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Abstract

We introduce three new examples of kinetic models for chemotaxis, where
a kinetic equation for the phase-space density is coupled to a parabolic or
elliptic equation for the chemo-attractant, in two or three dimensions. We prove
that these models have global-in-time existence and rigorously converge, in the
drift-diffusion limit to the Keller-Segel model. Furthermore, the cell density is
uniformly-in-time bounded. This implies, in particular, that the limit model
also has global existence of solutions.

1 Introduction

The slime mold amoebae, Dictyostelium Discoideum, is an important biological ex-

ample both experimentally and theoretically. From the modeling point of view, its

study starts with the work of Patlak [23] and gained maturity with the Keller-Segel

model [15, 16].

Keller and Segel modeled the initiation of the aggregation of the D. Discoideum,

using a system of two parabolic partial differential equations, one for the cell density

ρ ≥ 0 and the second for the density of the cyclic adenosine mono-phosphate (cAMP)

S ≥ 0, the chemical substance that mediate aggregation. The cell movement induced

by chemical substances is called chemotaxis, and, in this particular case, cells move

toward higher concentrations of cAMP, produced by the cell themselves.

A general overview of chemotaxis and a large bibliography on the Keller-Segel

model can be found in [12].
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The blow up phenomena, i.e., the arbitrary increase of L∞-norms of solutions ρ

or S, is an important mathematical question still largely open. Some partial answers

to this problem were given in [3, 4, 8, 9, 19, 20] and references therein.

The derivation of the Keller-Segel model in [15, 16] was originally made from the

phenomenological point of view. In [25] this model was derived as limit dynamics of

systems of moderately interacting stochastic many particle process.

The Keller-Segel model can also be derived from kinetic equations, introduced in

this framework for the first time in [1, 2, 21]. In [11, 22] it is formally shown that

these models converge, in the macroscopic limit, to the Keller-Segel model. Rigorous

derivations appeared in [6], where local-in-time convergence was proved for turning

kernels depending only on S and ∇S and for a elliptic equation for S (i.e., the limit of

fast-diffusion), in the 3-dimensional case. Furthermore, global-in-time existence was

proved for turning kernels bounded by certain functionals of S. In [14] these results

were generalized to the 2-dimensional case and the limit of fast diffusion was proved

not necessary (i.e., the equation for S was of parabolic or elliptic type). Global-in-time

existence of solutions was proved under the same bound on the turning kernel. Finally,

in [13], the previous results, concerning global-in-time existence, were extended for

turning kernels with a more general dependence on S. It is important to stress that

even for kinetic models with global existence the limit Keller-Segel model can present

finite-time-blow-up. See [6].

Keller-Segel model with prevention of overcrowding (as in Reference [10]) is given

by {
∂tρ = ∇ · (D(S, ρ)∇ρ− V(S, ρ)∇S) ,

∂tS = D0∆S + ϕ(S, ρ) ,
(1)

where we consider that D(S, ρ) = D0 is a constant, ϕ(S, ρ) = g1(S, ρ)ρ − g2(S, ρ)S,

with g1 ≥ 0 and g2 ≥ δ0 > 0, V(S, ρ) = χ(S)β(ρ)ρ, where χ > 0 and there is a ρ̄ > 0

such that β(ρ) > 0 for ρ ∈ [0, ρ̄) and β(ρ) = 0, ρ ≥ ρ̄. Initial conditions are supposed

to be non-negative. Hillen and Painter were able to give sufficient conditions for

global existence of solutions for this kind of model (see [10]).

This work is concerned with kinetic models for chemotaixs with prevention of

overcrowding and is structured as follows: in Section 2, we introduce kinetic models

for chemotaxis and compute formally its macroscopic (drift-diffusion) limits. In Sec-

tion 3 we show three new different kinetic models with global existence of solutions

that converge formally to the Keller-Segel model (1), by extending examples in [6, 22].

Furthermore, the macroscopic density is uniformly-in-time bounded. Finally, in Sec-

tion 4 we prove that these three examples rigorously converges to the Keller-Segel

model, and conclude global existence of solutions to the limit model (1).
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2 Models and Formal Asymptotic Expansions

We consider a kinetic model for chemotaxis as presented in [6], i.e, we consider the

cell density fε(x, v, t) ≥ 0 and the chemo-attractant density Sε(x, t) ≥ 0 in a point

(x, v, t) ∈ Rn×V ×R+ and (x, t) ∈ Rn×R+, respectively, where V is the compact and

rotationally invariant set of all possible velocities, V ⊂ Bvmax ⊂ Rn, where Br is the

ball with center in 0 and radius r. We also consider Tε[S, ρ](x, v, v
′, t), the turning rate

from velocity v′ to v in a space-time point (x, t) where (x, v, v′, t) ∈ Rn×V ×V ×R+

in the presence of cells and chemo-attractants with densities ρ and S, respectively.

Above, ε > 0 is the ratio between the microscopic variables and macroscopic variables

and the limit ε→ 0 corresponds to the drift-diffusion limit of the model.

We now obtain, formally, the system satisfied by the macroscopic densities ρ0 =

limε→0

∫
V
fεdv and S0 = limε→0 Sε, from the one obeyed by the microscopic densities

fε and Sε.

We introduce the following notation

fε = fε(x, v, t) ,

f ′ε = fε(x, v
′, t) ,

Tε[S, ρ] = Tε[S, ρ](x, v, v
′, t) ,

T ∗ε [S, ρ] = Tε[S, ρ](x, v
′, v, t) .

