the product of xN by the coefficient of the (N − 1)’th term of L(t), that is

N∑
i=1

yi∏N
j=1
j 6=i

(λi − λj)
.

So

(P−1x)∗y = xN

N∑
i=1

yi∏N
j=1
j 6=i

(λi − λj)
= xNΩ∗y.

Since y is arbitrary we obtain the result.

The following Theorem gives a sufficient condition for the existence of an
attractor homeomorphic to the circle.

Theorem 6.6 Suppose that (H1) is satisfied and g is K−Lipschitz on y. If

K <
−λ2

2‖Ω‖|P |
.

Then π/A is an homeomorphism from A onto T1.
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Proof: By Theorem 6.1 we only need to show that the Lipschitz constant of
G(t, y) = P−1J(t, Py) is less then −λ2

2
. If x′ = Px, y′ = Py ∈ RN then, by

the last Lemma,

‖G(t, x)−G(t, y)‖ = ‖P−1(0, 0, . . . , 0, g(t, x′)− g(t, y′))‖

= ‖Ω‖|g(t, x′)− g(t, y′)| ≤ K‖Ω‖‖x′ − y′‖

= K‖Ω‖‖PP−1(x′ − y′)‖ ≤ K‖Ω‖|P |‖x− y‖ ≤ −λ2

2
‖x− y‖,

for each t ∈ R.

We remark that in the special case where g only depend on x, R. A. Smith
in the last section of [16] gave a circle criterion for equation (12) to satisfy
(H3) that seems to give sharper estimates than the last Theorem.

As an example of application we can consider the equation{
x′′ + c1x

′ + sin(x) = p(t)
y′′ + c2y

′ + y = x
,

that is a model for a spring with friction driven by the motion of a pendulum
with friction that is forced by a periodic force p(t). The function y satisfies
the fourth order equation

y(4) + (c1 + c2)y
′′′ + (1 + c1c2)y

′′ + c1y
′ = − sin(y′′ + c2y

′ + y) + p(t),

that is of the type of (12). If c2 > 2, c1 > 0 then the roots of λ3 + (c1 +

c2)λ
2 + (1 + c1c2)λ + c1 are the negative real numbers −c1, and

−c2±
√

c22−4

2
;

so the last Theorem can be applied.

Acknowledgement: The author wants to thank Professor Rafael Ortega
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ment and suggestions for its study.

References

[1] M. Armstrong, Basic Topology, Springer-Verlag, New York, 1983.

[2] M. W. Hirsch, S. Smale, Differential equations, dynamical systems and
linear algebra, Academic Press, 1974.



REFERENCES 20
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