We consider the kinetic model in (Rn × V × R+), with n = 2 or 3.

∂tfε +
1

ε
v · ∇fε = − 1

ε2
Tε[Sε, ρε](fε) , (2)

Tε[S, ρ](f) :=

∫
V

(T ∗ε [S, ρ]f − Tε[S, ρ]f
′)dv′ , (3)

ρε :=

∫
V

fεdv , (4)

δ∂tSε = ∆Sε + ρε − δγSε , (5)

with initial conditions given by

fε(x, v, 0) = f I(x, v) ≥ 0 , (6)

Sε(x, 0) = SI(x) ≥ 0 . (7)

See [6] for the derivation of the system (2–7). Equation (4) defines the macroscopic

(real space) density ρε as a function of the microscopic (phase space) density fε,

when integrated over all possible velocities. We assume δ, γ ≥ 0 and that the ε-

independent initial conditions are in suitable spaces. We impose SI ≡ 0 in most part

of this work and in Remark 6 we extend our results to the more general case given

by Equation (7). Of course, if δ = 0 in (5) (i.e., the limit of fast diffusion), the

condition (7) is unnecessary.
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Remark 1. If the initial condition f I is compactly supported, then fε is compactly

supported for every t. More precisely, if f I ⊂ Br, then

suppfε ⊂ Br+vmaxt/ε .

The formal asymptotic is obtained in the same way as in [6]. Namely, we impose

the expansion

fε = f0 + εf1 + · · · ,

ρk :=

∫
v

fk dv ,

Sε = S0 + εS1 + · · · ,
Tε = T0 + εT1 + · · · ,

We assume the kernel T0[S, ρ](x, v, v
′, t) = λ[S, ρ](x, t)F (v), such that

(A1) F = F (|v|) > 0,

(A2) T0[S, ρ]F
′ = T ∗0 [S, ρ]F ,

(A3)
∫

V
Fdv = 1,

(A4)
∫

V
vFdv = 0.

(A5) The turning rate T0[S] is bounded, and there exists a constant λmin > 0 such

that T0[S]/F ≥ λmin, ∀ (v, v′) ∈ V × V , x ∈ Rn, t > 0.

From Assumption (A2) we see that T0[S, ρ](F ) = 0, i.e., F is the non-perturbed

equilibrium distribution. This assumption is called “detailed balance”. Assumption

(A3) is a unimportant normalization while (A4) means that the equilibrium distribu-

tion does not cause drift. The others one are technical assumptions.

We put the expansions in the System (2–5) and match terms of the same order in

ε. To order 0, we find that

T0[S0, ρ0](f0) = 0 ,

and then f0 = ρ0F . We also find that

v · ∇f0 = −T0[S0, ρ0](f1)− T1[S0, ρ0] .

This implies that

f1(x, v, t) = −κ(x, v, t) · ∇ρ0(x, t)−Θ(x, v, t)ρ0(x, t) + ρ1(x, t)F (v) ,
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where

T0[S0, ρ0](κ) = vF ,

T0[S0, ρ0](Θ) = T1[S0, ρ0](F ) .

We integrate Equation (2) over V and finally find that the macroscopic system is

given by

∂tρ0 = ∇ · (D[S0, ρ0]∇ρ0 − Γ[S0, ρ0]ρ0) , (8)

δ∂tS0 = ∆S0 + ρ0 − δγS0 (9)

where

D[S0, ρ0] =

∫
V

v ⊗ κ[S0, ρ0](x, v, t)dv (10)

Γ[S0, ρ0] = −
∫

V

vΘ[S0, ρ0](x, v, t)dv , (11)

For simplicity we consider γ = 0, which means that we do not consider the chem-

ical decay of the chemo-attractant, and we normalize δ = 1 (except in Remark 5,

where δ = 0). Furthermore, the matrix D[S0, ρ0] is symmetric and positive definite.

(See Remark 2 in [6]), and Γ[S0, ρ0] is the convection term.

Assumptions (A1–A5) imply that Equations (10) and (11) can be written simply

as

D[S0, ρ0] =
1

nλ[S0, ρ0]

∫
V

|v|2F (|v|) dv I , (12)

Γ[S0, ρ0] = − 1

λ[S0, ρ0]

∫
V

vT1[S0, ρ0](F )dv , (13)

where I is the n× n identity matrix.

Let us introduce three different models and obtain, formally, their drift-diffusion

limit:

(M1) In the first model we have Tε = T0 + εT1, where T0[S, ρ] = λ[S, ρ]F is a non-

oriented turning kernel and the chemotactical perturbation is given by

T1[S, ρ](x, v, v
′, t) = F (v)(a(S(x, t), ρ(x, t))v − b(S(x, t), ρ(x, t))v′) · ∇S(x, t) ,

where a and b are real continuous functions defined in [0,∞)× [0,∞), such that

0 < a(S, ρ) < ā(S), 0 < b(S, ρ) < b̄(S) for ρ ∈ [0, ρ̄) and a(S, ρ) = b(S, ρ) = 0,

for ρ ≥ ρ̄. We immediately see that if v points in the direction of ∇S (or, v′

points in the opposite direction) the turning rates increases. Then, intuitively,
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the overall effect is to make the cell walk upward the gradient. Similar kinds of

models appear in [6, 11].

In this case we have

Γ[S, ρ] =
1

nλ[S, ρ]
[a(S, ρ) + b(S, ρ)]

∫
V

v2F (|v|)dv∇S ;

(M2) Let us define, following [11], the “non-local gradient”:

◦
S (x, t;R) =

n

Rwn−1

∫
Sn−1

νS(x+Rν, t)dν ,

where wn−1 is the area of the n − 1-dimensional sphere. The turning kernel is

defined by

Tε[S, ρ] = λ[S, ρ]F (v) + εF (v)
[◦
a (S, ρ)v−

◦
b (S, ρ)v′

]
·
◦
S (x, t; εR) ,

where
◦
a and

◦
b are real continuous functions defined in [0,∞)× [0,∞), such that

0 <
◦
a (S, ρ) <

◦̄
a(S), 0 <

◦
b (S, ρ) <

◦̄
b(S) for ρ ∈ [0, ρ̄) and

◦
a (S, ρ) =

◦
b (S, ρ) = 0,

for ρ ≥ ρ̄. From the fact that, at least formally,

lim
ε→0

◦
S (x, t; εR) = ∇S(x, t) ,

we see that the “non-local gradient” is an approximation of the gradient ∇S
(for small ε) and thus the interpretation is similar to the case (M1). Formally,

T0 and T1 are the same as in model (M1) (with a and b replaced by
◦
a and

◦
b),

and so is Γ[S, ρ]; and

(M3) We define a third kernel given by

Tε[S, ρ](x, v, v
′, t) =

c+ψ(S(x, t), S(x+ εµ+(ρ)v, t))F (v) + c−ψ(S(x, t), S(x− εµ−(ρ)v′, t))F (v) .

We interpret εµ±(ρ)vmax as the effective radius of the cell, with the sign +

indicating its ability to access future directions and − its memory of past di-

rections. These functions µ± are real continuous functions defined in [0,∞)

such that 0 < µ±(ρ) < µmax for ρ ∈ [0, ρ̄) and µ±(ρ) = 0, for ρ ≥ ρ̄, i.e., if

concentration is higher that a certain threshold the cell becomes “blind”. We

write the expansion Tε = T0 + εT1 +O(ε2), where

T0[S, ρ] = (c+ + c−)ψ(S, S)F (v) ,

T1[S, ρ] = ∂2ψ(S, S)F (v)(c+µ+(ρ)v − c−µ−(ρ)v′) · ∇S ,
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where ∂2ψ means differentiation with respect to the second variable. Finally,

Γ[S, ρ] =
∂2ψ(S, S)

n(c+ + c−)ψ(S, S)
(c+µ+(ρ) + c−µ−(ρ))

∫
V

v2F (|v|)dv∇S .

So both models converge formally to Keller-Segel equation (1) with diffusion co-

efficient given by Equation (12) and chemotactical sensitivity χ(S) given by

χ(S)β(ρ)∇S = Γ[S, ρ] .

For given functions D, χ, β it is necessary to find new functions λ, a and b, or
◦
a and

◦
b or ψ, µ+ and µ− which obey the above equation and Equation (12).

Remark 2. In the Keller-Segel model (1), we have that D[S0, ρ0] = D0 is a constant.

Then, we find that λ is a constant (see Equation (12)), and then T0[S, ρ] = λF . In

this work, we will consider however the more general dependence T0[S, ρ](x, v, v
′, t) =

λ(t)F (v), where λ(t) ∈ [λmin, λmax], λmin, λmax ∈ (0,∞), ∀t ∈ R+, is a continuous

function.

Remark 3. The value ρ̄ is called saturation value. For space-time points (x, t) such

that ρ(x, t) ≥ ρ̄ the movement is purely random, without any chemotactical effect. We

will prove in the following sections that this (with some other assumptions) prevents

blow-up. In fact a stronger conclusion holds, that is, the cell concentration in each

point never increases beyond that value, or beyond the initial condition.

These three models, however, are different in its chemotactical part, i.e., wherever

ρ(x, t) < ρ̄. In the first model cells are directly able to measure gradients of the

concentration. It is not clear that they really can do so, see [22]. In the second case

cells measure only concentration on its surface (for all practical purposes, we consider

cells as spheres centered in x and with radius εR) and integrate over all directions.

Finally, in (M3), all they need is to access the concentration value in some effective

radius, but no “integration ability” is required.

3 Global Existence of Kinetic Solutions

For kinetic models, local-in-time existence and uniqueness of solutions are guaranteed,

see [5] or [24]. The positivity (≥ 0) of solutions is a simple consequence of the

positivity of the turning rate Tε[S, ρ] and of the initial conditions.

We prove global existence in the kinetic level for the models (M1), (M2) and (M3)

subject to Remark 2 and with some other assumptions to be introduced soon. For

simplicity, we omit ε > 0 wherever its omission causes no confusion. In particular,

we write f := fε, ρ := ρε, and S := Sε.

We introduce the following assumptions in models (M1), (M2) and (M3) respec-

tively:
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(B1) We assume that b ≡ 0, that a(S, ρ)/(ρ̄−ρ) is a non-increasing function of ρ and

sup
S≥0,ρ≥0

a(S, ρ)

ρ̄− ρ
≤ amax

ρ̄
,

where

amax := sup
S≥0,ρ≥0

a(S, ρ) .

(B2) We assume that
◦
b≡ 0, that

◦
a (S, ρ)/(ρ̄ − ρ) is a non-increasing function of ρ

and

sup
S≥0,ρ≥0

◦
a (S, ρ)

ρ̄− ρ
≤

◦
amax

ρ̄
,

where

◦
amax:= sup

S≥0,ρ≥0

◦
a (S, ρ) .

(B3) We impose c− = 0, c+ = 1 and µ := µ+. We also impose

sup
ρ≥0

µ(ρ)

ρ̄− ρ
≤ µmax

ρ̄
,

with

µmax := sup
ρ≥0

µ(ρ) .

From Remark 2, we have that ψ(S, S) = λ ≥ λmin > 0 and we impose that

sup
S,S′≥0

∂ψ(S, S ′)

∂S ′
= ψ1 ∈ (0,∞) .

We define

Λ0 :=
1

n

[
2n−2(n− 1)

π1/2Γ(n) max{||ρI||L∞(Rn), ρ̄}

](n−1)/n
[

2n+1πn/2

√
2e−1/2||ρI||L1(Rn)

]1/n

,

and our main result reads:
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Theorem 1. Let i = 1, 2, 3. Assume ε < εi, where

ε1 :=
λmin

amaxvmax

Λ0 ,

ε2 :=
λmin

n
◦
amax vmax

Λ0 ,

ε3 :=
λmin

2ψ1µmaxvmax

Λ0 .

Let us consider the model (Mi), subject to Assumptions (A1–A5), (Bi) and Remark 2

with initial conditions given by f I(x, v) = ρI(x)F (v), ρI ∈ L1
+∩L∞(Rn), SI = 0. Then

the solution (f, S) of the nonlinear system (2–7) with δ = 1 and γ = 0 exists globally:

f ∈ L∞(0,∞;L1
+ ∩ L∞(Rn × V )), S ∈ L∞(0, t;Lp(Rn)), p ∈ (n/2,∞], ∀t ∈ (0,∞).

Furthermore,

||ρ(·, t)||L∞(Rn) ≤
∣∣∣∣∣∣f(·, ·, t)

F

∣∣∣∣∣∣
L∞(Rn×V )

≤ max{||ρI||L∞(Rn), ρ̄} , ∀t ∈ R+ .

The proof will involve several lemmas. We prove each lemma for i = 1 and then

extend it for i = 2 and 3. Let us first explain the general idea in the proof. We

first start with Lemma 1 where we show that ||∇S(·, t)||L∞(Rn) is bounded by both

||ρ(·, s)||L1(Rn) and ||ρ(·, s)||L∞(Rn), s ∈ [0, t]. This is identically valid regardless of

the case i. Then, we show that if and while the turning kernel is positive, then

||ρ(·, t)||L∞(Rn) is uniformly-in-time bounded (Lemma 2). Putting together this two

lemmas, we prove that ||∇S(·, t)||L∞(Rn) is uniformly-in-time bounded (Lemma 3).

This allows the extension of the turning kernel (Mi) to all times t ∈ R+ (Lemma 4),

and applying Lemmas 2 and 3 once more we finish the proof.

Lemma 1. Let S be the solution of (5) with δ = 1 and γ = 0, q ∈ (n,∞], SI = 0,

and let t0 > 0 be fixed. Then, there are constants c0 = c0(q, n) and c1 = c1(n) such

that

||∇S(·, t)||L∞(Rn) ≤ c0

∫ t

0

(t− s)−
n
2q
− 1

2 ||ρ(·, s)||Lq(Rn)ds , (14)

||∇S(·, t)||L∞(Rn) ≤
2q

q − n
c0t

(q−n)/(2q) sup
s∈[0,t]

||ρ(·, s)||Lq(Rn) , (15)

for t > 0 and

||∇S(·, t)||L∞(Rn) ≤ (16)

2q

q − n
c0 sup

s∈[0,t0]

||ρ(·, t− s)||Lq(Rn)t
(q−n)/(2q)
0 +

c1||ρI||L1(Rn)

t
(n−1)/2
0

,

for t > t0. (In the above, if q = ∞, then (q − n)/q = 1.)
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Proof. We write S = Υ ∗ ρ, where

Υ(x, t) =
1

(4πt)n/2
e−x2/(4t) ,

and ∗ denotes space and time convolution. Then ∇S = ∇Υ ∗ ρ, where

∇Υ(x, t) = − xe−x2/(4t)

2(4π)n/2tn/2+1
.

We use the bound |x|e−x2/(4t) ≤
√

2te−1/2. and prove that

||∇Υ(·, t)||L∞(Rn) ≤
1

2(4π)n/2t(n+2)/2
sup
x∈Rn

{|x|e−x2/(4t)} ≤
√

2e−1/2

2(4π)n/2

1

t(n+1)/2
.

We also show that

||∇Υ(·, t)||pLp(Rn) =

∫
Rn

xpe−px2/(4t)

2p(4π)np/2tp(n+2)/2
dx =

ωn−1

2p(4π)np/2tp(n+2)/2

∫ ∞

0

xp+n−1e−px2/(4t)dx

=
2n−1ωn−1

(4π)np/2p(p+n)/2
Γ

(
p+ n

2

)
t−(n(p−1)+p)/2 ,

where ωn−1 = |Sn−1| = 2πn/2/Γ(n
2
). Finally, we have

||∇Υ(·, t)||Lp(Rn) = c0(q, n)t−
n
2 (1− 1

p)−
1
2 ,

with

c0(q, n) =

[
Γ
(

n
2

)
Γ
(

p+n
2

)
πn(p−1)/2p(p+n)/2

]1/p

,
1

q
+

1

p
= 1 .

From the properties of the Gamma functions, we have

c0(∞, n) = Γ
(n

2

)
Γ

(
n+ 1

2

)
=
πn/2Γ(n)

2n−1
.

We use Young’s inequality (see [17]) to prove that

||∇S(·, t)||L∞(Rn) ≤
∫ t

0

||∇Υ(·, t− s)||Lp(Rn)||ρ(·, s)||Lq(Rn)ds

≤ c0 sup
s∈[0,t]

||ρ(·, s)||Lq(Rn)

∫ t

0

(t− s)−
1
2
− n

2q ds =
2qc0
q − n

sup
s∈[0,t]

||ρ(·, s)||Lq(Rn)t
q−n
2q ,
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which proves Equations (14) and (15).

Now, we fix a certain time t0 > 0 and write for t > t0

||∇S(·, t)||L∞(Rn) ≤

∫ t0

0

||∇Υ(·, s)||Lp(Rn)||ρ(·, t− s)||Lq(Rn)ds+

∫ t

t0

||∇Υ(·, s)||L∞(Rn)||ρ(·, t− s)||L1(Rn)ds ≤

c0 sup
s∈[0,t0]

||ρ(·, t− s)||Lq(Rn)

∫ t0

0

s−
n
2q
− 1

2ds+

√
2e−1/2

2(4π)n/2
||ρI||L1(Rn)

∫ t

t0

ds

s(n+1)/2
≤

2q

q − n
c0 sup

s∈[0,t0]

||ρ(·, t− s)||Lq(Rn)t
(q−n)/(2q)
0 + c1||ρI||L1(Rn)

[
1

t
(n−1)/2
0

− 1

t(n−1)/2

]
≤

2q

q − n
c0 sup

s∈[0,t0]

||ρ(·, t− s)||Lq(Rn)t
(q−n)/(2q)
0 + c1||ρI||L1(Rn)

1

t
(n−1)/2
0

,

with

c1(n) =

√
2e−1/2

2n+1πn/2
.

Remark 4. The central idea in Lemma 1 is to use the estimate

sup
s∈[0,t]

||∇S(·, s)||L∞(Rn) ≤ c

(
sup

s∈[0,t]

||ρ(·, s)||L∞(Rn) + sup
s∈[0,t]

||ρ(·, s)||L1(Rn)

)
,

for a certain constant c, which is valid in general when

∂tS −∆S = ρ

for ρ ∈ L1
+∩L∞(Rn). This estimation, however, is unable to provide an explicit value

for εi, i = 1, 2, 3 as in Theorem 1.

Lemma 2. Consider a time t∗ > 0 such that Tε[S, ρ] ≥ 0 for all (x, v, v′, t) ∈ (Rn ×
V × V × [0, t∗]) and consider the assumptions as in Theorem 1. Then

sup
t∈[0,t∗]

||ρ(·, t)||L∞(Rn) ≤ max{||ρI||L∞(Rn), ρ̄} , (17)
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Proof. Initially, we prove for i = 1.

Consider first that ||ρI||L∞(Rn) ≤ ρ̄. Then, we define

f̃ = ρ̄F − f ,

ρ̃ =

∫
V

f̃ = ρ̄− ρ ,

S̃ = ρ̄t− S ,

ã(S̃, ρ̃) =
a(S, ρ)ρ

ρ̄− ρ
.

First we prove that

ã(S̃, ρ̃) ≤ amaxρ̄

ρ̄
≤ amax ,

and conclude that

T̃ε[S̃, ρ̃] := λF + ã(S̃, ρ̃)Fv · ∇S̃ ≥ 0 ∀(x, v, v′, t) ∈ (Rn × V × V × [0, t∗]) . (18)

We also see easily that

∇S̃ = −∇S .

(f, S) is solution of

ε2∂tf + εv · ∇f + λf = λFρ+ εFa(S, ρ)v · ∇Sρ ,

∂tS −∆S = ρ :=

∫
V

fdv ,

with f I = ρIF , SI = 0, while (f̃ , S̃) satisfies the system

ε2∂tf̃ + εv · ∇f̃ + λf̃ = λF ρ̃− εFa(S, ρ)v · ∇Sρ = λF ρ̃+ εF ã(ρ̃, S̃)v · ∇S̃ρ̃ ,

∂tS̃ −∆S̃ = ρ̃ :=

∫
V

f̃dv ,

with initial conditions given by f̃ I = ρ̃IF = (ρ̄ − ρI)F > 0 and S̃I = 0. Using

the positivity of the turning kernel, Equation (18), we conclude the positivity of the

solution f̃ , i.e.,

0 ≤ ρ̄F − f (19)

and then

ρ =

∫
V

fdv ≤ ρ̄ .
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Now, let us suppose that ||ρI||L∞(Rn) > ρ̄. Let x ∈ Rn be such that there is a

neighborhood U of x such that ρI(x) > ρ̄ for x ∈ U , and a time tmax such that the

ball with center in x and radius vmaxtmax is included in U . Then, in U ×V × [0, tmax],

we write:

ε2∂tf + ελf + v · ∇f = λFρ ,

or, equivalently,

e
1

ε2

∫ t
0 λ(τ)dτf(x, v, t) = f(x−vt, v, 0)+

∫ t

0

e
1

ε2

∫ s
0 λ(τ)dτ λ(s)

ε2
F (v)ρ

(
x− v(t− s)

ε
, s

)
ds .

(20)

We integrate over V and find that

e
1

ε2

∫ t
0 λ(τ)dτρ(x, t) ≤ ||ρI||L∞(Rn) +

∫ t

0

e
1

ε2

∫ s
0 λ(τ)dτ λ(s)

ε2
||ρ(·, s)||L∞(U)ds .

Now, we take the L∞(U)-norm, use Gronwall’s inequality (see [17]) and find that

||ρ(·, t)||L∞(U) ≤ ||ρI||L∞(Rn) .

Gathering both results, we conclude that

||ρ(·, t)||L∞(Rn) ≤ max{||ρI||L∞(Rn), ρ̄} .

For i = 2 the proof is exactly the same. We need only to see that

◦
S̃= −

◦
S .

Now, we prove for i = 3. For simplicity, we define S := S(x, t), S+ := S(x +

εµ(ρ)v, t) and S ′+ := S(x+ εµ(ρ)v′, t). We define the function

ψ̃(ρ̄t− S, ρ̄t− S+) :=
1

ρ̄− ρ

[∫
V

ψ(S, S ′+)F (v′)dv′ρ̄− ψ(S, S+)ρ

]
. (21)

We immediately note that∫
V

ψ̃(ρ̄t− S, ρ̄t− S+)F (v)dv =

∫
V

ψ(S, S+)F (v)dv .

We write the kinetic model as

∂t(ρ̄F − f) + v · ∇(ρ̄F − F ) =

−
∫

V

ψ(S, S ′+)F ′dv′(ρ̄F − f)− ψ(S, S+)Fρ+

∫
V

ψ(S, S ′+)F ′dv′ρ̄F
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= ψ̃(ρ̄t− S, ρ̄t− S+)F (ρ̄− ρ)−
∫

V

ψ̃(ρ̄t− S, ρ̄t− S ′+)F ′dv′(ρ̄F − f) .

If the kernel defined by Equation (21) is positive, which is true for sufficiently short

times, as ψ̃|t=0 = λ(0) ≥ λmin > 0, and ||ρI||L∞(Rn) ≤ ρ̄, then the bound for ρ

follows. If ||ρI||L∞(Rn) > ρ̄, we use the same argument as before and the fact that

ψ(S, S) = λ.

Lemma 3. Consider a time t∗ > 0 such that Tε[ρ, S] ≥ 0 for all (x, v, v′, t) ∈ (Rn ×
V × V × [0, t∗]) and consider the assumptions as in Theorem 1 with i = 1, 2 or 3.

Then

sup
t∈[0,t∗]

||∇S(·, t)||L∞(Rn) ≤ (22)

n

(n− 1)(n−1)/n

[
π1/2Γ(n) max{||ρI||L∞(Rn), ρ̄}

2n−2

](n−1)/n
[√

2e−1/2||ρI||L1(Rn)

2n+1πn/2

]1/n

.

Proof. Let us define

t̄ =

[
(n− 1)

√
2e−1/2||ρI||L1(Rn)

8π(n+1)/2Γ(n) max{||ρI||L∞(Rn), ρ̄}

]2/n

,

the value that minimizes the function

π1/2Γ(n)

2n−2
max{||ρI||L∞(Rn), ρ̄}t1/2 +

√
2e−1/2||ρI||L1(Rn)

2n+1πn/2t(n−1)/2
,

restricted to t ∈ R+. If t∗ > t̄, then, from Lemma 1, Equation (16), with t0 = t̄, we

conclude Equation (22). Now, consider t∗ ≤ t̄. Then, from Equation (15), we have

that

sup
t∈[0,t∗]

||∇S(·, t)||L∞(Rn) ≤
π1/2Γ(n) max{||ρI||L∞(Rn), ρ̄}

2n−2
t̄1/2 =

(n− 1)1/n

[
π1/2Γ(n) max{||ρI||L∞(Rn), ρ̄}

2n−2

](n−1)/n
[√

2e−1/2||ρI||L1(Rn)

2n+1πn/2

]1/n

.

Using that n/(n− 1)(n−1)/n > (n− 1)1/n, we finish the proof.

Lemma 4. Consider the assumptions of Theorem 1. Then the turning kernel is

always positive, i.e.,

Tε[S, ρ](x, v, v
′, t) ≥ 0 ∀(x, v, v′, t) ∈ Rn × V × V × R+ .
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Proof. Let us fix ε < εi and apply Lemma 2 to a certain maximum time (that exists,

because solutions exist locally in time and Tε[S, ρ](x, v, v
′, 0) = λ(0)F (v) > 0)

t1 = sup{t ∈ R+|Tε[S, ρ] ≥ 0 ∀(x, v, v′) ∈ Rn × V × V } > 0 .

Now, we prove, by contradiction, that t1 = ∞. Let us suppose that t1 <∞.

From Lemma 3, with i = 1, we see that

εamaxvmax sup
t∈[0,t1]

||∇S(·, t)||L∞(Rn) < ε1amaxvmax sup
t∈[0,t1]

||∇S(·, t)||L∞(Rn) ≤ λ .

This implies that Tε[S, ρ](x, v, v
′, t1) > 0 and then sup{t|Tε[S, ρ] ≥ 0} > t1, contra-

diction.

For i = 2, we use that, from the Mean Value Theorem,

◦
S (x, t; εR) =

n

εRwn−1

∫
Sn−1

ν (S(x+ εRν, t)− S(x, t)) dν ≤ n||∇S(·, t)||L∞(Rn) ,

and the same holds true.

If i = 3, we prove the positivity of the turning kernel given by Equation (21), for

ε ≤ ε3.

First of all, note that if ρ > ρ̄, ψ̃(ρ̄t− S, ρ̄t− S+) = ψ(S, S) ≥ λmin > 0. Consider

ρ < ρ̄. Then

ψ(S, S+)ρ−
∫

V

ψ(S, S ′+)F ′dv′ρ̄ ≤ ψ(S, S)(ρ− ρ̄) + εψ1µ(ρ)(ρ̄+ ρ)vmax||∇S(·, t)||L∞(Rn) .

This implies that

1

ρ̄− ρ

[
ψ(S, S+)ρ−

∫
V

ψ(S, S ′+)F ′dv′ρ̄

]
≤

−ψ(S, S) + εψ1
µ(ρ)

ρ̄− ρ
(ρ+ ρ̄)vmax||∇S(·, t)||L∞(Rn) .

From Lemma 3, we conclude that ψ̃ ≥ 0. Finally, we define ψ̃ for ρ = ρ̄ by continuity

(from both sides).

Proof. (Theorem 1). From Lemma 4 we know that the model is well-defined (i.e.,

the turning kernel is non-negative) for t ≥ 0. Then, we apply Lemmas 2 and 3 to

conclude the boundedness of ρ and ∇S. For the bound on S, we see that from the

Young’s inequality (see [17])

||S(·, t)||Lp(Rn) ≤
∫ t

0

||Υ(·, s)||Lq(Rn)||ρ(·, t− s)||L∞(Rn)ds ,
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for p−1 + 1 = q−1. We immediately see that

||Υ(·, t)||Lq(Rn) =
1

qn/(2q)(4πt)n(q−1)/2
,

and then

||S(·, t)||Lp(Rn) ≤
max{||ρI||L∞(Rn), ρ̄}
qn/(2q)(4π)n(q−1)/(2q)

∫ t

0

ds

sn(q−1)/(2q)
. (23)

For p > n/2, q > n/(2+n) and, then, the last integral is convergent, as n(q−1)/(2q) >

−1.

From the Definition (4), we see that

||ρ(·, t)||L∞(Rn) ≤
∣∣∣∣∣∣f(·, ·, t)

F

∣∣∣∣∣∣
L∞(Rn×V )

∫
V

F (v)dv =
∣∣∣∣∣∣f(·, ·, t)

F

∣∣∣∣∣∣
L∞(Rn×V )

. (24)

Finally, we use Equation (19) and apply Gronwall’s Lemma to Equation (20) to

conclude that ∣∣∣∣∣∣f(·, ·, t)
F

∣∣∣∣∣∣
L∞(Rn)

≤ max{||ρI||L∞(Rn), ρ̄} . (25)

Remark 5. For models of hyperbolic-elliptic type, i.e., with δ = 0 in Equation (9),

Theorem 1 remains valid, possibly with different εi, i = 1, 2, 3, as the inequality in

Remark 4 continues to be true.

Remark 6. We can relax the assumption that SI ≡ 0, replacing it for the weaker

assumption that SI ∈ L1
+∩W 1,∞(Rn), possibly changing the values of εi, i = 1, 2 or 3

in Theorem 1. We need only to add ||∇SI||L∞(Rn) on the right hand side of Equations

in Lemmas 1 and 3 and redefine, in Lemma 1, S̃ = ρ̄t+ ||SI||L∞(Rn)−S. The left hand

side of Equation (21) should also change to ψ̃(ρ̄t+ ||SI||L∞(Rn)−S, ρ̄t+ ||SI||L∞(Rn)−
S+), and we need also to impose that

inf
S,S′≥0

ψ(S, S ′) = ψ0 > 0 .

4 Convergence to the Drift-diffusion Models

Definition 1. Let us define the symmetric and anti-symmetric parts of Tε[S, ρ]F ,

respectively, by:

φS
ε [S, ρ] =

Tε[S, ρ]F
′ + T ∗ε [S, ρ]F

2
, (26)

φA
ε [S, ρ] =

Tε[S, ρ]F
′ − T ∗ε [S, ρ]F

2
. (27)
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Theorem 2. Let F ∈ L∞(V ) be a positive velocity distribution satisfying Assump-

tions (A1–A5) and let φS
ε [S] and φA

ε [S] be defined as in Definition 1. Assume that

there exist q > 3, λ0 > 0, and a non-decreasing function Λ ∈ L∞loc([0,∞)), such that

f I

F
∈ Xq := L1

+ ∩ Lq (Rn × V ; F dx dv) , (28)

φS
ε [S, ρ] ≥ λ0(1− εΛ(‖S‖W 1,∞(Rn)))FF

′ , (29)∫
V

φA
ε [S, ρ]2

FφS
ε [S, ρ]

dv′ ≤ ε2Λ(‖S‖W 1,∞(Rn)) . (30)

Then there exists t∗ > 0, independent of ε, such that the existence time of the local

mild solution of (2–7) is bigger than t∗, and the solution satisfies, uniformly in ε,

fε

F
∈ L∞(0, t∗; Xq) ,

Sε ∈ L∞(0, t∗; Lp ∩ C1,α(Rn)) , α <
q − n

q
, 3 < p <∞ (31)

rε =
fε − ρεF

ε
∈ L2

(
Rn × V × (0, t∗);

dx dv dt

F

)
.

Proof. The proof is the same as in [6] and extended in [14].

Theorem 3. Let the assumptions of Theorem 2 hold. Assume further that for families

Sε uniformly bounded (as ε → 0) in L∞loc(0,∞; C1,α(Rn)) for some 0 < α ≤ 1, such

that Sε and ∇Sε converge to S0 and ∇S0, respectively, in Lp
loc(Rn × [0,∞)) for some

p > 3/2 and ρε converges to ρ0 in L2
loc(Rn × [0,∞)), we have the convergence

Tε[Sε, ρε] → T0[S0, ρ0] in Lp
loc(R

n × V × V × [0,∞)) ,

Tε[Sε, ρε](F )

ε
=

2

ε

∫
V

φA
ε [Sε, ρε]dv

′ → T1[S0, ρ0](F ) in Lp
loc(R

n × V × [0,∞)) .

Then solutions of (2–7) satisfy (possibly after extracting subsequences)

ρε → ρ0 in L2
loc(Rn × (0, t∗)) ,

Sε → S0 in Lq
loc(R

n × (0, t∗)) , 1 ≤ q <∞ ,

∇Sε → ∇S0 in Lq
loc(R

n × (0, t∗)) , 1 ≤ q <∞ .

The limits are weak solutions of (8–9) subject to the initial condition

ρ0(x, 0) =

∫
V

f I(x, v) dv ,

S0(x, 0) = SI(x) .
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Proof. The proof of the convergence of Sε and∇Sε can be found in [6] and [14]. There,

we found also the weak convergence of fε. Now, we prove the strong convergence of

ρε in L2
loc(Rn × (0, t∗)). We have that fε = ρεF + εrε, then we take equation (2),

multiply by v and integrate over V . We find

∂t

∫
V

vfεdv +
1

ε
λ[S0, ρ0]D[S0, ρ0]∇ρε +∇ ·

∫
V

v ⊗ vrεdv =

1

ε
ρε

∫
V

Tε[Sε, ρε](F )

ε
v dv +

1

ε

∫∫
V×V

[Tε[Sε, ρε]r
′
ε − T ∗ε [Sε, ρε]rε] v dv dv

′.

This implies that

λ[S0, ρ0]D[S0, ρ0]∇ρε =

ρε

∫
V

Tε[Sε, ρε](F )

ε
v dv +

∫∫
V×V

(Tε[Sε, ρε]r
′
ε − T ∗ε [Sε, ρε]rε) v dv dv

′

−ε∇ ·
∫

V

v ⊗ vrεdv − ε∂t

∫
V

vfε dv .

From the estimates obtained in Theorem 3 and Rellich’s Theorem, we have that

λ[S0, ρ0]D[S0, ρ0]∇ρε is in a compact set of H−1
loc (Rn×(0, t∗)). Now use that λ[S0, ρ0] is

bounded from below (Assumption (A5)) and D[S0, ρ0] is positive definite to conclude

that ∇ρε lies in a compact set of H−1
loc (Rn × (0, t∗)). We use the div-curl lemma of L.

Tartar [18, 26]. We define

Jε :=
1

ε

∫
V

vfεdv =

∫
V

vrεdv .

Now, consider

Xε = (Jε, ρε) ,

Yε = (0, ρε) .

We have

div(x,t)Xε = ∇ · Jε + ∂tρε = 0 ,

curl(x,t)Yε = −curlxρε .

The RHS of both equations, lie in H−1
loc (Rn × (0, t∗)), then from the div-curl lemma,

ρ2
ε = Xε · Yε → X0 · Y0 = ρ2

0, weak-∗. The convergence is a simple consequence of the

bound in fε in Theorem 2. See [7] for a similar case.
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Corollary 1. For i = 1, 2 or 3, Models (Mi), subject to Assumptions (A1–5), (Bi)

and Remark 2 converge to the Keller-Segel model (1) in their drift-diffusion limits,

for arbitrarily large existence times (if ε is small enough, according to Theorem 1).

The limit model has global existence of its solutions. In particular

||ρ0(·, t)||L∞(Rn) ≤ max{||ρI||L∞(Rn), ρ̄} . (32)

Proof. Maximum existence time t∗ in Theorem 2 can be arbitrarily large, as, ac-

cording to Theorem 1, solutions are bounded. It is important to note that the

bounds (23), (24) and (25) in Theorem 1 are uniform in ε. From Theorem 3 we

have that ρε converges to ρ0 in L2
loc(Rn× (0, t∗)) and, as ||ρε(·, t)||L∞(Rn) is uniformly-

in-time bounded with a bound uniform in ε, we conclude Equation (32).

Remark 7. It is important to stress the differences between Corollary 1 and the re-

sults presented in [10]. In the latter, coefficients β and χ that appear in Equation 1

are supposed to be of class C3. In models (Mi), i = 1, 2, 3, we only need continuity

of a,
◦
a and µ, resulting in the same assumption for the chemotactical sensitivity in

the limit. On the other hand, in order to prove global-in-time existence, we explicitly

used assumption (Bi), i = 1, 2, 3, imposing that the decay of these constants in the

range ρ ∈ [0, ρ̄) is at most linear. This was not used in [10]. We also allow the

time dependence of the diffusion coefficient D. This was not considered in [10]. Fi-

nally, our result holds for the entire space Rn, while in [10] the result is valid on a

C3-differentiable, compact Riemannian manifold with periodic boundary conditions.

Other differences seem to be purely technical.
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